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On Determining Initial Conditions of Equations
Flexural-Torsinal Vibrations of a Bar
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Abstract. The problem of finding the initial conditions in the boundary-value problem for the
system of flexural-torsional vibrations of a bar with additional conditions on the straight line is
reduced to an optimal control problem and studied by the methods of optimal control theory. The
gradient of the functional is calculated and using the gradient expression a necessary and sufficient
optimality condition are proved.
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1. Introduction

It is known that some problems of mathematical physics, mechanics, are described by
fourth order partial equations. A tuning fork, a bar vibrations equation, a rotary shaft,
oscillating motions equation and plate vibrations equation are among these equations give
some references. It is imperative optimal control problems in processes described by these
equations. The control connected with flexural-torsional vibrations of a bar has a great
signifficance in dynamics of aircraft constructions. Therefore, the study of bar vibrations
problems controls described by differential equations is necessary both from practical and
theoretical point of view.

2. Problem statement

We consider a boundary value problem for equations of flexural-torsional vibrations
of a bar, described by the system of two differential equations in the domain @ =
{0 <z <, 0<t<T} with boundary and initial conditions
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where [ > 0, T' > 0 are given numbers, y(z,t) is the lateral displacement of the bar, 6(x,t)
is the turning angle of the bar cross-section, F(z) is the Young modulus, I(z) is a polar
inertia moment of the cross section with respect to its gravity center, p(z) is a density
of the bar material, A(x) is the area cross section, e(z) is the distance from the gravity
center to the center of torsion, Cy(x) is the sectional moment of inertia of the cross-
section, G(z) a shear modulus, C(x) is geometrical rigidity of free torsion, E(z)Cy(z) is
the rigidity of flexural functions, G(z)C(x) is the rigidity of free torsion, the functions
(v1 (x) ,w1 (x)) € La(0,1) x Ly (0,1)- to be defined.

Note that for each fixed vector function (vy (x),w; (x)) € L2 (0,1) x L2 (0,1) problem
(1)-(6) has a unique generalized solution from the spaces VV22 1(Q) [3,5,6].

To determine v () = (v1 (x),w; (x)), we give the additional conditions

y(x, T;v) =1 (z), 0<x <, (7)

0(x, T;v) =pa(x), 0<z<I, (8)

where @1 (), p2 (x) — are given functions.
We reduce this problem to the following optimal control problem: it is required to find
such a vector-function (v (z),w; (z)) € L2 (0,1) x L2 (0,1), that minimizes the functional

l
) =5 [ (@) =0 @) + 0@ Ti0) - g (@) ] o )

together with the solution of boundary value problem (1)-(6).

The function v (z) = (v1 (), w1 (z))- is called a control. We call problem (1)-(6),(9) a
reduced problem.The problem (1) - (6), (9) is regularized as follows. We introduce the
functional
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Jo () = Ty ) + 5 (1l 0 + l0rllZ0) @ = const >0 (10)

Now for a class of admissible controls we take a convex, closed set U,q€ L2 (0,1) x
L4 (0,1) of vector-functions v (z) = (v1 (z) ,w; (x)).
Suppose that data of problem (1)-(6) satisfy the following conditions:

1) E(z), I(z), p(x),A(x), e(z),C, (x), G(x), C(z), are mesaurable, bounded
and positive functions on the interval [0, ];

2) fi,fa € La(Q), 1,92 € La(0,1)- are given functions.

3. Differentiability of functional (10)

We show that the functional (10) is differentiable in Lo (0,1) x Lo (0,1).
Introduce the following problem adjoint to the problem (1)-(6), (10):

H? 9%, 92wy 9% Wy
g (E@T@ 55 ) + 0@ 4@ G5t - o) A e0) 5 =0,
(x,t) € Q, (11)
0?2 9% Wy 0% Wy 9%y
5 (E@Cu@ 52 ) - 6@ Cw) G5 = @ Awe ) T+
+p (x) (I (r)+A(x)e (33)) R 0, (z,t) € Q, (12)
o o
_ _ gFiy _9F <t<
Ulo = Wil =0 G| =G =0 osesT, (13)
B B 0y 0 B
|, = Ya|,_; =0, S - = oz . =0, 0<t<T,
Lp1|t:T =0, L[/2|t:T = 0,0<x1, (14)
o
ot |,_r

(I(z) + A(z) e* (2))(¢1 () —y (z,Tyv) + A(z) e(w) (02 (2) — 0 (x, T;v))
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We take the two admissible controls and assign them the increments
dv1 € Ly (0,1) and dw;y € Lo (0,1) in such a way that, (v1 (z) + dv1 (x), w1 () + dwy (z) €
Uad)7
v(z) = (v1(2), w1 (2)),v(x)+ v (x) =
= (v1 (x) + vy (), w1 () + dwy (x)) € Lo (0,1) .

Then the increment of the functional (10) is computed as

Ady (v) = Jo (V4 0v) — Jo (v) =

—_

!
= 2/ [(y (z,T;v1 + dvy,wy + dwy) — @1 (x))2 —
0

— (y (2, T;v1,w1) — @1 (a;))2 + (0 (z,T;v1 + 0vi,wy + dwy) — P2 (:c))2 —

— (0 (z,T;v1,w1) — P2 (x))z} dz+
[0 o
+5 (o1 + 0l 00 = loulFaon ) + 5 (lwr + 8wl 00 ) - (16)

where
y(z,tv(2) +0v (z)) =

0 (z,t;v(z) + dv (z))

y (z,t;0) + oy (x,1)
0 (z,t;v) + 60(x,t).

Hence it follows that

l
Ao (v) :/0 [(y (2, T50) = @1 (2)) 6y (2, T) + (0 (x, T;0) = 2 (x)) 06 (2, T)] da—+

+a /Ol (v16v1+widwy )dx + R, (17)
where
R= ;/Ol [(5y (. T))% + (560 (:c,T)ﬂdx + % </Ol ((501)2+(5w1)2)dx>
and

(0y (x,t),00 (z,t)) € W;’l (Q) x W22’1 (@) is the generalized solution of the

0?2 0?8y 0?8y
oz (B0 1@ 50 ) + o A G-
9200

~p(@) Alw)e (@) 5y = 0. (@:1) € Q, (19)
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the following integral identities are fulfilled
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As the functions (¥ (z,t), W2 (z,t))are the generalized solutions of problem (11)- (15),
. 2,1
for any functions g1, g, € W5 (Q),

3 daz= 0. (24)

o dg1
o=aql., =0 =2 = =0, 0<t<T,
o ’acf() . |x7l Ox =0 Ox =l
092 092
=gl =0, =2| =2 =0, 0<t<T,
- ’xio 2 |z7l Ox =0 Ox =l

the following integral identities are fulfilled
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In equalities (23) and (24) instead of 71 (x,t) and ny (x,t) we take ¥ (x,t) and ¥s (x,t),
in the identities (25) and (26) instead of g1 (z,t) and g2 (z,t) we take dy (z,t) and 60 (x, t)
respectively, subtract the obtained relations and sum them. Then we have,

l
/0 (4 (2. T;0) — @y (2)) 6y (2, T) de + (8 (0, T v) — o3 (x)) 66 (2, T) dx =
l
- /0 p(2) A(x) ¥ (2,0) —p(2) A(2) e (x) Ty (z,0)] Suydat (27)

l
+/0 [~ (2) A(z) e () V1 (2,0) +p(x) (I (z) + A(z) €* (x)) P2 (z,0)] dwidx
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Therefore from formulas (17) and (27) it follows that
l
AJy (v) = / () A () U1 (2,0) — p(2) A (2) e (z) s (,0) + awvr] dvyda-t
0

l
4 /0 [p(2) A(2) e () Ty (2,0) + p(2) (I (2) + A(2) 2 (2) -

- Wy (z,0) + aw;] dwidz + R (28)

Next we show that
6y (2, T2, < clidvnl 00, (29)
|66 (957T)HL2(0 y = 0H5w1||L2 (R (30)

For this purpose first we show that
2
169 (2. )1, 20,0 < elldor ]2, 0 (31)

106 (z,t

) )H?/Vgsl(Q) < C”(Swl”%g(o,l) (32)

o0

For proving estimations (31) and (32) we apply the Faedo-Galerkin method. Let {w; (x)};2,
0
be a fundamental system in W3 (0,1) and

! B 1, i=F,
/0 wi () wg (a:)da;{ 0 itk

We look for approximate solutions(5y™ (z,t), 56" (z,t))of problem (18), (19) in the form
SyN (z,1) = SN N (t) wi (x) and 6N (z,t) = SN | e (t) w; (z) from the following rela-
tions
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de (t)
N _ 17 — .
cli‘tzo - 07 dt o - (’1)1,(,01) ’ (35)
deg; (t) —
cé\”tzo =0, th » = (wy,wj), i =1,N. (36)

Equalities (33) and (34) are the system of linear ordinary differential equations of
second order with the unknowns cf) (¢) and ¢} (t), i = 1, N solved with respect to d*c}} /dt?
and dQCQZ[- / dt?. Under the conditions on the problem data, this system is uniquely solvable
under initial conditions (35) and (36), moreover d?c{ /dt?, d?c}; /dt* € Ly (0,T),i=1,N.

Multiplying each of the equalities (33) and (34) by its own dcf; / dt, dcé\; / dt and sum-
ming over p from 1 to NV we come to the equalities

l 82(5yN 835yN 825yN a(syN
E(2)I(z) —2-=Z"2 A = _
| @@ GG+ @ Aw

ot?2 ot

_p(2) A(z) e () 82‘? a(;ytN) dz = 0, (37)
/O l (E (z) Cy () a;‘f;vm — G (x)C (z) 66N (21529311 —
(o) Alw)e (a) LU0
+p(2) (I(z) + A(z) e (2)) W%) dz =0 (38)

Suppose that G (z) C (z) are independent of .
Then it follows that

%% Ol [(E (@)1 (2) <62£/2N>2 +p(2) A(2) (@)2 +E(2) Cy (2) <‘92‘5§V>2+

+Gc<agijv>2 + p(z) (I(z)+ A(2)e* (2)) (8‘;0:)2—
—2p(z) A(z)e(2) (%{Vé@i}vﬂ da = 0. (39)

We integrate the last equality with respect to ¢ from 0 to ¢ :

/ol (E(2)I(2) (828(192N>2 +p(z) A(x) (%V)QJFE(@CM:C) (aj;;a;v>2+
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+GC<62€6N)2 +p(x) (I(z)+ Az)e?(z)) (&;@j) 2—

—2p(z) A(z) e (z) (‘%{V&;&t}vﬂ dz =

N x 2 N T 2
p(z) Ax) (W) + (@) (I(z) + Ax) e (2)) <W> _

:/Ol

N (y N (p
95y~ (x,0) 956" ( ﬂ))]dw. (40)

—2p(x) A(z)e(x) < ot ot

In equality (40) we make some transformations:

/ol (E(z)I(z) (a;i%]vf +p(x) A(x) (&jazi]V)QJrE(x) Co (@) (agﬁz\/>2+

N 2
+GC<agi> +p(z) (I(z)+A(z)e* (z)) ((%

— p(2) A(z) e (z) ((@)Z <8Zi]v)2>] dz

N X 2 N x 2
p(x)A(z) <W> +p(x) (I(z)+ A(z) e (2)) <859 ai ,0>>

+p(z) A(z)e(x) <<8éy1\;ix’0)>2 + (860’\;?,0))2)] du. (41)

It’s clear that,
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N 00
< Jowul? < e [dwul? < clldwi]l?, 0, (43)
=1 =1

where dvy; = fol oy (z) w; (x) dz, dwy; = fé dw; () w; (x) do are Fourier coefficients of the
functions dvq (x), dw; (x). From (41), (53), (43) we get:

/Ol (E ()1 (2) (a;i%]v>2 + o (2) A) <‘9((5§V>2 +E(2)Cy () (@)1

050N

250N
sac (%

)2 +p(x) (I(x)+ Az) e (x) ((%)2—

— p(2) A(z) e () ((@)Z <8‘;iN)2>] dz <

N 2
p@ A (PLED) o) (@) +

856N (z,0) ) 2
—— ) +
ot

cotaatmeto (B0 (020 o

< ¢ (60l 00 + 10010 ) (44)

Assume that 1 —e(z) > ag > 0,I(x) + A(x)e(z)(e(x)—1) > a1 > 0,
Vx € [0,1], where ag, a; > 0- are the given numbers.
Since E (z), I(x),A(z),Cy,(z),p(x) are positive functions on the segment [0,l], by
0

+A(z) € () (

equivalence of the norms in the space W22 (0,1), from the last inequality
by means of elementary transformations we get:

[ oo () (50 ()
0 . :

+ (66N (2,1))” + <859];§w’t)>2 + CW)Q + (W)j dx <
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SC/Ot/ol [(MN(%S))?JF <a§yNa§x’3)>2+ <853/];(;”’5)>2+ (W)ZnL

+ (60N (;n,s))2 + <859];§$’8)>2 + (W)Q + (W)zl dxds+

+c (H&)IHQLQ(O,Z) + H&UIH%Q(UJ)) : (45)

Applying the Gronuoll lemma, we have:

[ oot (Wm0 s ()’ (2o e)',
0 T i

+ (66N (2,1))” + (W)Q + (W)Q + (WY] de <

<c (H&Jl”%g(o,n + ||5w1||%2(0,z)) vt € [0,T7]. (46)

From the last inequality it follows that

//[53/ e.0)? 1+ <a5y8§ ))2+<85yg£z,t)>2+(825ya]\;§x,t)>2+

(0 () + <869]\(;t(x,t)>2 . (859];£x,t)>2+ <a2agg,t)>2] do <

<c <||5Ul||%2(0,l) + H‘swlﬂi(o,z)) : (47)

From the sequence ((5yN , 00N ) we can choose a subsequence weakly convergent in VV22 -1 (Q)x
VV22’1 (Q) to some element (Jy, 66) € VVQQ’1 (Q)x I/V22’1 (Q). By virtue of weak lower semicon-
tinuity of the norm in the Hilbert space, we get from (47) that for dy (x,t) and 66 (x,t) the
following estimation is valid
189113521 gy + 1901521,y < € (1601117, 00) + 16011170 )
w3 (Q) w3l(Q) = L2(0,0) HiLy(00) ) -
Hence the estimate (31) and (32).
Since W22 1 (Q) is boundedly imbedded in Lo (0,T") [6, pp. 73-74], hence it follows that
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16y (&, D) 00) < e 109221 gy < ¢ (18011400 + 1001 y00) » (48)

186 (2, T) 17,00 < €2 ||59||3V§71(Q) <c (||51’1H%2(0,1) + ||5w1||%2(0,l)) :

It is easy to show that (dy,00) is the generalized solution of problem
(18)-(19) [6, pp. 210-215].
Thus, from (48) we find that

1

R= 3 /Ol [(53; (z,T))% + (60 (x,T))Z}d:c +% </Ol ((6U1)2+(5w1)2)d96> <

< ¢ (18011 y00) + 6112 01 - (49)

Thus, from (28) and (49) it follows that the differential of the functional J (v) is equal
to

l
<Jl (v) ,5v> = /0 [p(z) A(x) ¥ (2,0)—p(x)A(z)e () P (x,0)+avi]| dvrdx+
+ [—p () A(z) e (z) V1 (2,0) +p (z) (I (z) + A(z) e? (z)) Y3 (z,0) +aw; | dwdx.

3. Necessary and sufficient condition of optimality

Theorem 1. For the control v (z) = (v{ (x), w{(x)) to be an optimal control in

problem (1)-(6), (10) it is necessary and sufficient that

l
/0 o () A(z) ¥1(x,0) —p(2) A(2) e(w) P2 (2, 0) +avi] (v1 (2) — v} () dx+

l
+ [/0 —p(z) A(z)e(z) ¥ (z,0)+p(z) (I (z) + A(z) €* (z)) ¥s (z,0) +aw | X

x (wr ( ) w)(2)) dx>0 Yo = (vi,w1) € Uyg- (50)
Proof. Let v (z) = (v} w} (z))- to be an optimal control in problem (1)-(6),
(10). As Ugyqg- is a convex set in L2 (0,1) x Ly (0,1), by virtue of the known theorem from

7, pp. 28],

<J/ (v),v— v0> > 0,Vv € Uyg.
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From the last inequality we get necessity. As problem (1)-(6), (10) is a linear-quadratic,
the obtained condition is a sufficient condition as well for the optimality of the control
vo ().

Conclusion: In this paper, the inverse problem of determining the right-hand sides
of the flexural-torsional vibrations of a rod is considered. This problem is reduced to the
problem of optimal control. The gradient of the functional is calculated and, using the
gradient expression, a necessary and sufficient optimality condition is proved.

Example 1. We consider a boundary value problem for equations of flexural-torsional
vibrations of a bar, described by the system of two differential equations in the domain
Q={0<zx<1,0<t<1}

0ty 0%y 020

e 1) (51)

giﬁ giz — (32752 + 32?29 fo(z,t), (x,t)€Q (52)
Yp=0 = y\le =0, % - = % - =0, 0<t<T, (53)
o= =0. 571 =T =0 0mi<T ()
o =0, % -, (55)

],—o =0, gf . =y (2), (56)

fi(z,t) = 24t,  fo(x,t) = 44t + 24tz — 24tz

In the special case, the coefficients of equations (51)-(52) were taken in the from:E =

3. 1=2 p=1, e=1% A=4 C,=2 G=1 C=1.

In order to determine v (z) = (v1 (x),v2 (z)), we give the additional conditions:
L (1 —x)*
y x? 27 2
0 (:p > 21— ).

In this special case the functional (9) has the form

1t 1 22(1 — z)? ’ 1 ) 2\
o= [ (b)Y (o () -0 ) e

:‘ l\DM—A
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It is easy to verify that

y (z,t) = tz?(1 — x)?, 0 (x,t) = 2t22(1 — 2)*

and
infJ(v) = minJ(w) =0,
UELz(O,l)XLQ(O,l) vELz(O,l)XLQ(O,l)
and the minimum of the functionalJ (v) is attained for v = vy (z) = (v} (z),0 (z))

= <x2(1 —z)%,20%(1 — 93)2>

In this case necessary and sufficient condition (28) is fulfilled by itself, when o = 0.
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