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1. Introduction

Graph Theory and Abstract Algebra have been profoundly studied by mathematicians
because of the interesting topics laid upon these branches of mathematics. Indeed, some
authors studied graph theory to build connections with certain algebraic structures such
as commutative semigroups, commutative rings, and non-commutative rings. Beck, in
his work in [1], associated to any commutative ring R its zero divisor graph G(R) whose
vertices are the zero divisors of R (including an element 0 of R) and where adjacency
between two distinct elements of R is defined as follows: two vertices x, y are adjacent if
and only if xy = 0. In 2002, DeMeyer et al. [2] also pioneered the notion of zero-divisor
graph of commutative semigroup S with 0. They associated an undirected graph Γ(S) to
any commutative semigroup S with 0 whose vertices are the nonzero zero divisors of S,
such that two vertices x, y are adjacent if and only if xy = 0. More recently, Y. B. Jun
and K. J. Lee [5] introduced the concept of associated graph of BCI-algebra and verified
some properties of the graph. Motivated by these works, in this paper, we shall introduce
the notion of the zero divisor graph of a hyper BCI-algebra and investigate some of its
properties.

∗Corresponding author.
DOI: https://doi.org/10.29020/nybg.ejpam.v12i1.3362

Email addresses: michelle.panganduyon@g.msuiit.edu.ph (M. Panganduyon),
sergio.canoy@g.msuiit.edu.ph (S. Canoy)

http://www.ejpam.com 146 c© 2019 EJPAM All rights reserved.



M. Panganduyon, S. Canoy / Eur. J. Pure Appl. Math, 12 (1) (2019), 146-158 147

2. Preliminaries

The concepts on Graph Theory are taken from [4]:
A graph G is an ordered pair (V (G), E(G)), where V (G) is a finite nonempty set called

the vertex set of G and E(G) is a set of unordered pairs {u, v} (or simply uv) of distinct
elements from V (G) called the edge set of G. The elements of V (G) are called vertices
and the cardinality |V (G)| of V (G) is the order of G. The elements of E(G) are called
edges and the cardinality |E(G)| of E(G) is the size of G. A graph K = (V (K), E(K))
is a subgraph of a graph G = (V (G), E(G)) if V (K) ⊆ V (G) and E(K) ⊆ E(G). Two
vertices u, v of a graph G are adjacent, or neighbors, if uv is an edge of G. The set of
neighbors of a vertex v of G is denoted by NG(v) and the degree of v in G, denoted deg v,
is equal to |NG(v)|. The degree of G, denoted by ∆(G), is equal to the largest degree of a
vertex of G. A vertex w of G is called an isolated vertex if degG(w) = |NG(w)| = 0. The
set of all isolated vertices of G will be denoted by I(G). A graph G is called an empty
graph, denoted by K |V (G)|, if E(G) = ∅, that is, I(G) = V (G).

A walk of a graph G is an alternating sequence of vertices and edges, beginning and
ending with vertices, v0, e1, v1, . . . , vn−1, en, vn, in which each edge is incident with the
two vertices immediately preceding and following it. This walk joins v0 and vn; and is
sometimes called a v0-vn walk. It is closed if v0 = vn and is open otherwise. It is a path if
all the vertices (and thus necessarily all the edges) are distinct. If the walk is closed, then
it is a cycle provided its n vertices are distinct and n ≥ 3. We denote by Cn the graph
consisting of a cycle with n vertices and by Pn a path with n vertices.

A graph is connected if every pair of vertices are joined by a path. A maximal connected
subgraph of G is called a component of G. The complete graph Kp has every pair of its p
vertices adjacent. A bipartite graph G is a graph whose vertex set V can be partitioned
into two subsets V1 and V2 such that every edge of G joins V1 with V2. If G contains every
edge joining V1 and V2, then G is a complete bipartite. If V1 and V2 have m and n vertices,
respectively, then we write G = Km,n. A star is a complete bipartite K1,n.

The Kronecker product G ⊗ K of two graphs G and K is the graph with vertex set
V (G ⊗ K) = V (G) × V (K) and edge set E(G ⊗ K) satisfying the following conditions:
(x, u)(y, v) ∈ E(G⊗K) if and only if xy ∈ E(G) and uv ∈ E(K).

Let G and K be graphs and let f : V (G) → V (K) be a function. Then f is a graph
homomorphism if f(x)f(y) ∈ E(K) whenever xy ∈ E(G). Two graphs G and K are
isomorphic (written as G ∼= K) if there exists a one-to-one correspondence between the
vertex sets which preserves adjacency.

A hyperoperation on a nonempty set H is a map from H×H into P ∗(H) = P (H)\{∅}.
Let ~ be a hyperoperation on H and (x, y) ∈ H×H. Then its image under ~, denoted by
x~ y, is called the hyperproduct of x and y. If A and B are nonempty subsets of H, then

A~ B is given by A~ B =
⋃

a∈A,b∈B
a~ b. We shall use x~ y instead of x~ {y}, {x}~ y,

or {x} ~ {y}. When A ⊆ H and x ∈ H, we agree to write A ~ x instead of A ~ {x}.
Similarly, we write x~A for {x}~A. In effect, A~ x =

⋃
a∈A

a~ x and x~A =
⋃
a∈A

x~ a.
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A hyper BCI-algebra (H,~, 0) is a nonempty set H endowed with a hyperoperation
“~ ” and a constant 0 satisfying the following axioms: for all x, y, z ∈ H,

(B1) ((x~ z)~ (y ~ z))� x~ y,

(B2) (x~ y)~ z = (x~ z)~ y,

(B3) x� x,

(B4) x� y and y � x imply x = y,

(B5) 0~ (0~ x)� x, x 6= 0,

where for every A,B ⊆ H, A � B if and only if for each a ∈ A, there exists b ∈ B such
that 0 ∈ a ~ b. In particular, for every x, y ∈ H, x � y if and only if 0 ∈ x ~ y. In such
case, we call “� ” the hyper order in H (see [7]).

A hyper BCI-algebra (H,~, 0) is said to be ordered if for each x, y, z ∈ H, x� y and
y � z imply x� z.

Example 1. [7] Let H = {0, 1, 2}. Define the hyperoperation “ ~ ” by the Cayley table
shown below.

~ 0 1 2

0 {0, 1} {0, 1} {0, 1}
1 {1} {0, 1} {0, 1}
2 {2} {1, 2} {0, 1, 2}

Then by routine calculations, (H,~, 0) is a hyper BCI-algebra. Further, H is ordered.

Let (H1,~1, 01) and (H2,~2, 02) be two hyper BCI-algebras. Consider a mapping
f : H1 → H2. Then f is said to be a homomorphism if f(x ~1 y) = f(x) ~2 f(y), for all
x, y ∈ H1. If f is a homomorphism and f(01) = 02, then we call f a hyper homomorphism.
If f is a homomorphism, one-to-one, and onto, we say that f is an isomorphism and
(H1,~1, 01) and (H2,~2, 02) are isomorphic, denoted by H1

∼= H2 (see [6]).
Let f : H1 → H2 be a hyper homomorphism of hyper BCI-algebras. If f is one to

one (resp. onto) we say f is a hyper monomorphism (resp. hyper epimorphism). If f is
a hyper homomorphism and a bijection, f is said to be a hyper isomorphism, denoted by
H1
∼=H H2 (see [3]).
Throughout this study, we denote a hyper BCI-algebra (H,~, 0) by H, unless otherwise

specified.
The following results generated previously give some of the properties of a hyper BCI-

algebra.

Proposition 1. [7] In any hyper BCI-algebra H, the following hold:

(i) x� 0 implies x=0,

(ii) 0 ∈ x~ (x~ 0),
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(iii) x� x~ 0,

(iv) 0~ (x~ y)� y ~ x,

(v) A� A,

(vi) A ⊆ B implies A� B,

(vii) A� {0} implies A = {0},

(viii) x~ 0� {y} implies x� y,

(ix) y � z implies x~ z � x~ y,

(x) x~ y = {0} implies (x~ z)~ (y ~ z) = {0} and x~ z � y ~ z,

(xi) A~A = {0} implies A is a singleton,

(xii) A~ {0} = {0} implies A = {0}.

for all x, y, z ∈ H and for all non-empty subsets A and B of H.

Theorem 1. [3] Let f : H1 → H2 be a hyper homomorphism. Then the following hold:

(i) If x� y, where x, y ∈ H1, then f(x)� f(y).

(ii) If A,B ⊆ H1 such that A� B, then f(A)� f(B).

3. Zero Divisor Graph of a Hyper BCI-algebra

Let H be a hyper BCI-algebra and A ⊆ H. We will use the notation LH(A) to denote
the set

LH(A) := {x ∈ H|x� a,∀ a ∈ A} = {x ∈ H|0 ∈ x~ a,∀ a ∈ A}.

If A = {a}, we write LH({a}) = LH(a). For any x ∈ H, the set of zero divisors of x is
Zx = {y ∈ H|LH({x, y}) = {0}}.

Let H be a finite hyper BCI-algebra. The zero divisor graph Γ(H) of H is the graph
whose vertex set V (Γ(H)) = H and edge set E(Γ(H)) satisfying the following condition:
for every distinct x, y ∈ H, xy ∈ E(Γ(H)) if and only if LH({x, y}) = {0} (equivalently,
x ∈ Zy or y ∈ Zx).

Although there are infinite hyper BCI-algebras, this paper only considers zero divisor
graphs of finite hyper BCI-algebras.

Example 2. Consider the hyper BCI-algebra H defined in Example 1.
Then LH({0, 1}) = LH({0, 2}) = {0} and LH({1, 2}) = {0, 1}. The zero divisors of

x ∈ H are Z0 = {y ∈ H|LH({0, y}) = {0}} = {1, 2} and Z1 = {0} = Z2. Thus, the zero
divisor graph Γ(H) of H is given by the following figure:
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1 2

0

The next result gives some properties of the operator LH .

Proposition 2. Let A and B be subsets of H. Then the following hold:

(i) LH(∅) = H

(ii) LH({0}) = {0}

(iii) If A ⊆ B, then LH(B) ⊆ LH(A).

(iv) LH(A) =
⋂
a∈A

LH({a})

(v) If x ∈ H, then x ∈ LH({x}). Furthermore, LH({x}) = {0} if and only if x = 0.

Proof.

(i) Suppose LH(∅) 6= H. Then ∃h ∈ H such that h /∈ LH(∅); i.e., ∃ a ∈ ∅ such that
a 6� h, a contradiction. Therefore, LH(∅) = H.

(ii) By definition, LH({0}) = {x ∈ H|x� 0} = {0}, by Proposition 1.

(iii) Let x ∈ LH(B). Then x � b, ∀ b ∈ B. Since A ⊆ B, x � a, ∀ a ∈ A. Thus,
x ∈ LH(A). Hence, LH(B) ⊆ LH(A).

(iv) Follows from the definition of LH(A):

LH(A) = {x ∈ H|x� a,∀ a ∈ A}
= {x ∈ H|x ∈ LH({a}),∀ a ∈ A}

=
⋂
a∈A

LH({a}).

(v) Let x ∈ H. By (B3), x� x. Hence, x ∈ LH({x}). Furthermore, x ∈ LH({x}) = {0}
implies x = 0 and if x = 0, then LH({x}) = LH({0}) = {0} by (ii).

�

The zero divisor graph of a hyper BCI-algebra is not always connected:
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Example 3. Consider the hyper BCI-algebra H with ‘~’ defined by the following Cayley
table:

~ 0 1 2

0 {0, 1} {0, 1} {2}
1 {1} {0, 1} {2}
2 {2} {2} {0, 1}

Then LH({0, 1}) = {0}; LH({0, 2}) = ∅ = LH({1, 2}). Thus, the zero divisor graph
Γ(H) of H is given below:

1 2

0

Example 4. Consider H defined by the following Cayley table:

~ 0 1 2 3

0 {0} {0} {2} {2}
1 {1} {0} {2} {2}
2 {2} {2} {0} {0}
3 {3} {2} {1} {0, 1}

Then LH({0, 1}) = {0}, LH({0, 2}) = LH({0, 3}) = LH({1, 2}) = LH({1, 3}) = ∅, and
LH({2, 3}) = {2}. The zero divisor graph Γ(H) of H is given below

1 3

0

2

Proposition 3. Let H be a hyper BCI-algebra with |H| ≥ 2. Then

(i) degΓ(H)(0) = |{x ∈ H \ {0} : 0 ∈ LH(x)}| = ∆(Γ(H));

(ii) Γ(H) = K |H| if and only if 0 /∈ LH(x) for all x ∈ H \ {0}; and

(iii) if Γ(H) 6= K |H|, then I(Γ(H)) = {x ∈ H \ {0} : 0 /∈ LH(x)}.

Proof.
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(i) Note that for any x ∈ H \{0}, 0x ∈ E(Γ(H)) if and only if LH({0, x}) = {0}. Hence,
by Proposition 2(ii), 0x ∈ E(Γ(H)) if and only if 0 ∈ LH(x). Thus,

degΓ(H) 0 = |{x ∈ H \ {0} : 0x ∈ E(Γ(H))}|
= |{x ∈ H \ {0} : 0 ∈ LH(x)}|.

Let x ∈ H \ {0} and let y ∈ NΓ(H)(x). Then LH({x, y}) = {0}. By Proposition 2(ii)
and 2(iv), it follows that LH(0, y) = {0}, that is, y ∈ NΓ(H)(0). Thus,

degΓ(H)(x) = |NΓ(H)(x)| ≤ |NΓ(H)(0)| = degΓ(H)(0).

Since x was arbitrarily chosen, it follows that ∆(Γ(H))| = degΓ(H)(0).

(ii) Suppose that Γ(H) = K |H|. That is, I(Γ(H)) = V (Γ(H)). This implies that
degΓ(H) 0 = 0. Hence, 0x /∈ E(Γ(H)) for all x ∈ H. Thus, 0 /∈ LH(x) for all
x ∈ H \ {0}.
For the converse, suppose that 0 /∈ LH(x) for all x ∈ H \ {0}. By (i), it follows that
degΓ(H) 0 = ∆(Γ(H)) = 0 . Therefore, Γ(H) = K |H|.

(iii) Suppose that Γ(H) 6= K |H|. Then degΓ(H) 0 = ∆(Γ(H)) 6= 0, i.e., 0 /∈ I(Γ(H)).
Let x ∈ H \ {0}. If 0 /∈ LH(x), then LH(x, y) 6= {0} for all y ∈ H \ {x}. Thus,
degΓ(H)(x) = 0, i.e., x ∈ I(Γ(H)). Conversely, if x ∈ I(Γ(H)), then 0x /∈ E(Γ(H)),
i.e., LH(0, x) 6= {0}. By Proposition 2(ii) and 2(iv), 0 /∈ LH(x). Therefore,
I(Γ(H)) = {x ∈ H \ {0} : 0 /∈ LH(x)}.

�

Next, we give equivalent statements for connectedness of the zero divisor graph.

Proposition 4. Let H be a hyper BCI-algebra with |H| ≥ 2. Then the following are
equivalent:

(i) Γ(H) is connected.

(ii) LH({x, 0}) = {0} for all x ∈ H \ {0}.

(iii) 0 ∈ LH(x) for all x ∈ H \ {0}.

(iv) ∆(Γ(H)) = |H| − 1

(v) I(Γ(H)) = ∅

Proof.

(i)⇔(ii) Suppose LH({x, 0}) 6= {0} for some x ∈ H. Then 0 /∈ LH(x), by Proposition 2(ii)
and 2(iv). Thus, 0 /∈ LH({x, y}) = LH({x}) ∩ LH({y}) for all y ∈ H. That is, for
all y ∈ H, xy /∈ E(Γ(H)). This implies that Γ(H) is disconnected. For the converse,
suppose that LH({x, 0}) = {0} for all x ∈ H \ {0}. Then degΓ(H)(0) = |H| − 1.
Therefore, Γ(H) is connected.
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(ii)⇔(iii) This follows from Proposition 2(ii) and 2(iv).

(iii)⇔(iv) This follows from Proposition 3(i).

(iv)⇔(v) By Proposition 3(i), degΓ(H)(0) = |H| − 1. This implies that 0x ∈ E(Γ(H)) for
each x ∈ H \ {0}. Hence, I(Γ(H)) = ∅. Conversely, suppose that I(Γ(H)) = ∅
and let x ∈ H \ {0}. Since x /∈ I(Γ(H)), there exists y ∈ H \ {x} such that
LH(x, y) = {0}. Hence, 0 ∈ LH(x) by Proposition 2(iv). By Proposition 3(i), it
follows that degΓ(H)(0) = ∆(Γ(H)) = |H| − 1.

�

Remark 1. Let H be a hyper BCI-algebra with |H| ≥ 2. If Γ(H) is connected, then

(i) diam(Γ(H)) = 2;

(ii) degΓ(H) 0 = |H| − 1 = ∆(Γ(H)).

Proposition 5. Let H be a hyper BCI-algebra such that LH{x, 0} 6= ∅ for all x ∈ H.
Then LH{x, 0} = {0}.

Proof. Suppose that LH{x, 0} 6= ∅ for all x ∈ H. Then there exists y ∈ LH{x, 0}.
Note that y ∈ LH{0} = {0} means that y = 0. It follows from Proposition 2(ii) and 2(iv)
that LH{x, 0} = {0}. �

Remark 2. Let H be a hyper BCI-algebra such that LH{x, 0} 6= ∅ for all x ∈ H. Then
0x ∈ E(Γ(H)) ∀ x ∈ H \ {0}.

Proposition 6. If |H| > 3, then Γ(H) is neither a cycle nor a path.

Proof. Case 1. ∃ x ∈ H \ {0} such that 0 /∈ LH(x). Then Γ(H) is disconnected, and
the result follows. Case 2. 0 ∈ LH(x) ∀ x ∈ H. Then 0x ∈ E(Γ(H)) ∀ x ∈ H \ {0}.
Evidently, Γ(H) is neither a cycle nor a path. �

Corollary 1. If a graph G is a cycle or a path of order n ≥ 4, then there is no hyper
BCI-algebra H such that Γ(H) ∼= G.

Proof. Immediate from Proposition 6. �

Theorem 2. Let H be a hyper BCI-algebra with |H| ≥ 2. Then G = Γ(H) cannot have
two nontrivial components; that is, G can only have at most one non-trivial component.

Proof. If G is connected, then we are done. Suppose that G is disconnected. Suppose
further that G has two distinct non-trivial components, say G1 and G2. Let G3 be a
component of G with 0 ∈ V (G3) (G3 may be G1 or G2). If G3 is different from G1, then
0 /∈ LH(x) for all x ∈ V (G1). Similarly, if G3 is not G2, then 0 /∈ LH(y) for all y ∈ V (G2).
Hence, by Proposition 4, G1 or G2 is the trivial graph, a contradiction. �
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Proposition 7. Let H be an ordered hyper BCI-algebra. Then the following hold:

(i) For any subset A of H, LH(LH(A)) ⊆ LH(A).

(ii) For any a, b ∈ H, if a� b, then LH({a}) ⊆ LH({b}) and Zb ⊆ Za.

Proof.

(i) Let x ∈ LH(LH(A)). Then x � b for all b ∈ LH(A). Since b � a for all a ∈ A and
H is ordered, it follows that x � a for all a ∈ A. Thus, x ∈ LH(A) and the result
follows.

(ii) Suppose x ∈ LH({a}). Then x � a. Since H is ordered and a � b, x � b.
That is, x ∈ LH({b}). Hence, LH({a}) ⊆ LH({b}). Now, suppose x ∈ Zb. Then
LH({b, x}) = {0}. Since LH({a, x}) ⊆ LH({b, x}), we have LH({a, x}) = {0}. This
means that x ∈ Za. Thus, Zb ⊆ Za.

�

Proposition 8. Let H be a hyper BCI-algebra. Then

(i) degΓ(H) x = |Zx| for all nonzero x ∈ H.

(ii) y ∈ Zx if and only if x ∈ Zy for all x, y ∈ H.

Proof. Let x, y ∈ H.

(i) if x 6= 0, then

|Zx| = |{y ∈ H \ {x} : LH({x, y}) = {0}}|
= |{y ∈ H : xy ∈ E(Γ(H))}|
= degΓ(H) x.

(ii) y ∈ Zx means that LH({x, y}) = {0}, which further means that x ∈ Zy.

�

Lemma 1. Let f : H1 → H2 be a hyper monomorphism of hyper BCI-algebras. Then for
any x, y ∈ H1, x� y if and only if f(x)� f(y).

Proof. The sufficiency part is done by Theorem 1(i). Now, suppose f(x)� f(y). Then
02 ∈ f(x) ~2 f(y) = f(x ~1 y). Thus, 01 = f−1(02) ∈ f−1f(x ~1 y) = x ~1 y. Hence,
x� y. �

Proposition 9. Let f : H1 → H2 be a hyper monomorphism of hyper BCI-algebras. Then
LH2(f(A)) = f(LH1(A)) where A ⊆ H1.
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Proof. Let f : H1 → H2 be a hyper monomorphism. Let A ⊆ H1.

y ∈ f(LH1(A)) ⇐⇒ f−1(y) ∈ LH1(A)

⇐⇒ f−1(y)� a for all a ∈ A

⇐⇒ y � f(a) for all a ∈ A, by Lemma 1

⇐⇒ y ∈ LH2(f(A))

Therefore, LH2(f(A)) = f(LH1(A)). �

Theorem 3. Let H1 and H2 be hyper BCI-algebras. If H1
∼=H H2, then Γ(H1) ∼= Γ(H2).

Proof. Suppose H1
∼=H H2, say f : H1 → H2 is a hyper isomorphism. Since

V (Γ(H1)) = H1 and V (Γ(H2)) = H2, there exists a one-to-one correspondence be-
tween the vertex sets. Note that for any distinct elements x, y ∈ H1, xy ∈ E(Γ(H1))
if and only if LH1({x, y}) = {0}. By Proposition 9, xy ∈ E(Γ(H1)) if and only if
LH2({f(x), f(y)}) = {0}. Thus, xy ∈ E(Γ(H1)) if and only if f(x)f(y) ∈ E(Γ(H2)).
Consequently, Γ(H1) ∼= Γ(H2). �

3.1. On zero divisor graphs involving hyperatoms

Definition 1. An element a of a hyper BCI-algebra H is called a hyperatom if for each
x ∈ H, x� a implies x = 0 or x = a.

Denote by A(H) the set of all hyperatoms of H, and by A∗(H) the set of all nonzero
hyperatoms of H; i.e., A∗(H) = A(H) \ {0}. Obviously, 0 ∈ A(H).

Definition 2. A hyper BCI-algebra H is said to be hyperatomic if each element of H is
a hyperatom, that is, A(H) = H.

Remark 3. A hyper BCI-algebra H is hyperatomic if and only if LH(x) = {x} or LH(x) =
{0, x} for each x ∈ H.

Remark 4. A hyperatomic hyper BCI-algebra is ordered.

Proof. Suppose H is a hyperatomic hyper BCI-algebra. Let x, y, z ∈ H such that
x � y and y � z. Then by Remark 3, LH(z) = {z} or LH(z) = {0, z} . Thus, y � z
implies that y = 0 or y = z. If y = 0, then x � 0 since x � y. By Proposition 1, x = 0.
Since 0� z and x = 0, we have x� z. If y = z, then the assumption x� y implies that
x� z. Hence, H is ordered. �

Example 5. Consider the hyper BCI-algebra defined by the Cayley table:

~ 0 1 2

0 {0} {0, 1} {0, 1}
1 {1} {0, 1} {1}
2 {2} {2} {0, 1, 2}
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H is hyperatomic since all its elements are hyperatoms.

Example 6. The hyper BCI-algebra H in Example 1 is not hyperatomic since 2 is not
a hyperatom of H: ∃x = 1 ∈ H with 1 � 2 but x = 1 6= 0 and x = 1 6= 2. However, the
hyper BCI-algebra H in Example 3 is hyperatomic.

Proposition 10. Let H be a hyper BCI-algebra such that |H| ≥ 2. If x and y are distinct
nonzero hyperatoms of H, then LH({x, y}) = {0} or ∅.

Proof. The result depends on whether or not 0 ∈ LH(x) for all x ∈ H. If 0 /∈ LH(x),
then LH(x) = {x}. Hence, LH({x, y}) = ∅. If 0 ∈ LH({x}), then LH({x}) = {0, x}.
Since LH({y}) = {0} or {0, y} by Remark 3, we have LH({x, y}) = {0} or ∅. �

We have the following characterization for a complete graph:

Proposition 11. Let H be a hyper BCI-algebra such that |H| ≥ 2. Then Γ(H) is a
complete graph if and only if Γ(H) is connected and H is hyperatomic.

Proof. If Γ(H) is disconnected, then Γ(H) is not a complete graph, and we are done.
Assume that Γ(H) is connected. By Proposition 4, 0 ∈ LH(x) for all x ∈ H. Since
x ∈ LH{x}, we now have 0, x ∈ LH(x). If H is not hyperatomic, then there exists
z ∈ H \ {0} such that y � z with y /∈ {0, z}. Since y ∈ LH{y}, y ∈ LH{y, z}. This means
that LH{y, z} 6= {0}, implying that yz /∈ E(Γ(H)). Therefore, Γ(H) is not complete.

Conversely, suppose Γ(H) is connected and H is hyperatomic. Then by Remark 3,
LH{x} = {0, x} for all x ∈ H \ {0}. Thus, for any distinct nonzero elements x, y of
H = V (Γ(H)), LH{x} ∩ LH{y} = {0}, that is, xy ∈ E(Γ(H)). Consequently, Γ(H) is a
complete graph. �

Example 7. The hyper BCI-algebra in Example 5 has a complete zero divisor graph:

1 2

0

Remark 5. Given an ordered hyper BCI-algebra H, it is not always true that there exists
a ∈ A∗(H) = A(H) \ {0} such that a� x for all x ∈ H \ {0}.

Example 8. Consider the hyper BCI-algebra H defined in Example 3. H is hyperatomic
and hence, ordered and A∗(H) = {1, 2}. Notice that neither 1 � x nor 2 � x for all
x ∈ H \ {0}. But for each x ∈ H \ {0}, there exists a ∈ A∗(H) such that a� x.

Theorem 4. Let H be an ordered hyper BCI-algebra with |H| ≥ 2. Then the following
hold:
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(i) For each x ∈ H, there is ax ∈ A∗(H) such that ax � x. In particular, A∗(H) 6= ∅.

(ii) There exists a ∈ H\{0} such that a� x for all x ∈ H\{0} if and only if |A∗(H)| = 1
(that is, A∗(H) = {a}).

Proof.

(i) Let x ∈ H \ {0}. If x is a hyperatom, then take ax = x. If x is not a hyperatom,
there exists x1 ∈ H \{0, x} such that x1 � x. Again, if x1 is a hyperatom, then take
ax = x1. Otherwise, there exists x2 ∈ H \{0, x, x1} such that x2 � x1 � x. Since H
is finite, continuing in this fashion yields a terminal point xn ∈ H\{0, x, x1, . . . , xn−1}
with xn � xn−1 � · · · � x2 � x1 � x such that only z = 0 (provided 0 ∈ LH{x})
or z = xn satisfies z � x. This implies that ax = xn ∈ A∗(H) and ax � x.

(ii) Suppose that there exists a ∈ H \ {0} such that a� x for all x ∈ H \ {0}. Choose
any b ∈ A∗(H). Then a � b. Since b ∈ A(H) and a 6= 0, it follows that a = b.
Thus a ∈ A∗(H). Since b was arbitrarily chosen, we have A∗(H) = {a}. Conversely,
suppose that |A∗(H)| = 1, say A∗(H) = {a}. Let x ∈ H \ {0}. Then by (i), a� x.

�

Example 9. Consider the ordered hyper BCI-algebra H defined in Example 1. Note that
1 is the only nonzero hyperatom of H and the zero divisor graph Γ(H) of H is a star.

As a generalization of Example 9, we have the following theorem.

Theorem 5. Let H be an ordered hyper BCI-algebra with |H| ≥ 2. Then Γ(H) is a star
if and only if Γ(H) is connected and |A∗(H)| = 1.

Proof. Suppose that Γ(H) is a star. Then Γ(H) is connected. If |H| = 2, then clearly,
|A∗(H)| = 1. Suppose that |H| ≥ 3. By Proposition 3(i), 0 is the central vertex of Γ(H).
Suppose further that |A∗(H)| ≥ 2, say a, b ∈ A∗(H) with a 6= b. Since 0a, 0b ∈ E(Γ(H)),
0 ∈ LH(a) ∩ LH(b). By Proposition 10, ab ∈ E(Γ(H)). This implies that Γ(H) is not a
star, a contradiction. Therefore, |A∗(H)| = 1.

Conversely, suppose that Γ(H) is connected and |A∗(H)| = 1, say A∗(H) = {a}. If
|H| = 2, then Γ(H) = P2, a star. Suppose that |H| ≥ 3 and let y, z ∈ H\{0}. By Theorem
4(ii), a� y and a� z. That is, a ∈ LH({y, z}). This implies that yz /∈ E(Γ(H)). Since
Γ(H) is connected, by Proposition 4, 0x ∈ E(Γ(H)) for all x ∈ H \ {0}. Consequently,
Γ(H) is a star. �
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