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Euler’s Constant
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Abstract. Series which depend on a parameter and generalize the constant discovered by Euler
are introduced and studied. Convergence results are established. An infinite series expansion is
obtained from these generalized formulas which can be used to evaluate the generalized constant.
Euler’s constant can be obtained as a special case. Some asymptotic results are formulated and
limits of some closely related sequences are given.
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1. Introduction

A sequence τn obtained by subtracting log n from the harmonic numbers Hn is known
to converge to a real number called γ. Euler discovered the constant γ named after him
and is defined by the limit

γ = lim
n→∞

( n∑
k=1

1

k
− log n

)
. (1.1)

This is a fundamental constant which is now called Euler’s constant. It has connections
with values of the gamma function and Riemann zeta function and as well there are its
close relatives eγ and e−γ . There are many unsolved problems concerning the nature of the
constant, such as the question of the irrationality of Euler’s constant. The study of Euler’s
constant continues to attract the interest of many investigators and will likely continue to
do so [1, 2].

In a paper written in 1731, Euler summed the harmonic series in terms of zeta values
and computed Euler’s constant to five decimal places. Since then, this number has assumed
a tremendously important role in mathematics and many of its applications [3]-[6].

Proposition (Euler) [7] The limit

γ = lim
n→∞

(Hn − log n)
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exists. It is given by the conditionally convergent series

γ =
∞∑
n=2

(−1)n
ζ(n)

n
.

�
Euler reports that this series converges conditionally since it is an alternating series

with decreasing terms and finds that γ ≈ 0.577218.
Many estimates are also known for γ as well as upper and lower bounds for τn − γ.

For example, a recent estimate for this difference which has appeared [8] is for n ∈ N,

1

2n+
2

5

< τn − γ <
1

2n+
1

3

.

The intention here is to provide and then study some reasonable generalizations of this
sequence τn for Euler’s constant and to obtain some results which yield a powerful tool
for the high precision calculation of Euler’s constant itself [9], [10].

2. Generalizations of Euler’s Constant

Define the sequence γn(a) which depends on the real variable a ∈ [0,∞) as

γn(a) ==
n∑
k=1

[
1

k + a
− log(a+ k + 1) + log(a+ k)] (2.1)

=
n∑
k=1

( 1

k + a

)
− log(a+ n+ 1) + log(a+ 1).

Setting a = 0 in (2.1) and defining γn = γn(0), equation (2.1) becomes

γn =
n∑
k=1

1

k
− log(n+ 1). (2.2)

Up to a term which goes to zero with increasing n, this sequence is the same as the
sequence τn, and Euler’s constant is obtained in the limit

γ = lim
n→∞

γn. (2.3)

Equation (2.1) leads to one generalization of Euler’s constant. It can be generalized further
to depend on two parameters a, b by writing

γn(a, b) =
n∑
k=1

1

k + b
− log(n+ a). (2.4)
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The sequence in (2.4) can be easily related to that in (2.1) by writing

γn(a, b) =

n∑
k=1

1

k + b
− log(b+ n+ 1) + log(b+ 1) + log(b+ n+ 1)− log(a+ n)− log(b+ 1)

= γn(b) + log
(b+ n+ 1

a+ n

)
− log(b+ 1). (2.5)

Since the second term on the right of (2.5) goes to zero as n gets large, existence of the
limit limn→∞ γn(b) in (2.5) implies that limn→∞ γn(a, b) = γ(a, b) exists as well by the
usual limit rules. Moreover, the limit γ(a, b) can be calculated in terms of γ(b) by means
of

γ(a, b) = γ(b)− log (b+ 1). (2.6)

3. Convergence of the Sequences

The expression for γn(a) in (2.1) can be written in an equivalent form which is more
useful for establishing convergence of the sequence,

γn(a) =
n∑
k=1

( 1

a+ k
−
∫ k+1

k

dx

a+ x

)
. (3.1)

The integration variable is changed in (3.1) by means of the linear transformation x = k+t.
This serves to transform the integration interval to (0, 1) and γn(a) takes the form

γn(a) =

n∑
k=1

( 1

a+ k
−
∫ k+1

k

dx

a+ x

)

=

n∑
k=1

( ∫ 1

0

dt

a+ k
−
∫ 1

0

dt

a+ k + t

)
=

n∑
k=1

∫ 1

0

t dt

(a+ k)(a+ k + t)
. (3.2)

Theorem 1. Let a be real and not equal to a negative integer. Then the sequence γn(a)
converges to a continuous function of a.

Proof Clearly for a ≥ 0 the following upper bound holds for the k-th term in (3.2)∫ 1

0

t

(a+ k)(a+ k + t)
dt ≤ 1

2(a+ k)2
≤ 1

2k2
.

Since the series of inverse squares converges, this sequence provides the required bounding
sequence which allows us to conclude that

∞∑
k=1

∫ 1

0

1

(a+ k)(a+ k + t)
dt ≤ 1

2

∞∑
k=1

1

k2
.
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By applying the Weierstrass test at this point allows us to conclude series (3.2) converges
absolutely and uniformly when a ≥ 0. Since the convergence is uniform and the terms in
the series are continuous functions of a, the limit γ(a) is a continuous function of a.

If a < 0 and not equal to a negative integer, it suffices to study the remainder series

∞∑
k=N0+1

∫ 1

0

t

(a+ k)(a+ k + t)
dt (3.3)

Choose N0 > −a, then the following upper bound for the k-th term holds since a+N0 > 0
and j ∈ N, ∫ 1

0

t

(a+ k)(a+ k + t)
dt|k=N0+j ≤

1

2j2
.

Consequently, there is the bound

∞∑
k=N0+1

∫ 1

0

1

(a+ k)(a+ k + t)
dt <

1

2

∞∑
j=1

1

j2
.

Thus the remainder series (3.3) converges uniformly by the Weierstrass theorem as in the
case where a is positive. Hence the limit γ(a) exists and is again continuous, since the
remainder series differs form the whole series by a finite number of terms. �

4. Expansion of the Remainder

As a consequence of Theorem 1, we can write

γ(a) = γN (a) +
∞∑

k=N+1

( 1

a+ k
−
∫ k+1

k

dx

a+ x

)
= γN (a) +

∞∑
k=N+1

∫ 1

0

t

(a+ k)(a+ k + t)
dt.

(4.1)
It will prove useful to denote the remainder of the series in (4.1) as

RN (a) =

∞∑
k=N+1

∫ 1

0

t

(a+ k)(a+ k + t)
dt. (4.2)

Thus (4.1) can be summarized concisely in the form

γ(a) = γN (a) +RN (a).

It is possible to generate an expansion for (4.2) by proceeding in the following way. First
add and subtract the following quantity to (4.2).∫ 1

0
t dt

∞∑
k=N+1

1

(a+ k)(a+ k + 1)
. (4.3)
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This will not alter the value of (4.2). The sum (4.3) is independent of t and converges
when a is not a negative integer. The result is obtained upon evaluating the sum (4.3) in
closed form

RN (a) =

∞∑
k=N+1

∫ 1

0

( 1

(a+ k)(a+ k + 1)
− 1

(a+ k)(a+ k + 1)

)
dt+

∫ 1

0
t dt

∞∑
k=N+1

1

(a+ k)(a+ k + 1)

=
∞∑

k=N+1

∫ 1

0

t(1− t)
(a+ k)(a+ k + 1)(a+ k + t)

dt+

∫ 1

0
tdt

1

a+N + 1
. (4.4)

Define the first in a sequence of such constants α1 as the integral,

α1 =

∫ 1

0
t dt =

1

2
. (4.5)

Substituting (4.5) into (4.4), RN (a) can be summarized as follows

RN (a) =
∞∑

k=N+1

∫ 1

0

t(1− t)
(a+ k)(a+ k + 1)(a+ k + t)

dt+
α1

a+N + 1
.

Taking the first term on the right side of RN (a) and repeating the process, it is determined
that

∞∑
k=N+1

∫ 1

0

t(1− t)
(a+ k)(a+ k + 1)(a+ k + t)

dt

=

∞∑
k=N+1

∫ 1

0

t(1− t)(2− t)
(a+ k)(a+ k + 1)(a+ k + 2)(a+ k + t)

dt+
1

2

∫ 1

0
t(1−t) dt 1

(a+N + 1)(a+N + 2)
.

(4.6)
Defining the constant α2 to be

α2 =
1

2

∫ 1

0
t(1− t) dt =

1

12
,

remainder RN (a) in (4.2) can be expressed as

RN (a) =

∞∑
k=N+1

∫ 1

0

t(1− t)(2− t)
(a+ k)(a+ k + 1)(a+ k + 2)(a+ k + t)

dt+

2∑
k=1

αk
(a+N + 1) · · · (a+N + k)

.

(4.7)
Formula (4.7) leads to the statement of a Theorem. For the proof, the following Lemma
will be required.

Lemma 1. Suppose a is not equal to zero or a negative integer. Then for all integers
m ≥ 1, the following sum can be expressed in closed form,

∞∑
k=N+1

1

(a+ k)(a+ k + 1) · · · (a+ k +m)
=

1

m · (a+N + 1) · · · (a+N +m)
. (4.8)
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Proof The proof is by induction on m. Suppose first m = 1 and a is as in the
statement, then denoting the sum by f(a,m), we have

f(a, 1) =
∞∑

k=N+1

1

(a+ k)(a+ k + 1)
=

∞∑
k=N+1

( 1

a+ k
− 1

a+ k + 1

)
=

1

a+N + 1
.

So the result holds for m = 1 and all a in the stated domain. Suppose (4.8) holds up to
the integer m− 1 and write the difference

f(a,m− 1)− f(a+ 1,m− 1)

=

∞∑
k=N+1

( 1

(a+ k) · · · (a+ k +m− 1)
− 1

(a+ k + 1) · · · (a+ k +m)

)
=

∞∑
k=N+1

( a+ k +m

(a+ k)(a+ k + 1) · · · (a+ k +m)
− a+ k

(a+ k) · · · (a+ k +m)

)
= m

∞∑
k=N+1

1

(a+ k) · · · (a+ k +m)
= mf(a,m). (4.9)

Next, replace m by m− 1 in (4.8) and calculate the difference explicitly

f(a,m− 1)− f(a+ 1,m− 1)

=
a+N +m

(m− 1)(a+N + 1) · · · (a+N +m)
− a+N + 1

(m− 1)(a+N + 1) · · · (a+N +m)

=
1

(a+N + 1) · · · (a+N +m)
. (4.10)

Equating the results (4.9) and (4.10), the sum in (4.8) is obtained for the case m. There-
fore, the principle of mathematical induction implies (4.8) holds for all positive integers
m and a in the domain as stated. �

It should be noted that by continuity, (4.8) can be extended to the case a = 0, since
both sides are continuous functions of a. It is now possible to use this to prove a key result
which is stated now.

Theorem 2. Let m ∈ N such that m ≥ 2 and a is not a negative integer. Define RN,m(a)
to be

RN,m(a) =
∞∑

k=N+1

∫ 1

0

t(1− t) · · · (m− t)
(a+ k)(a+ k + 1) · · · (a+ k +m)(a+ k + t)

dt. (4.11)

Then remainder (4.2) admits the following expansion

RN (a) = RN,m(a) +
m∑
k=1

αk
(a+N + 1) · · · (a+N + k)

. (4.12)
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The constants αk which appear in (4.12) are defined to be

α1 =
1

2
,

αk =
1

k

∫ 1

0
t(1− t) · · · (k − 1− t) dt, k ≥ 2. (4.13)

Proof The cases m = 1, 2 have already been worked out and may serve as the basis
for a proof by induction. Equation (4.12) may be taken as the induction hypothesis with
m replaced by m− 1. It will be shown using Lemma 2 that this case implies (4.12) with
m. Writing out RN,m−1(a) it is found that

RN,m−1(a)−
∞∑

k=N+1

∫ 1

0

t(1− t) · · · (m− 1− t)
(a+ k) · · · (a+ k +m− 1)(a+ k +m)

dt

+

∫ 1

0
t(1− t) · · · (m− 1− t) dt

∞∑
k=N+1

1

(a+ k) · · · (a+ k +m)

= RN,m(a) +
1

m

∫ 1

0
t(1− t) · · · (m− 1− t) dt

∞∑
k=N+1

1

(a+ k) · · · (a+ k +m)

= RN,m(a) +
αk

(a+N + 1) · · · (a+N +m)
. (4.14)

Substituting (4.14) into (4.12), it may be concluded that case m−1 implies m and so (4.12)
is proved by means of the principle of mathematical induction. The αk are determined by
means of (4.13). �

Lemma 2. The following upper and lower bounds hold for the sequence αm when m ≥ 2

1

6m
(m− 2)! ≤ αm ≤

1

6m
(m− 1)!. (4.15)

Proof The bounds (4.15) are an immediate consequence of the observation that

1

m

∫ 1

0
t(1− t) dt · 1 · 2 · 3 · · · (m− 2) ≤ αm ≤

1

m

∫ 1

0
t(1− t) dt · 2 · 3 · · · (m− 1). (4.16)

Substituting the numerical value of the integral which is 1/6 into (4.16), we arrive at
(4.15). �

Lemma 2 can be used to study the behavior of RN,m(a) when a is positive in (4.11) as
m→∞.

Theorem 3. Suppose a ≥ 0 and N ∈ N is fixed, then the following limit holds

lim
m→∞

RN,m(a) = 0. (4.17)
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Proof Clearly we see that RN,m(a) > 0 for all a ≥ 0, and so the following bounds for
RN,m(a) hold

0 < RN,m(a) ≤ RN,m(0) =
∞∑

k=N+1

∫ 1

0

t(1− t) · · · (m− t)
k(k + 1) · · · (k +m)(k + t)

dt

< αm+1

∞∑
k=N+1

( 1

(k − 1)k · · · (k +m− 1)
− 1

k(k + 1) · · · (k +m)

)
=

αm+1

N(N + 1) · · · (N +m)
= αm+1

(N − 1)!

(N +m)!
. (4.18)

Using Lemma 2 in (4.18), the following bounds result

0 < RN,m(a) <
m!

6(m+ 1)
· (N − 1)!

(N +m)!
=

1

6N(m+ 1)
· 1(

N+m
m

) . (4.19)

Letting m → ∞ in (4.19) and applying the squeeze theorem, the result stated in (4.17)
follows. �

5. Generalizations of Euler’s Constant

Theorem 4. Let a ∈ [0,∞), then a form of generalized Euler’s constant can be defined
and calculated from

γ(a) = γN (a) +
∞∑
k=1

αk
(a+N + 1) · · · (a+N + k)

. (5.1)

Moreover, Euler’s constant (1.1) is obtained as

γ =

N∑
k=1

1

k
− log(N + 1) +

∞∑
k=1

αk
(N + 1) · · · (N + k)

. (5.2)

Proof To obtain (5.1), substitute (4.12) for RN (a) into (4.1) to obtain

γ(a) = γN (a) +RN,m(a) +
m∑
k=1

αk
(a+N + 1) · · · (a+N + k)

. (5.3)

Letting m→∞ in (5.3) and using (4.17), equation (5.1) is obtained. Finally, set a = 0 in
(5.1) and we get result (5.2) for the constant found by Euler. It is also worth noting that
when (2.1) is substituted into (5.1), the generalized constant takes the form

γ(a) =

N∑
k=1

1

a+ k
− log(a+N + 1) + log(a+ 1) +

∞∑
k=1

αk
(a+N + 1) · · · (a+N + k)

. (5.4)
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�
Setting a = 0 in (5.4) and substituting the definition (N + 1)k = (N + 1) · · · (N + k),

Euler’s constant (5.2) can be put into the form,

γ =
N∑
k=1

1

k
− log(N + 1) +N !

∞∑
k=1

αk
(N + k)!

=
N∑
k=1

1

k
− log(N + 1) +

∞∑
k=1

αk
(N + 1)k

. (5.5)

A formula similar to (5.5) for γ has appeared before [11].

6. Asymptotic Results and Some Limits

Theorem 5. The limit function γ(a) : [0,∞)→ [0,∞) defined in (5.4)

γ(a) = lim
N→∞

γN (a) = lim
N→∞

( 1

a+ 1
+ · · ·+ 1

a+N
− log(

a+N + 1

a+ 1
)
)
, (6.1)

for a ∈ (0,∞) is a strictly decreasing function of a.

Proof Let N ∈ N with hN : (0,∞)→ (0,∞) defined to be the function

hN (a) =
1

a+ 1
+

1

a+ 2
+ · · ·+ 1

a+N
− log(

a+N + 1

a+ 1
). (6.2)

Differentiate (6.2) term by term with respect to a to obtain

h′N (a) = −
N∑
k=1

1

(a+ k)2
+

N

(a+ 1)(a+N + 1)
< −

N∑
k=1

1

(a+ k)(a+ k + 1)
+

N

(a+ 1)(a+N + 1)

= − N

(a+ 1)(a+N + 1)
+

N

(a+ 1)(a+N + 1)
= 0.

Therefore, at each a ∈ (0,∞), the derivative of hN (a) satisfies h′N (a) < 0 and so it follows
that the function hN (a) is strictly decreasing for all integers N . Hence it follows from this
that the function γ(a) is also strictly decreasing on (0,∞) as well. �

Theorem 6. Let a ∈ (0,∞) and for N ∈ N, define three sequences λN , µN and σN as
follows

λN (a) =
1

a+ 1
+

1

a+ 2
+ · · ·+ 1

a+N
− log(

a+N

a+ 1
+

1

2(a+ 1)
), (6.3)

µN (a) = λN (a)− 1

24(a+N + 1
2)2

, (6.4)

σN (a) = λN (a)− 1

24(a+N)2
. (6.5)

Then the following statements hold:
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(i) γ(a) < λN+1(a) < λN (a) for N ∈ N and

lim
N→∞

N2 (λN (a)− γ(a)) =
1

24
. (6.6)

(ii) µN (a) < µN+1(a) < γ(a) for each N ∈ N and

lim
N→∞

N4 (γ(a)− µN (a)) =
7

960
. (6.7)

(iii) γ(a) < σN (a) < σN+1(a) for each N ∈ N and

lim
N→∞

N3 (γ(a)− σN (a)) =
1

24
. (6.8)

(iv) For each N ∈ N, the following bounds hold

1

24(a+N)2
< λN (a)− γ(a) <

1

24(a+N − 1
2)2

. (6.9)

Proof (i) Clearly for a ∈ (0,∞) and n ≥ 1 it is the case that

λn(a)− λn+1(a) = log(
2a+ 2n+ 3

2a+ 2n+ 1
)− 1

a+ n+ 1
. (6.10)

To study this difference between terms in the sequence as a function of n and a, let us
define the function f(a, x) for x ≥ 0 which agrees with (6.10) when x = n as

f(a, x) = log(
2a+ 2x+ 3

2a+ 2x+ 1
)− 1

a+ x+ 1
. (6.11)

It is the case that f(a, x)→ 0+ as x→∞. Differentiate f(a, x) with respect to x to give

fx(a, x) = − 2a+ 2x+ 1

(2a+ 2x+ 1)2(2a+ 2x+ 3)(a+ x+ 1)3
< 0,

Moreover, f(0, 0) > 0 and fa(a, 0) at fixed x = 0 remains positive while decreasing mono-
tonically to zero for all a in the interval. Therefore f(a, x) must remain positive as it
decreases to zero monotonically, which implies from (6.10) that λn(a) > λn+1(a). Thus
λn(a) satisfies

γn(a) = λn(a) + log(
2a+ 2n+ 1

2a+ 2n+ 2
) < λn(a),

since the logarithm is negative, and so γn(a) approaches γ(a) from above as n→∞. The
Césaro-Stoltz theorem permits the evaluation of the limit from

n2 (λn(a)− γ(a)) =
λn+1(a)− λn(a)

1

(n+ 1)2
− 1

n2

=

1

a+ n+ 1
+ log(

2a+ 2n+ 1

2a+ 2n+ 3
)

1

(n+ 1)2
− 1

n2



P. Bracken / Eur. J. Pure Appl. Math, 12 (1) (2019), 1-13 11

=
1

24
− 1

8n
(a+

1

2
) +O(

1

n2
).

This development implies the required limit as stated.
(ii)

µn+1(a)− µn(a) = λn+1(a)− λn(a)− 1

24(a+ n+ 1
2)2

+
1

24(a+ n+ 1
2)2

=
1

a+ n+ 1
− log(

2a+ 2n+ 3

2a+ 2n+ 1
)− 1

24(a+ n+ 3
2)2

+
1

24(a+ n+ 1
2)2

(6.12)

As in (i), define g(a, x) to be the right side of (6.12) with n replaced by x. Differentiating
g(a, x) with respect to x gives

gx(a, x) = − 28(a+ x)2 + 56(a+ x) + 25

3(a+ x+ 1)2(2a+ 2x+ 3)3(2a+ 2x+ 1)3
< 0,

and g(a, x) → 0+ as x → ∞. Since g(0, 0) > 0 and ga(a, 0) < 0, the function g(a, 0)
remains positive while decreasing monotonically to zero. Consequently (6.12) implies the
inequalities γ(a) ≥ µn+1(a) > µn(a). The Césaro-Stoltz theorem gives the required limit
by writing

n4 (γ(a)− µn(a)) =
γ(a)− µn+1(a)− γ(a) + µn(a)

1

(n+ 1)4
− 1

n4

=
µn(a)− µn+1(a)

1

(n+ 1)4
− 1

n4

=
7

960
− 7

192n
(a+

1

2
) +O(

1

n2
).

(iii)

σn+1(a)− σn(a) = λn+1(a)− λn(a)− 1

24(a+ n+ 1)2
+

1

24(a+ n)2

=
1

a+ n+ 1
− log(

2a+ 2n+ 3

2a+ 2n+ 1
)− 1

24(a+ n+ 1)2
+

1

24(a+ n)2
. (6.13)

As in (i) and (ii), define the function h(a, x) to be the right-hand side of (6.13) with n
replaced by x. Differentiating h(a, x) with respect to x, we have

hx(a, x) = − 24(a+ x)3 + 37(a+ x)2 + 17(a+ x) + 3

12(a+ x)3(a+ x+ 1)3(2a+ 2x+ 1)(2a+ 2x+ 3)
.

Therefore h(a, x) is strictly decreasing in x and approaches zero as x→∞. Also f(0, 1) > 0
and fa(a, 1) < 0 so h(a, 1) is always positive and decreasing at fixed x = 1, so we conclude
that h(a, x) remains positive. Applying this to (6.13), the required inequalities for σn(a)
are obtained. The Césaro-Stoltz theorem provides the means for determining the limit

n3 (γ(a)− σn(a)) =
σn(a)− σn+1(a)

1

(n+ 1)3
− 1

n3
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=

− 1

a+ n+ 1
+ log(

2a+ 2n+ 3

2a+ 2n+ 1
) +

1

24(a+ n+ 1)
− 1

24(a+ n)2

1

(n+ 1)3
− 1

n3

=
1

24
− 1

6n
(a+

23

120
) +O(

1

n2
).

(iv) This follows as a straightforward consequence of the previous results. Since
µn(a) < γ(a), it follows that

λn(a)− 1

24(a+ n− 1
2)2
− γ(a) < 0.

This implies the upper bound,

λn(a)− γ(a) <
1

24(a+ n− 1
2)2

.

In a similar way, since σn(a) > γ(a) the lower bound follows directly as well. �

Theorem 7. (i) Let vn be any sequence which converges to Euler’s constant. Then Euler’s
constant is also given by the limit

γ = lim
n→∞

∞∑
k=0

(
nk

k!
)p vk

∞∑
k=0

(
nk

k!
)p

. (6.14)

(ii) Let Hn denote the harmonic sequence and suppose p > 0. Euler’s constant is given
by the limit

γ = lim
n→∞

∑∞
k=0 (

nk

k!
)p(Hk − log(k + 1))∑∞
k=0 (

nk

k!
)p

. (6.15)

Proof (i) Suppose the sequence vn converges to Euler’s constant, limn→∞ vn = γ.
Define sequences an and bn with p > 0 as follows,

an =
vn

(n!)p
, bn =

1

(n!)p
. (6.16)

Then bn > 0 and it can be verified using the Ratio test that
∑∞

n=0 bnt
n converges for t

real and p > 0, hence (6.15) satisfies

lim
n→∞

an
bn

= γ.
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Then it follows by a theorem [12] that the series
∑∞

n=0 ant
n converges and that

lim
t→∞

∑∞
k=0

vk
(k!)p

tk∑∞
k=0

1

(k!)p
tk

= γ. (6.17)

As far as the limit is concerned, the variable t in (6.17) may be replaced by np, since the
limit exists by the theorem and is unique. Replacing t → ∞ with n → ∞ on the limit,
then (6.17) immediately implies (6.14).

(ii) Taking vn = γn defined in (2.2), then vn converges to γ and can be used in (6.14).
This completes the proof. �

References

[1] D. Knuth, Euler’s Constant to 1271 Places, Math. of Computation, 16, 79: 275-281,
1962.

[2] J. C. Lagarias, Euler’s Constant: Euler’s Work and Modern Developments, Bull. Amer.
Math. Soc. 50, 4: 527-628, 2013.

[3] A. Sintamarian, A generalization of Euler’s constant, Numer. Algor. 46: 141-151, 2007.

[4] T. Tasaka, Note on the generalized Euler constants, Math. J. Okayama Univ. 36: 29-34,
1994.

[5] E. T. Whittaker and G. N. Watson, A Course of Modern Analysis, Cambridge Uni-
versity Press, Cambridge, 1996.

[6] C. Elsner, On a sequence transformation with integral coefficients for Euler’s constant,
Proc. Am. Math. Soc. 123: 1537-1541, 1995.

[7] The Euler Archive: The works of Leonard Euler online,
http://www.eulerarchive.org
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