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Abstract. In this paper, we formulate a descriptive definition or a version of fundamental theo-
rem for the It6-McShane integral of an operator-valued stochastic process with respect to a Hilbert
space-valued Wiener process. For this reason, we introduce the concept of belated Mcshane differ-
entiability and a version of absolute continuity of a Hilbert space-valued stochastic process.
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1. Introduction

The Henstock integral, which was studied independently by Henstock and Kurzweil
in the 1950s and later known as the Henstock-Kurzweil integral, is one of the notable
integrals that was introduced which in some sense is more general than the Lebesgue in-
tegral. To avoid an extensive study of measure theory, Henstock-Kurzweil integration had
been deeply studied and investigated by numerous authors, see [2-4, 7-9]. The Henstock-
Kurzweil integral is a Riemann-type definition of an integral which is more explicit and
minimizes the technicalities in the classical approach of the Lebesgue integral. This ap-
proach to integration is known as the generalized Riemann approach or Henstock approach.

In the classical approach to stochastic integration, the It6 integral of a real-valued
stochastic process, which is adapted to a filtration, is attained from a limit of It6 integrals
of simple processes. To give a more explicit definition and reduce the technicalities in the
classical way of defining the It6 integral in the real-valued case, Henstock approach to
stochastic integration had already been studied in several papers, see [10, 11, 15-17].
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In infinite dimensional spaces, the Ito integral of an operator-valued stochastic process,
adapted to a normal filtration, is obtained by extending an isometry from the space of
elementary processes to the space of continuous square-integrable martingales. In this
case, the value of the integrand is an operator and the integrator is a Q-Wiener process,
a Hilbert space-valued Wiener process which is dependent on a symmetric nonnegative
definite trace-class operator Q.

In this paper, we formulate a version of Fundamental Theorem for the It6-McShane
integral, a Henstock approach integral, for the operator-valued stochastic process with
respect to a )-Wiener process.

2. Preliminaries

Throughout this paper, let (2, F,{F;},[P) be a filtered probability space, B(H) be the
Borel o-field of a separable Banach space H, and L(h) be the probability distribution or
the law of a random variable h : Q — H.

A stochastic process f :[0,T] x Q — H, or simply a process {f:}o<t<T, is said to be
adapted to a filtration {F;} if f; is Fy-measurable for all ¢ € [0,7]. When no confusion
arises, we may refer to a process adapted to {F;} as simply an adapted process.

Let U and V' be separable Hilbert spaces. Denote by L(U, V') the space of all bounded
linear operators from U to V, L(U) := L(U,U), Qu := Q(u) for Q € L(U,V), and L*(Q, V)
the space of all square-integrable random variables from €2 to V. An operator @ € L(U)
is said to be self-adjoint or symmetric if for all u,uv’ € U, (Qu,u'); = (u,Qu’); and is
said to be nonnegative definite if for every v € U, (Qu,u);; > 0. Using the Square-root
Lemma [14, p.196], if Q € L(U) is nonnegative definite, then there exists a unique operator
Q% € L(U) such that Q% is nonnegative definite and Q% o Q% = Q.

Let {e;}32,, or simply {e;}, be an orthonormal basis (abbrev. as ONB) in U. If Q €
L(U) is nonnegative definite, then the trace of @ is defined by tr Q = Z;; (Qej,ej)y - Tt
is shown in [14, p.206] that tr @ is well-defined and may be defined in terms of an arbitrary
ONB. An operator @ : U — U is said to be trace-class if tr [Q] := tr (QQ*)% < 00. Denote
by Li(U) the space of all trace-class operators on U, which is known [14, p.209] to be a
Banach space with norm ||Q||; = tr [Q]. If @ € L(U) is a symmetric nonnegative definite
trace-class operator, then there exists an ONB {e;} C U and a sequence of nonnegative
real numbers {\;} such that Qe; = Aje;j for all j € N, {)\;} € £}, and \; — 0 as j — oo
[14, p.203]. We shall call the sequence of pairs {)\;, e;} an eigensequence defined by Q.

Let Q : U — U be a symmetric nonnegative definite trace-class operator. Let {);,e;}
be an eigensequence defined by (). Then the subspace Ug := Q%U of U equipped with the
inner product (u, v>UQ = <Q_1/2u, Q‘1/2v>U, where Q'/? is being restricted to [KerQ'/?]+
is a separable Hilbert space with {/Aje;} as its ONB, see [13, p.90], [1, p.23].

Let {f;} be an ONB in Ug. An operator S € L(Ug,V) is said to be Hilbert-Schmidt
if 3250 ||Sfj||%/ = > 521 (S, 5fj)y < oco. Denote by L2(Ugq, V') the space of all Hilbert-
Schmidt operators from Ug to V', which is known [12, p.112] to be a separable Hilbert space

with norm (18|, vy = /2521 1S f;ll3 The Hilbert-Schmidt operator S € La(Ug, V)
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and the norm HSHLQ(U@V) may be defined in terms of an arbitrary ONB, see [13, p.418],
[12, p.111]. It is shown in [1, p.25] that L(U, V) is properly contained in Ly(Ug, V). We
also note that La(Ug, V') contains genuinely unbounded linear operators from U to V.

Let @Q : U — U be a symmetric nonnegative definite trace-class operator, {\;,e;} be
an eigensequence defined by @), and {B;} be a sequence of independent Brownian motions
(abbrev. as BM) defined on (2, F,{F:},P). The process

Wii=) /AiBi(t)e; (1)
j=1

is called a Q-Wiener process in U. The series in (1) converges in L?(Q,U). For each
[e.9]

u € U, denote Wy(u) = Z V/AjBj(t) {ej, u)y;, with the series converging in L?*(2, R).
j=1

Since the operator @ is assumed to be symmetric nonnegative definite trace-class, there
exists a U-valued process W such that

Wi(u)(w) = (Wi(w),u),; P-almost surely (abbrev. as P-a.s.). (2)

We call the process W a U-valued QQ- Wiener process. This process is a multidimentional

BM. It should be noted that if we assume that A\; > 0 for all j, V[it/(%)
J

sequence of real-valued BM defined on (Q, F,{F:},P), see [13, p.87].
A filtration {F;} on a probability space (2, F,PP) is called normal if (i) Fp contains
all elements A € F such that P(A) = 0, and (ii) F; = Fiq = ﬂ Fs for all t € [0,T]. A

s>t
Q-Wiener process Wy, t € [0,T] is called a Q-Wiener process with respect to a filtration

{F:} if (i) W; is adapted to {F:}, t € [0,7T] and (ii) W; — Wy is independent of Fs for all
0<s<t<T.Itisshown in [12, p.16] that a U-valued Q-Wiener process W(t), t € [0,T],
is a (-Wiener process with respect to a normal filtration. From now onwards, a filtered
probability space (2, F, {F:},P) shall mean a probability space equipped with a normal
filtration.

,j=12...,isa

3. Ito-McShane Integral and Belated McShane Derivative

In this section, we introduce the It6-McShane integral of a process f : [0,7] x Q —
L(U, V) with respect to a U-valued Q-Wiener process W and the belated McShane deriva-
tive of a Hilbert space-valued function.

Throughout, assume that U and V are separable Hilberts spaces, @ : U — U is
a symmetric nonnegative definite trace-class operator, {\;,e;} is an eigensequence de-
fined by @, and W is a U-valued Q-Wiener process. A stochastic process f : [0,7] X
Q — L(U,V) means a process measurable as mappings from [0,7] x Q,B([0,T]) ® F)
to (L2(Ug, V), B(L2(Ug,V))). Also, the given closed interval [0,7] is nondegenerate, i.e.
0 < T and can be replaced with any closed interval [a,b]. If no confusion arises, we may

n
write (D) Z instead of Z for the given finite collection D.
i=1
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Definition 1. Let ¢ be a positive function defined on [0,7]. A finite collection D =
{([us, vi], &)}y of interval-point pairs is a

(iii) d-fine belated McShane division of [0, T if {[u;, v;]}}'_; is a collection of non-overlapping
intervals on [0, 7] with U[ul, v;] = [0,T] and each [u;, v;] is d-fine belated McShane,
i=1
that is, [us,vi] C [&, & +6(&))

(iv) 0-fine belated McShane partial division of [0, T] if {[u;, v;|}}_; is a collection of non-
overlapping intervals on [0, 7] and each [u;, v;] is d-fine belated McShane.

We note that each &; in Definition 1 does not necessarily belong to [u;, v;]. The term
partial division is used in Definition 1 since the finite collection of non-overlapping intervals
of [0,7] may not cover the entire interval [0, T].

Definition 2. Givenn > 0, a given d-fine belated McShane partial division D = {([u, v],£)}
is said to be a (0,n)-fine belated McShane partial division of [0,T] if it fails to cover [0, T]
by at most length 7, that is,

’T—(D)Z(v—u)‘gn.

To define the It6-McShane integral, we shall use the definition of belated partial divi-
sion in Definition 1, employed by the authors in [17, p.499].

Definition 3. Let f : [0,7] x Q@ — L(U,V) be an adapted process. Then f is said to
be [to-McShane integrable, or ZM-integrable, on [0, 7] with respect to W if there exists
A € L?(, V) such that for every € > 0, there is a positive function ¢ on [0, 7] and a number
n > 0 such that for any (d,7n)-fine belated McShane partial division D = {([u;, vs], &)}y
of [0, 7], we have

E [Hs(vavévn) - AH%/] <e¢
where

S(vavé’n) = (D)fo(WU - Wu) = foi(in - Wuz)
=1

In this case, f is ZM-integrable to A on [0,7] and A is called the ZM-integral of f which
T T

0
will be denoted by (IM)/ ft dWy or (IM)/ f dW. We shall denote (I./\/l)/ faw

0 0 0
by the zero random variable 0 from 2 to V and denote by Az, the collection of all
It6-McShane integrable processes on [0, 7.

Refer to [6, Lemma 3.5 and Lemma 3.6] for the proofs of the following two lemmas.
Denote by J, the collection of all closed intervals [u,v] C [0, T].
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Lemma 1. Let f : [0,T] x Q@ — L(U,V) be an adapted process and {([u;,vi], &)}, be
a finite collection such that {[u;,v;|} is a collection of non-overlapping intervals in 7,
1 <& <o <&, and & < wu; for eachi=1,2,...,n. Then

E Z<ffi(in_WUi)?ffj(ij _W“j)>v =0.

1<j

Lemma 2. Let f : [0,T] x Q@ — L(U,V) be an adapted process and {([u;,vi], &)}, be
a finite collection such that {(u;,v;]} is a collection of non-overlapping intervals in 7,
S <& < <&y, and & < w; foreachi=1,2,....,n. Then

n 2 n
BN -] | = Zlm[||f&<wv,.—wm>||2v}
1= V 1=
= D wE [FAE

Refer to [6, Example 3.7] for the proof of the following example.

Example 1. Let g : Q@ — L(U,V) be a random variable bounded in Lo(Ug,V'), that is,
there exists M > 0 such that ||g(w)||L,we,v) < M for allw € 2 and let 0:Q— LU,V

be a random variable such that for all w € Q, O(w) is the zero operator in L(U,V). Let
s € [0,T] be fized. Let f : [0,T] x Q@ — L(U,V) be an adapted process on a filtered
probability space (0, F,{Fi},P) such that fort € [0,T],

g ift=s
ft—{ 0 ift#s.

Then f is TM-integrable to the zero random variable 0 € L*(2, V) on [0,T].

In the following proofs, denote by Leb* and Leb, the Lebesgue outer measure and
Lebesgue measure, respectively.

Example 2. Let f : [0,T]xQ — L(U, V) be an adapted process such that E [HftHQLQ(UQ,V)} =
0 almost everywhere (abbrev. as a.e.) on [0,T]. Then f is ZM-integrable to 0 on [0,T].

Proof. Let € > 0 be given. Let G = {t € [0,7] : E [HftHLg(UQ,V)Q] # 0}. Then,
Leb(G) = 0 and so G is measurable. Let £ € G. For any [u,v] C [¢,T],

L |:Hf£(Wv Wy | = (- wE {Hfg”iw@yJ ,
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Let Ay = > (fe(Wy — Wa), k), where {gi} is an ONB in V. Since A, — G =

k=1
00

Z (fe(Wy — Wy), gi)? asm — oo and Ay, < Ay, by the monotone convergence theorem

k=1
for Lebesgue integral,

lim E [ (fe(W, — Wu),gk>2] =E [Z (fe(Wy — Wu),gk>2]
k

m—0o0
=1 k=1

3)
= E [ fe(W, = W)II3] < co.

Thus, there exists N € N such that E [HféHi2(UQ V)] < N. Now, since G is measurable,

there exists an open set O containing G’ such that Leb(O) < 5% . Thus, for all { € G, there
exists 01(£) > 0 such that [£,£ + 01(£)) € O. Let D' = {([u,v],€)} be a d;-fine belated
McShane partial division such that each & € G. Then, (D) Y (v —u) < 5% and so

2
e (@) sew - w0} | < 200 S0 e [l
£
2N
Thus, for any d-fine belated McShane partial division D = {([u,v], &)} where §(-) > 0
on [0,7] and (&) > 61(&) for € € G, we have

(4)

< 2N - €.

e [Jior S s~ -

< 2(Dgec) Y (v —u)E [HsziQ(UQ,V)} (5)

+2(Decpone) Y (v —u)E [HféH%Q(UQ»W]
<e

The above inequality also holds for (4, n)-fine belated McShane partial division of [0, 7.
Thus, f is ZM-integrable to 0 on [0, T].

It is worth noting that the It6-McShane integral possesses some of the standard prop-
erties of an integral namely, uniqueness of an integral, linearity, integrability on every
subinterval of [0, 7], the Cauchy criterion, and the Saks-Henstock Lemma. The proofs of
these results are standard in Henstock-Kurzweil integration, hence omitted.

(i) The ZM integral is uniquely determined, in the sense that if A; and Ay are two ZM
integrals of f, then ||4; — AQHLQ(U,V) =0.
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(ii) Let f,g € Azp and let o, 8 € R. Then af + Bg € Azpq and
T T T
(IM)/ (af + Bg) dW—a-(IM)/ de+,3-(IM)/ g dW.
0 0 0

(iii) Cauchy criterion. A process f is ZM-integrable on [0,7] if and only if for every
e > 0, there exist a positive function é on [0,7] and a number n > 0 such that for
any two (9,n)-fine belated McShane partial divisions D; and Ds of [0,T], we have

E[IS(F, D1, 6,m) — S(f, D, 8.0) 2] < e

(iv) If f is ZM-integrable on [0, T, then f is ZM-integrable on [c,d] C [0, T].
(v) If f is ZM-integrable on [0, c] and [¢,T] where ¢ € (0,T), then f is ZM-integrable
on [0,7] and
T c T
(I/\/l)/ de:(I/\/l)/ de+(IM)/ f aw.
0 0 c

(vi) Sequential definition. A process f is ZM-integrable on [0, 7] if and only if there exist
A € L?(Q,V), a decreasing sequence {d, } of positive functions defined on [0, 7], and
a decreasing sequence of positive numbers 7,, such that for any (d,,n,)-fine belated
McShane partial division D,, of [0,T], we have

E [H‘S(fa Dy, 0n,mn) — AH%/ — 0 as n — oo.

T
In this case, A := (I/\/l)/ fr dWy.
0

(vii) Saks-Henstock lemma (Weak version). Let f be ZM-integrable on [0, T] and F'[u, v] :
v
(IM)/ f dW for any [u,v] C [0,7]. Then for every e > 0, there exists a posi-

tive function & on [0,7] such that for any J-fine belated McShane partial division
D = {([u, 0], £)} of [0,T], we have

|0 Ztew, - wo - Fluall | <

Next, we define the concept of AC?[0, T]-property, a version of absolute continuity.

Definition 4. A function F': J x Q — V is said to be belated McShane differentiable at
€ €[0,T) if there exists a random variable fe : Q@ — L(U,V') such that for all € > 0, there
exists a positive function 6 on [0,T] such that for all §-fine belated McShane interval-point

pair ([u,v],£) of [0,T],
E (|| fe(Wy = Wu) = Flu, o]y, | < e(v = u).

The random variable fe is called the belated McShane derivative of F' at the point § € [0,T)
and 1s denoted by DFy.
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We note that we write F'u,v] instead of F'([u, v]).

Definition 5. A function F: 7 xQ =V

(i) is said to be AC?[0,T] if for every e > 0, there exists > 0 such that for any finite
collection D = {[u, v]} of non-overlapping intervals [u,v] € J with (D) Z(v —u) <

7, we have E {H(D) ZF[U,U]HQV] <e

(ii) has the orthogonal increment property if for all non-overlapping intervals [a, b], [u, v] C
0,7, E [(F[a, b], F[u,v])] = 0.

The proof of the following theorem is parallel to the proof in [5].

Theorem 1. [5] Let f be ZM-integrable on [0,T] and define
Flu,v] = (I./\/l)/ fsdWs for all [u,v] C [0,T].

Then F is AC?[0,T] and has the orthogonal increment property.

Lemma 3. [5] Let f: [0,T] x Q@ — L(U,V) be an adapted process, F : J x Q — V with
orthogonal increment property and {[u;, v;]}1—, be a finite collection of non-overlapping
subintervals of [0,T]. Then

2

= > B [llfe,(Wa, = Wa) = Flus,vill} ]
Vv =1

E Z{ffz(sz - Wuz) - F[uiv Ul]}

i=1

Lemma 4. Let f € Azpq. Then for every € > 0, there exist a positive function § on [0,T]
and a positive number n such that
y
<€
v

for any o-fine belated McShane partial division D = {([u,v],€)} of [0,T] with

(D) (v —w) <.

Proof. Let € > 0 be given. Then there exist a positive function ¢ on [0,7] and a
number 1 > 0 such that for any (9, n)-fone belated McShane partial division P of [0, 7],

wehave
2
<
Vv

|0 X sem - wa)

T

>
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Let D = {([u,v],£)} be a d-fine belated McShane partial division of [0, 7] with (D) > (v —
u) < n. Construct a (6, n)-fine belated McShane partial division of [0,7]. By assumption,

T 2 ¢
E [H(D UDy) Y fe(Wy — W) — (IM)/ fedW; ] <7
0 \%

y

T
H(D UD) Y fe(Wy — W) — (IM) /0 fudW,

Hence,

B |0 X seow - w

<2E

. V] ) (6)
H@WAﬁM%ﬂmZMM—mMJ

2(5) 2 ()

This proves the lemma.

+2E

Theorem 2. A process f:[0,T] x Q@ — L(U, V) is ZM-integrable if and only if
(i) there exists an AC?[0,T] function F : J x Q — V and

(ii) for every e > 0, there exist a positive function 6 on [0,T] such that whenever D =
{(Ju,v],&)} is a d-fine belated McShane partial division of [0,T], we have

e [0 St - w) - Flaa] <

Proof. Suppose that f € Azp. By the Saks-Henstock lemma for ZM integral, (ii)
holds. Next we show that F is AC?[0,T]. Let € > 0 be given. By Lemma 4, there exist a
positive function § on [0,7] and a number 1 > 0 such that

2 €
J<4
for any ¢-fine belated McShane partial division D = {([u, v],§)} of [0,T] with (D> (v —
u)) < n. Let {[a;,b;]}7"; be a finite collection of disjoint subintervals [a;,b;] € J with
E;-n:l(bj —aj) < n. Note that f is also ZM-integrable on[a;, b;] for all j. This means that

for all j, there exist a positive function ¢; on [a;, b;] and a number n; > 0 such that for
any (0;,7;)-fine belated McShane partial division D; of [aj, b;], we have

| [(0) X fecw, - w)

€

E [HS(f, Dj,8;,m;) — F[aj,bj]\lré] <12
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We can choose {d;}2; and {n;}}2; such that §;(§) < 6(§) for all j and 377" n; < 7. Let
P =DyUD3yU---U Dy, which is a §-fine belated partial division of [0, 7] with

(P)Z v—u §Z

This implies that

2
EWmme—muﬁi-
Hence,
. 2
E ZF[aj,bj]
j=1 ,
2
< 2E Z{F aj,b; faDm(Sjvnj)}
v
m 7]
+2E ||| S(f. Dj, 85,m5)
P o (7)

Q

E [ Flag,b5] - S(/, Dy, 650l

EWHme—mﬁl

2

Thus, F is AC?[0,T).

Conversely, assume that (i) and (ii) hold. Let € > 0 be given. Since F is AC?[0,T],
choose i > 0 such that whenever {[u;, v;]}], is a finite collection of subintervals [u;, v;] €
J with 3770, (vj — uz) < n, we have

2
m

€
E U <
ZF[UJ?,U]:I < 4
]:1 v
Let D = {([u,v],£)} be a (J,n)-fine belated McShane partial division of [0,7] and let
D¢ = {[u,v]} be the collection of all subintervals [u,v] C [0,7] which are not included in
the set D. Since F is AC?[0,T],
2 €
J<4

E [H(DC)ZF[U,U]
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Hence,
e (o) 3 s - w) - o1
< 2E [H(D) D {fe(Wy —Wo) — F[“’U”Hﬂ
28 o) 3 Pl ol

“2()2(p) -

Thus, f is ZM-integrable to F[0,T].

Lemma 5. Let f € Azpq and define F 1 J x Q =V by
Flu,v] = (IM)/ £ AW,

(i) F has the orthogonal increment property,
(it) E[(fe(Wy — Wa), Flu,v])y] =0, where ¢ < a.

Proof. We shall only prove (i) since (ii) follows the same arguments in (i). By the
sequential definition of ZM integral, there exists a decreasing sequence {d,} of positive

functions defined on [0,T] and a decreasing sequence {n,} of positive numbers such that

for any (9, 7, )-fine belated McShane partial division Dy, [a, b] = {([uz(n) , vgn) , {}n)]) m, and

Dy lu,v] = {([ugn),v](.n),%n)]) ?:1 of [a,b] and [u,v], respectively, we have
E [IS(f, Dala, b 6amm) — Fla, B3] = 0 a5 n - oo

and
E [Hs(f, Dy, ], 6y 1) — F[u,v]”%/} — 0 asn — oo.

By Lemma 2, for every n € N

m p

E Z Z <f§i<n) (Wvgn) - Wu§n>), fggn) (Wv;") — W“<'n))>v —0.

i=1 j=1

Since S(f, Dnla,b],dn,1m) — Fla,b] and S(f, Dplu,v], 6, 1m) — Flu,v] in L*(Q,V) as
n — 00, it follows that

]E [<S(f7 Dn[a7 b]7 5n7 nm)a S(f, Dn[uv U]a 5717 nn)>V] — E [<F[a7 b], F[“? U]>V]
as n — oo. Thus, E[(F[a,b], F[u,v]),] = 0.

In view of Lemma 5, we have the following lemma.
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Lemma 6. Let f € Azpq and define F': T x Q —V by
Flu,v] := (IM)/ fr dW4.

Let {([ui, vi], &)}y be a finite collection such that {[u;, v;]} is a collection of non-overlapping
intervals in J, & < & < --- < &, and & < w; for eachi=1,2,...,n. Then

2

(i) E

Z{f&(in = Wu,) = Flug,vi)}
i=1

\%4
= > B[ Ife(Way = Wa) = Flui w17
=1

2

(ii) E

Zn: F(UZ, 1}2')
=1

= Zn:E [HF(ui, Ui)”%/} :
i=1

\%4

The immediate consequence of Lemma 5.(i) is the strong version of Saks-Henstock
lemma.

Lemma 7. (Saks-Henstock Lemma (Strong Version)). Let f € Azyp and let F @ J X
Q — V be defined by F(u,v) := (I/\/l)/ ft dWy. Then for every € > 0, there exists

a positive function & on [0,T) such that for any 8-fine belated McShane partial division
D = {([u7v]7§)} Of [07T], we have

(D) SE [Ife(We = Wa) — Fu,0) 2] <.

4. Descriptive Definition of Ito-McShane Integral

In this section, we present a version of Fundamental Theorem for the It6-McShane
integral of an operator-valued stochastic process.

Theorem 3. Let f € Azpq and let
Flu,v] := (IM)/ fdW for all [u,v] C [0,T].

Then DFy = fi a.e. on [0,T).

Proof. Let A= {t €[0,T) : DF}; does not exist or DF; # f;}. Let £ € A. Then there
exists y(€) > 0 such that for every positive function ¢ on [0, T'], there exists a J-fine belated
McShane interval-point pair ([u,v],§) of [0,T] with

E [Ife(Wo = Wa) = Flu,ull3] > 7€) - w). (9)
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Let ¢ > 0. By the strong version of Saks-Henstock lemma (Lemma 7), there exists a
positive function §; on [0,7] such that for any ¢;-fine belated McShane partial division
D = {([u.v],€)} of [0,7], we have

(D) Y E[fe(Wo = W) = Flu, o]} ] < e. (10)

Let &1,&2,...,&, € A. By (9), each & corresponds a d1-fine belated interval [u;,v;], for
1=1,2,...,n. Thus,

YA wi—uw) < Y E [Hf&(sz- — W) - F[uiavi]!\ﬂ <e
i=1

i=1

1
For m € N, let A,, = {teA:'y(t) > } Then A = U Ay,. Hence, for all i €
m

meN
{1,2,...,n}, & € Ay, for some m; € N. Let m : max{m,; :i=1,2,...,n}. Then

n

Z %(Ul —ui) < Z’Y(&z)(vz —ui) <€
=1 i=1

which implies that Z(vi—ui) < me. Let V be the family of interval-point pairs {([u,v], )}

=1
induced from all ¢;-fine belated McShane partial division of [0, T'] such that £ € A,,. Then
V is a Vitali cover of A,,. Applying the Vitali Covering Lemma, there exists a finite
collection {([us,vi], &)}, in V such that

n

Leb*(Ay,) < Z(vl —u;) +e< (m+1e.
i=1

Since € is arbitrary, Leb(A,,) = 0. Thus, Leb(A) = 0.

Theorem 4. Let f :[0,T] x Q — L(U,V) be an adapted process and let F : J x Q@ — V
be AC?[0,T], has the orthogonal increment property, and DF; = f; a.e. on [0,T). Then
f € Azp and

Flu, o] = (IM)/v fo dW, for all [u,0] € [0,T).

Proof. Let A = {t € [0,T) : DF; does not exist or DF; # fi}. Then Leb(A) = 0. Let
£ € A°:=[0,T])\A. Then for every € > 0, there exists a positive function §; on [0, 7] such
that for any ¢;-fine belated McShane interval-point pair ([u, v], &) of [0, T], we have

E Il fe(Wo = Wa) = Flu, ol ] < (v = ).

Let Dy = {([us, vi], &)}, be a d;-fine belated McShane partial division on [0,7] with
& € A°. Then by Lemma 3,
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2

Z{ffi(W’Uz‘ = Wu,) — Flui, vil}

=1

v

= > E[lfe (We, = W) = Flus,vill}
=1

< ﬁZ(UZ—UZ) (11)

i=1
<

o

If A= @, then we are done. Suppose that A # &. Let £ € A. Then for any [u,v] C [¢,T],

E|IfeWe = Wl | = 0= wE [Ifel}, 0

Let G, = Z(fg(Wy —Wu),gk>2, where {gr} is an ONB in V. Since G,, - G =

k=1
oo

Z (fe(Wy — W), ge)? as m — 00 and Gy, < Gyup1, by the monotone convergence theo-

k=1
rem for Lebesgue integral,

lim E Z fg W W > ] = E [Z <f§(Wv - Wu)v.gk>2]
k=

2
- E [Hfg(wv - WU)M < o0.

It follows that there exists N € N such that N -1 <E [Hfg”i(UQ V)} < N.

Since F' is AC?[0, T, there exists 7 > 0 with n < ;5 such that for all finite collection
{luy, Uﬂ}?zl of non-overlapping intervals of [0, 7] with Z?Zl(vj —uj) < n, we have

2
p

E Z [uj,v;] <§.

= v
Since Leb(A) = 0, there exists an open set O containing A such that Leb(O) < 7.
Hence, for all £ € A C O. Thus, there exists d2(§) > 0 such that [§;,& + d2(§)] € O. Let
Dy = {([u,v],€)} be a d-fine belated McShane partial division such that { € A. Then,
(D2)> (v —u) < Leb(O) < n. Then by Lemma 3,



J.D. Cagubcob, M. Labendia / Eur. J. Pure Appl. Math, 12 (1) (2019), 101-117 115

[H (D2) S {fe (W, — W) uv}H ]
= (D2) Y E[lfe(Wo = W) = Flu, o]}
< 2(D2) 3B [|Ife(Wy = W) 2] +2(D2) S B [I1F[u, o] ]
= 2(D2) Y (0 —wE el g | +2(D2) D E |1 ][}

< 2N(D2) Z(v — ) +2(D2) 3 [ B, o]l

<IN —+2--
4N * 4
(12)

Let D = {([u,v],€)} be a d-fine belated McShane partial division of [0,7]. Then using
(11) and (12), we have

[H ) S AfeWy =) - F[u,v]}”f/]

2_.

< 2B ||| > {fe(Wo = Wo) = Flu, o]}
seAs v
2
+2E ||| {fe(Wo = Wu) — Flu, o]}
ceA .

By Theorem 2, f € Az and

Flu,v] := (IZM) /U fs dWy for all [u,v] C [0,T].

Combining Theorem 1, Theorem 3, and Theorem 4, we get the following result, which
is referred to as the Fundamental Theorem or the descriptive definition of the It6-McShane
integral for the Hilbert-Schmidt-valued stochastic process.

Theorem 5. Let f:[0,7] x Q@ — L(U,V) be an adapted process. Then f € Azn if and
only if there exists an AC?[0,T) function F : J x Q — V that satisfies the orthogonal
increment property and DF; = f; a.e. on [0,T).

5. Conclusion and Recommendation

In this paper, we formulate an equivalent definition of the It6-McShane integral of
a operator-valued stochastic process with respect to a Hilbert space-valued QQ-Wiener
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process using the concept of belated McShane derivative and AC2[0, T'|-property, a version
of absolute continuity. A worthwhile direction for further investigation is to use Henstock-
Kurzweil approach to define the stochastic integral with respect to a cylindrical Wiener
process.
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