EUROPEAN JOURNAL OF PURE AND APPLIED MATHEMATICS Vol. 12, No. 2, 2019, 544-552 ISSN 1307-5543 – www.ejpam.com Published by New York Business Global # Weakly Prime and Weakly primary ideals in gamma seminearrings Waheed Ahmad Khan¹, Abdelghani Taouti^{2,*}, Seema Karkain², Azar Salami², Waqar Arif¹ ¹ Department of Mathematics, University of Education, Attock Campus, Pakistan **Abstract.** We introduce and discuss the weakly prime and weakly primary ideals of a gamma seminearrings with illustrative examples. We also present few of characterizations of these ideals. 2010 Mathematics Subject Classifications: 16Y30, 16Y60 Key Words and Phrases: Gamma seminearrrings, prime ideals, primary ideals. ## 1. Introduction and Preliminaries The concept of seminearring was introduced by W. G. van Hoorn et al. in [1]. Seminearfields have been introduced in [5]. As a generalization of seminearrings that is Γ-seminear-rings were introduced in [2]. Subsequently, prime and semiprime ideals in gamma seminearrings have been explored in [3]. In a sequel, we introduce the notion of weakly prime and weakly primary ideals Γ-seminearring and few of their characterizations. We recall some useful concepts for the sake of completeness. A nonempty set R with two binary operations " + "(addition) and "." (multiplication) is called a seminearring if it satisfies (i) (R, +) and (R, .) are semigroups; (ii) (x+y).z = x.z + y.z for all $x, y, z \in R$. In 2005, Krishna & Chatterjee [4], introduced the condition of minimality of generalized linear sequential machines using the theory of near-semirings. Near-semirings have proven to be useful in studying automata and formal languages. Following [3], Γ-seminearring is a triple $(R, +, \Gamma)$ where, (i) Γ is a non-empty set of binary operators on R such that for each $\alpha \in \Gamma$, (R, +, .) is a seminearring, (ii) $x\alpha(y\beta z) = (x\alpha y)\beta z$ for all $x, y, z \in R$ and $\alpha, \beta \in \Gamma$. Similarly, let R be a Γ-seminearring, a subsemigroup A of (R, +) is called a left (resp., right) ideal of R if $R\Gamma A \subseteq A$ (resp., $A\Gamma R \subseteq A$). A left and right ideal is called an ideal. Let DOI: https://doi.org/10.29020/nybg.ejpam.v12i2.3397 Email addresses: sirwak2003@ yahoo.com (W. A. Khan), ganitaouti@yahoo.com.au (A. Taouti), skarkain@hct.ac.ae (S. Karkain), asalami@hct.ac.ae (A. Salami), waqarvicky6699@gmail.com (W. Arif) ² ETS-Maths and NS Engineering division HCT, University City, P. O. Box: 7947 United Arab Emirates $^{^*}$ Corresponding author. R be a Γ -seminearring and $I, J \subseteq R$. We denote it by $I\Gamma J = \{a\alpha b \mid a, b \in R \text{ and } \alpha \in \Gamma\}$. A mapping $f: R \to R'$ between two gamma seminearrings is called a Γ -seminearring homomorphism (Γ -homomorphism), if f(x+y) = f(x) + f(y) and $f(x\gamma y) = f(x)\gamma f(y)$ for all $x, y \in R$ and $\gamma \in \Gamma$. Let R and R' be a Γ -seminearrings and $f: R \to R'$ be a Γ -seminearring homomorphism. Then, (i) $f(I_1\Gamma I_2) = f(I_1)\Gamma f(I_2)$ for all $I_1, I_2 \in R$, (ii) $f^{-1}(J_1)\Gamma f^{-1}(J_2) = f^{-1}(J_1\Gamma J_2)$ for all $J_1, J_2 \in R'$. # 2. Weakly prime and weakly primary ideals in Γ -seminearrings In this section we introduce the notion of weakly prime and weakly primary ideals in Γ -seminearrings. By an ideal we mean two-sided ideal unless otherwise stated. We begin with the following definition. **Definition 1.** Let R be a Γ -seminearring. A proper ideal P of R is called weakly prime if for ideals I and J, $0 \neq I\Gamma J \subseteq P$ implies $I \subseteq P$ or $J \subseteq P$. **Proposition 1.** Let P be a proper ideal of a Γ -seminearring R. The following statements are equivalent. - (i) P is weakly prime. - (ii) For ideals I and J of R, $0 \neq (I\Gamma J) \subseteq P$ implies $I \subseteq P$ or $J \subseteq P$. - (iii) For elements i and j in R, $i \notin P$ and $j \notin P$ implies $0 \neq (i)\Gamma(j) \not\subseteq P$. *Proof.* Following definition1, clearly (i) and (ii) are equivalent. Now, $(i) \Longrightarrow (iii)$ Let P be a weakly prime, $i \notin P$ and $j \notin P$. Assume $0 \neq (i) \Gamma(j) \subseteq P \Rightarrow (i) \subseteq P$ or $(j) \subseteq P$. Hence, $i \in P$ or $j \in P$, a contradiction. Thus, $0 \neq (i)\Gamma(j) \nsubseteq P$. $(iii) \Longrightarrow (i)$ Assume that $I \nsubseteq P$ and $J \nsubseteq P$. Then there exists $i \in I \setminus P$ and $j \in J \setminus P$. Hence, $0 \neq (i)\Gamma(j) \subseteq 0 \neq I\Gamma J$ but $0 \neq (i)\Gamma(j) \nsubseteq P$ by (iii). Thus, $0 \neq I\Gamma J \nsubseteq P$. **Example 1.** Let $R = \{0, 1, e, a, b, c\}$ be a Γ -seminearring with $\Gamma = \{\alpha, 1\}$. | + | 0 | 1 | e | a | b | c | |---|---|---|---|---|---|---| | 0 | 0 | 1 | e | a | a | c | | 1 | 1 | 1 | 1 | 1 | 1 | 1 | | e | e | 1 | e | 1 | 1 | e | | a | a | 1 | 1 | a | a | a | | b | a | 1 | 1 | a | a | a | | c | c | 1 | e | a | a | c | | α | 0 | 1 | e | a | b | c | |----------|---|---|---|---|---|---| | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | 1 | 0 | 1 | e | a | b | c | | e | 0 | e | e | 0 | c | c | | a | 0 | a | 0 | a | a | 0 | | b | 0 | b | 0 | a | a | 0 | | c | 0 | c | 0 | 0 | 0 | 0 | $P = \{0, a, b\}$ of a seminearring R is a weakly prime ideal but not a prime ideal, since $c\alpha c = 0$ and $c \notin P$. On the other hand, consider a prime ideal $Q = \{0, e, c\}$ of R. It is easy to show that Q is a weakly prime ideal. For this, let I and J are ideals of R, where $I = \{0, e, c\}$ and $J = \{0, a, b\}$. Then, $0 \neq I\Gamma J \subseteq Q \Longrightarrow I \subseteq Q \Longrightarrow Q$ is a weakly prime ideal. Hence every prime ideal of a gamma seminearring is a weakly prime ideal. **Example 2.** Let $R = \{0, 1, e, a, b, c\}$ be a Γ -seminearring with $\Gamma = \{\alpha, 1\}$ as defined in example 1. Let $S = \{0, 1, e, a, c\} \subseteq R$ be a Γ -sub-seminearring of R with $\Gamma = \{1, \alpha\}$. Clearly, in S the ideals $I = \{0, a\}$ and $J = \{0, c\}$ are weakly prime ideals but not prime. **Proposition 2.** Let P be a proper ideal of a Γ -seminearring R and $\{0 \neq a\alpha r\beta b : r \in R, \alpha, \beta \in \Gamma\} \subseteq P$ if and only if $a \in P$ or $b \in P$, then P is a weakly prime ideal. *Proof.* Let I and J are ideals of R with $0 \neq I\Gamma J \subseteq P$. Let $I \nsubseteq P$, and for $a \in I \setminus P$, $b \in J$, we have $\{0 \neq a\alpha r\beta b : r \in R, \alpha, \beta \in \Gamma\} \subseteq I\Gamma J \neq 0 \subseteq P$. Since $a \notin P$ and $b \in P \Rightarrow J \subseteq P$. Hence, P is a weakly prime ideal. **Proposition 3.** Intersection of finite numbers of weakly prime ideals of a Γ -seminearring R which are totally ordered by inclusion is a weakly prime ideal. *Proof.* Let $\{P_{\alpha}\}_{{\alpha}\in\Lambda}$ be the family of weakly prime ideals which are totally ordered by inclusion. Suppose I and J be ideals of R. If $0 \neq I\Gamma J \subseteq \cap_{\alpha \in \Lambda} P_{\alpha}$, then $0 \neq I\Gamma J \subseteq P_{\alpha}$, for all $\alpha \in \Lambda$. Suppose that there exists $\alpha \in \Lambda$ such that $I \nsubseteq P_{\alpha}$. Then, $J \subseteq P_{\alpha}$ and hence $J \subseteq P_{\beta}$ for all $\beta \geq \alpha$. We assume that there exist $\gamma < \alpha$ such that $J \subseteq P_{\gamma}$. Then, $I \subseteq P_{\gamma}$ and hence $I \subseteq P_{\alpha}$, which is impossible. Hence, $J \subseteq P_{\beta}$ for any $\beta \in \Lambda$. Thus, $\cap_{\alpha \in \Lambda} P_{\alpha}$ is a weakly prime ideal of a Γ -seminearring R. Below we provide an illustrative example. **Example 3.** Let $S = \{0, 1, e, a, c\}$ with $\Gamma = \{1, \alpha\}$ be a Γ -seminearring defined in the tables given below. | + | 0 | 1 | e | a | c | |---|---|---|---|---|---| | 0 | 0 | 1 | e | a | c | | 1 | 1 | 1 | 1 | 1 | 1 | | e | e | 1 | e | 1 | e | | a | a | 1 | 1 | a | a | | c | c | 1 | e | a | c | | α | 0 | 1 | e | a | c | |----------|---|---|---|---|---| | 0 | 0 | 0 | 0 | 0 | 0 | | 1 | 0 | 1 | e | a | c | | e | 0 | e | e | 0 | c | | a | 0 | a | 0 | a | 0 | | c | 0 | c | 0 | 0 | 0 | Consider $P_1 = \{0, c\}$ and $P_2 = \{0, e, c\}$ are the weakly prime ideals of R and are totally ordered by inclusion as well. Since, $P_1 \cap P_2 = P_1$, which is a weakly prime ideal of R. Hence, $\bigcap_{\alpha \in A} P_{\alpha}$ is a weakly prime ideal. **Proposition 4.** Let I be an ideal of a Γ -seminearring R with $R + I \subseteq I$ and $I + R \subseteq I$. Let P be a proper ideal of R containing I and $\psi : R \to R/I$ be the canonical epimorphism. Then, P is a weakly prime ideal if and only if $\psi(P)$ is a weakly prime. Proof. Let P be a weakly prime ideal of R. Suppose J_1 and J_2 are ideals in R/I such that $0 \neq J_1\Gamma J_2 \subseteq \psi(P)$. Assume that $\psi^{-1}(J_1) = I_1$ and $\psi^{-1}(J_2) = I_2$. Then, $0 \neq I_1\Gamma I_2 = 0 \neq \psi^{-1}(J_1)\Gamma \psi^{-1}(J_2) \subseteq 0 \neq \psi^{-1}(J_1\Gamma J_2) \subseteq 0 \neq \psi^{-1}(\pi(P)) = P$. Since P is a weakly prime ideal, it implies $I_1 \subseteq P$ or $I_2 \subseteq P$. Hence, $J_1 = \psi(\psi^{-1}(J_1)) = \psi(I_1) \subseteq \psi(P)$ or $J_2 = \psi(\psi^{-1}(J_2)) = \psi(J_2) \subseteq \psi(P)$. Hence, $\psi(P)$ is a weakly prime. Conversely, suppose $\psi(P)$ be a weakly prime ideal and let I_1 , I_2 are ideals of R such that $0 \neq I_1\Gamma I_2 \subseteq P$. Then, $0 \neq \psi(I_1)\Gamma\psi(I_2) = 0 \neq \psi(I_1\Gamma I_2) \subseteq \psi(P)$. Since $\psi(P)$ is a weakly prime ideal, it implies that $\psi(I_1) \subseteq \psi(P)$ or $\psi(I_2) \subseteq \psi(P)$. Thus, $I_1 \subseteq P$ or $I_2 \subseteq P$, and hence P is a weakly prime ideal of a Γ-seminearring R. **Definition 2.** Let R be a Γ -seminearring and M be a non-empty subset of R. We call M an m-system if for $a, b \in M$, there exist $a_1 \in (a), b_1 \in (b)$ and $\alpha \in \Gamma$ such that $0 \neq a_1 \alpha b_1 \in M$. **Proposition 5.** Let P be a proper ideal of a Γ -seminearring R. Then, P is a weakly prime ideal if and only if $R \setminus P$ is m-system. Proof. Let P be a weakly prime ideal of a Γ -seminearring R. Consider $a, b \in R \setminus P$ and $0 \neq (a)\Gamma(b) \not\subseteq P$. Let $a_1 \in (a)$, $b_1 \in (b)$ and $\alpha \in \Gamma$ such that $0 \neq a_1\alpha b_1 \notin P$, i.e., $a_1\alpha b_1 \in R \setminus P$. Thus, $R \setminus P$ is an m-system. Conversely, suppose $R \setminus P$ is an m-system and let $a, b \in R \setminus P$. Then, there exist $a_1 \in (a)$, $b_1 \in (b)$ and $\alpha \in \Gamma$ such that $a_1\alpha b_1 \in R \setminus P$. Thus, $0 \neq (a)\Gamma(b) \not\subseteq P$ and hence P is a weakly prime ideal of a Γ -seminearring R. **Definition 3.** A subset A of a Γ -seminearring R is a subtractive, if $a \in A$ and $a + b \in A$ implies $b \in A$. **Proposition 6.** Let R be a Γ -seminearring whose all ideals are subtractive, and let P be a proper ideal of R. Then, P is a weakly prime if and only if for any ideals I, J of R, $P \subset I$ and $P \subset J$ implies $0 \neq I\Gamma J \nsubseteq P$. Proof. Suppose for any ideals I, J of $R, P \subset I$ and $P \subset J$ implies $0 \neq I\Gamma J \nsubseteq P$. Let us suppose that $I \nsubseteq P$ and $J \nsubseteq P$. Then there exist $i \in I \setminus P$ and $j \in J \setminus P$ and hence $P \subset P + (i)$. By hypothesis, $0 \neq (P + (i))\Gamma(P + (j)) \nsubseteq P$ and so there exist $i' \in (i)$, $j' \in (j), p, p' \in P$ and $\alpha \in \Gamma$ such that $0 \neq (p+i')\alpha(p'+j') \notin P$. Since, $0 \neq p\alpha(p'+j') \in P$, $0 \neq i'\alpha(p'+j') \notin P$ and P is an ideal, then $i' \notin P$ and $p' + j' \notin P$. Thus, $i' \notin P$ and $j' \notin P$ because P is subtractive. It implies $0 \neq (i')\Gamma(j') \nsubseteq P$. But $0 \neq (i')\Gamma(j') \subseteq 0 \neq I\Gamma J \neq P$. Hence, P is a weakly prime ideal. The converse is obvious by the definition of a weakly prime ideal of a Γ-seminearring. **Theorem 1.** Let M be an m-system of a Γ -seminearring R whose each ideal is a subtractive. Let I be an ideal with $I \cap M = \emptyset$. Then, there exists a weakly prime ideal P such that $I \subseteq P$ and $P \cap M = \emptyset$. Proof. Let $\Im = \{J: J \text{ is an ideal of } R, I \subseteq J \text{ and } J \cap M \neq \emptyset\}$. Then, $\Im \neq \emptyset$ and let $\{J_{\alpha}\}_{\alpha \in A}$ be a chain in I which is ordered under set inclusion. Then, $I \subseteq \cap_{\alpha \in \Lambda} J_{\alpha}$ and $(\cup_{\alpha \in \Lambda} J_{\alpha}) \cap M = \cup_{\alpha \in \Lambda} (J_{\alpha} \cap M) \neq \emptyset$. Thus, $\cup_{\alpha \in \Lambda} J_{\alpha} \in I$. By Zorn's Lemma, \Im has a maximal element say P. We also claim that P is a weakly prime ideal. If $P \subset K_1$ and $P \subset K_2$, then there exist $k_1 \in K_1 \cap M$, $k_2 \in K_2 \cap M$ and $\alpha \in \Gamma$ such that $0 \neq (k_1)\alpha(k_2) \subseteq 0 \neq K_1\Gamma K_2$ and there exist $k'_1 \in (k_1)$ and $k'_2 \in (k_2)$ such that $0 \neq k'_1\alpha k'_2 \in M$. Thus, $0 \neq k'_1\alpha k'_2 \in 0 \neq K_1\Gamma K_2 \cap M$. Since $P \cap M = \emptyset$, $(K_1\Gamma K_2) \nsubseteq P$. Hence, P is a weakly prime ideal. Now we present few results about such a Γ -seminearring R in which each ideal is weakly prime. **Proposition 7.** Every ideal of a Γ -seminearring R is a weakly prime if and only if for any ideals I, J, K of R, $I\Gamma J = I$, $I\Gamma J = J$, $I\Gamma J = K$ where K is the ideal contained in both I and J, or $I\Gamma J = 0$. *Proof.* Suppose that every ideal of R is a weakly prime. Let I, J are ideals of a Γ-seminearring R. If $I\Gamma J \neq R$, then $I\Gamma J$ is a weakly prime. If $0 \neq I\Gamma J \subseteq I\Gamma J$, then we have $I \subseteq I\Gamma J$ or $J \subseteq I\Gamma J$ i.e., $I = I\Gamma J$ or $J = I\Gamma J$. If $I\Gamma J = K$ then clearly $K = I \cap J$ is a weakly prime ideal then by proposition3, $K \subset I$ and $K \subset J$. Finally, if $I\Gamma J = R$, then we have I = J = R and hence $R\Gamma R = R$. Conversely, let L be any proper ideal of R and suppose that $0 \neq I\Gamma J \subseteq L$ for ideals I and J of R. Then, we have either $I = I\Gamma J \subseteq L$ or $J = I\Gamma J \subseteq L$. And if $K = I\Gamma J \subseteq L$, where $K \subset I \cap J$ and hence $K \cap I \subseteq I$ and $K \cap J \subseteq L$. **Example 4.** Refer to the Γ -seminearring S defined by tables in example 3. Clearly, S has four ideals, $I = \{0, a\}$, $J = \{0, c\}$, $K = \{0, e, c\}$ and $L = \{0, a, c\}$. Now, $I\Gamma J = \{0\}$, $I\Gamma K = \{0\}$, $I\Gamma L = I$, $J\Gamma I = \{0\}$, $J\Gamma K = \{0\}$, $J\Gamma L = \{0\}$, $K\Gamma I = \{0\}$, $K\Gamma J = J$, $K\Gamma L = J$ where $J \subset K$ and $J \subset L$, $L\Gamma I = I$, $L\Gamma J = \{0\}$, $L\Gamma K = \{0\}$. Hence, we can check easily that every ideal of S is a weakly prime ideal. Corollary 1. Let R be a Γ -seminearring in which every ideal of R is a weakly prime. Then for any ideal I of R, either $I\Gamma I = I^2 = I$ or $I\Gamma I = I^2 = 0$. **Example 5.** Refer to example 4, since $I = \{0, a\}$ be the weakly prime ideal of S and hence $I\Gamma I = I^2 = I$. Also, for another weakly prime ideal $J = \{0, c\}$ of S we have $J\Gamma J = J^2 = 0$. In the above example the ideal $K = \{0, e, c\}$ we have $K\Gamma K = K^2 = \{0, e\}$ which is a subset of Γ -seminearring but not an ideal. And for the ideal $L = \{0, a, c\}$ we have $L\Gamma L = L^2 = \{0, a\}$ which is a weakly prime ideal of S.) **Proposition 8.** Suppose that every ideal of a Γ -seminearring R is a weakly prime. If M_1 and M_2 are two maximal ideals of R then $M_1\Gamma M_2 = 0$ or $M_1\Gamma M_2 = N = M_1 \cap M_2$. *Proof.* Suppose every ideal of a Γ-seminearring R is a weakly prime ideal. Let M_1 and M_2 be the two distinct maximal ideals. Since, $M_1 \cap M_2$ is a weakly prime and hence $M_1\Gamma M_2 \subseteq M_1\cap M_2$, we must have $M_1\Gamma M_2 = 0$ and similarly $M_2\Gamma M_1 = 0$, or $M_2\Gamma M_1 = N$, being every ideal a weakly prime ideal of R, the result follows from proposition3. **Example 6.** Refer to the Γ -seminearring S defined in tables of an example \mathcal{S} . Let $I = \{0, a, c\}$ and $J = \{0, e, c\}$ be the two maximal ideals of S. Clearly $I\Gamma J = 0$ and $J\Gamma I = \{0, c\} = I \cap J = \{0, c\}$. Corollary 2. Let every ideal of a Γ -seminear-ring R is a weakly prime. Then, every nonzero ideal of R/N(R) is prime. Corollary 3. Suppose that every ideal of a Γ -seminear-ring R is a weakly prime. Then $(N(R))\Gamma(N(R))=0$ and every prime ideal P(R) contains N(R). There are three possibilities. - (a) N(R) = R. - (b) N(R) = P(R) is the smallest prime ideal and all other prime ideals are idempotent and are linearly ordered. If $N(R) \neq 0$, then it is the only non-idempotent prime ideal. (c) N(R) = P(R) is not a prime ideal. And in such case there exist two nonzero minimal prime ideals J_1 and J_2 with $N(R) = J_1 \cap J_2$ and $J_1 \Gamma J_2 = \{0\}$ or $(d), J_2 \Gamma J_1 = \{0\}$ or (c). All other ideals containing N(R) also contain $J_1 + J_2$ and they are linearly ordered. We elaborate the above proposition in the below example. **Example 7.** Refer to the Γ -seminearring S defined in tables of an example S. In S, $N(S) = \{0, c\}$ and we have $(N(S))^2 = (N(R)) \Gamma(N(R)) = \{0, c\}^2 = \{0\}$. As, N(S) = P(S) is not a prime ideal and possibility (c) of the above corollary S is valid for this i.e., there exist two nonzero minimal prime ideals J_1 and J_2 with $N(R) = J_1 \cap J_2$ and $J_1 \Gamma J_2 = \{0\}$ and $J_2 \Gamma J_1 = \{c\} = \{0, c\}$. All other ideals containing N(R) also contain $J_1 + J_2$ and are linearly ordered. Let $J_1 = \{0, a, c\}$ and $J_2 = \{0, e, c\}$ be the minimal prime ideals of S. We have $N(S) = \{0, c\} = J_1 \cap J_2$ and $J_1 J_2 = J_2 J_1 = 0$. Beside these two ideals another ideal of S is S itself and clearly it contains N(S) and also $J_1 + J_2$ where $J_1 + J_2 = S$. **Example 8.** Let $T = \{0, a, b\}$ be a right seminearring under the operations defined in given below tables. | + | 0 | a | b | |---|---|---|---| | 0 | 0 | a | b | | a | a | a | a | | b | b | b | b | | | 0 | a | b | |---|---|---|---| | 0 | 0 | 0 | 0 | | a | 0 | a | a | | b | 0 | a | b | Here $N(T) = P(T) = \{0\}$ and it is the smallest prime ideal. Possibility (b) of above corollary3 is valid for this seminearring. **Definition 4.** Let R be a Γ -seminearring under the mapping from $R \times \Gamma \times R$ into R, say f, and D be the set of all destributive elements of R, i.e., $D = \{d \in R \mid d\alpha(a+b) =$ $d\alpha a + d\alpha b$ for all $a, b \in R$ and $\alpha \in \Gamma$. Then R is called distributively generated (in short, d.g.) if the set D is non empty subset of R which $f_{D \times \Gamma \times D} : D \times \Gamma \times D \to D$ and $(\langle D, + \rangle) = (R, +)$ where $\langle D \rangle = \{\sum_{i=1}^m \alpha_i d_i \mid m, \alpha_i \in N \text{ and } d_i \in D \text{ for all } i \}$. In fact, $\langle D \rangle = \{\sum_{i=1}^n d_i \mid n \in N \text{ and } d_i \in D\}$ where all d_i 's in $\sum d_i$ may not be distinct. In addition, $(\langle D, + \rangle) = (R, +)$ means that every element in R can be written as a finite sum of destributive elements. **Example 9.** Refer to the Γ -seminearring S defined in tables of an example 3. Let $D = \{0, 1\}$, where all elements of D are distributive elements of R i.e., $D = \{d \in R \mid d\alpha(a+b) = d\alpha a + d\alpha b$ for all $a, b \in R$ and $\alpha \in \Gamma\}$. S is called distributively generated because the set $D = \{0, 1\}$ is a nonempty subset of R which satisfies $f_{D \times \Gamma \times D} : D \times \Gamma \times D \to D$ and (< D >, +) = (R, +). **Theorem 2.** Let R be a distributively generated Γ -seminearring. - (1) If A is weakly prime ideal of R and B is a nonempty subset of R. Then, $A\Gamma B$ is a weakly prime ideal of R. - (2) If A and B are weakly prime ideals of R, then $A\Gamma B$ is an ideal of R. **Example 10.** Refer to the Γ -seminearring S defined in tables of an example \mathcal{S} . Let $A = \{0, a\}$ be a weakly prime ideal of R and $B = \{1, e\}$ be a nonempty subset of R. Clearly $A\Gamma B = \{0, a\}$ is a weakly prime ideal of S. Let $C = \{0, c\}$ be another weakly prime ideal. Also $A\Gamma C = \{0\}$ and it is a minimal prime ideal of S. ## Weakly primary ideals **Definition 5.** Let R be a Γ -seminearring. A proper ideal P of R is said to be a weakly primary ideal if $0 \neq p\gamma q \in P$ implies $p \in P$ or $q^n \in P$. | + | 0 | 1 | e | a | b | c | |---|---|---|---|---|---|---| | 0 | 0 | 1 | e | a | a | c | | 1 | 1 | 1 | 1 | 1 | 1 | 1 | | e | e | 1 | e | 1 | 1 | e | | a | a | 1 | 1 | a | a | a | | b | a | 1 | 1 | a | a | a | | c | c | 1 | e | a | a | c | | α | 0 | 1 | e | a | b | c | |----------|---|---|---|---|---|---| | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | 1 | 0 | 1 | e | a | b | c | | e | 0 | e | e | 0 | c | c | | a | 0 | a | 0 | a | a | 0 | | b | 0 | b | 0 | a | a | 0 | | c | 0 | c | 0 | 0 | 0 | 0 | **Example 11.** Let $R = \{0, 1, e, a, b, c\}$ be a Γ -seminearring with $\Gamma = \{\alpha, 1\}$ defined in example 1. Here $I = \{0, a\}$, $J = \{0, a, c\}$ are weakly primary ideals but not a weakly prime. Clearly, $b\alpha b = a \in I$ but $b^2 = a \in I$. Similarly, J is also a weakly primary but not a weakly prime ideal. neither prime because in J, as $e.b = c \in J$. Clearly, $e, b \notin J$ but $b^2 = a \in J$. **Proposition 9.** Every weakly prime ideal is a weakly primary ideal but converse is not true. **Example 12.** Let $R = \{0, 1, e, a, b, c\}$ be a Γ -seminearring with $\Gamma = \{\alpha, 1\}$. In R the ideal $I = \{0, a, b\}$ is weakly prime and also by above proposition it is weakly primary but it is not prime b/c $c\alpha c = 0$ and $c \notin I$. Another ideal $J = \{0, a\}$ is weakly primary but not weakly prime neither prime b/c $b\alpha b = a \in I$. Clearly, $b \notin I$ but $b^2 = a \in I$. **Proposition 10.** Intersection of finite numbers of weakly primary ideals of a Γ -seminearring R which are totally ordered by inclusion is a weakly primary ideal. Proof. Let $\{P_{\alpha}\}_{{\alpha}\in\Lambda}$ be the family of weakly primary ideals which are totally ordered by inclusion. Suppose I and J be ideals of R. If $0 \neq I\Gamma J \subseteq \cap_{{\alpha}\in\Lambda} P_{\alpha}$, then $0 \neq I\Gamma J \subseteq P_{\alpha}$, for all ${\alpha} \in \Lambda$. Suppose that there exists ${\alpha} \in \Lambda$ such that $I \nsubseteq P_{\alpha}$. Then, $J^n \subseteq P_{\alpha}$ and hence $J^n \subseteq P_{\beta}$ for all ${\beta} \geq {\alpha}$. We assume that there exist ${\gamma} < {\alpha}$ such that $J^n \subseteq P_{\gamma}$. Then, $I \subseteq P_{\gamma}$ and hence $I \subseteq P_{\alpha}$, which is impossible. Hence, $J^n \subseteq P_{\beta}$ for any ${\beta} \in \Lambda$. Thus, $\cap_{{\alpha} \in \Lambda} P_{\alpha}$ is a weakly primary ideal of a Γ-seminearring R. **Example 13.** Let $R = \{0, 1, e, a, b, c\}$ be a Γ -seminearring with $\Gamma = \{\alpha, 1\}$. Here $I = \{0, a\}, J = \{0, a, c\}$ are weakly primary ideals but not weakly prime and $K = \{0, a, b, c\}$ is prime and hence weakly primary because every prime ideal is weakly primary. Clearly, these ideals are totally ordered by inclusion i.e. $I \subseteq J \subseteq K$. Since, $I \cap J \cap K = I = \{0, a\}$, which is also a primary ideal b/c $b.b = a \in I$. Clearly, $b \notin I$ but $b^2 = a \in I$. **Proposition 11.** Every ideal of a Γ -seminearring R is a weakly primary if and only if for any ideals I, J, K of R, $I\Gamma J = I$, $I\Gamma J = J$, $I\Gamma J = K$ where K is the ideal contained in both I and J or either in I or in J i.e. $K \subseteq I$, J or $K \subseteq I$ or $K \subseteq J$, or $I\Gamma J = 0$. *Proof.* Suppose that every ideal of R is a weakly prime. Let I, J are ideals of a Γ -seminearring R. If $I\Gamma J \neq R$, then $I\Gamma J$ is a weakly prime. If $0 \neq I\Gamma J \subseteq I\Gamma J$, then we have $I \subseteq I\Gamma J$ or $J^n \subseteq I\Gamma J$ i.e., $I = I\Gamma J$ or $J^n = I\Gamma J$. If $I\Gamma J = K$ then clearly $K = I \cap J$ is a weakly primary ideal then, $K \subset I$ and $K \subset J^n$. Finally, if $I\Gamma J = R$, then we have I = J = R and hence $R\Gamma R = R$. Conversely, let L be any proper ideal of R and suppose that $0 \neq I\Gamma J \subseteq L$ for ideals I and J of R. Then, we have either $I = I\Gamma J \subseteq L$ or $J^n = I\Gamma J \subseteq L$. And if $K = I\Gamma J \subseteq L$, where $K \subset I \cap J$ and hence $K \cap I \subseteq I$ and $K \cap J \subseteq L$. **Example 14.** Let $R = \{0, 1, e, a, b, c\}$ be a Γ-seminearring with $\Gamma = \{1, \alpha\}$. As R has six different ideals i.e. $I = \{0, a\}, J = \{0, c\}, K = \{0, e, c\}, L = \{0, a, c\}, M = \{0, a, b\}$, and REFERENCES 552 $N=\{0,a,b,c\}.$ Now, $I\Gamma I=I,\ I\Gamma J=\{0\},\ I\Gamma K=\{0\},\ I\Gamma L=I,\ I\Gamma M=I,\ I\Gamma N=I,\ J\Gamma I=\{0\},\ J\Gamma J=\{0\},\ J\Gamma J=\{0\},\ J\Gamma K=\{0\},\ J\Gamma M=\{0\},\ J\Gamma M=\{0\},\ K\Gamma I=\{0\},\ K\Gamma I=\{0\},\ K\Gamma J=J,\ K\Gamma K=K,\ K\Gamma L=J,\ K\Gamma M=J\ \text{where}\ J\subseteq K\ ,\ K\Gamma N=J,\ \text{where}\ J\subseteq K\ \text{and}\ J\subseteq N,\ L\Gamma I=I,\ L\Gamma J=\{0\},\ L\Gamma K=\{0\},\ L\Gamma L=I,\ \text{where}\ I\subseteq L,\ L\Gamma M=I\ \text{where}\ I\subseteq L\ \text{and}\ I\subseteq M,\ L\Gamma N=I,\ \text{where}\ I\subseteq L\ \text{ond}\ I\subseteq M,\ M\Gamma M=I,\ \text{where}\ I\subseteq M\ \text{and}\ I\subseteq M.$ Hence, we can easily check that every ideal of R is weakly primary. **Proposition 12.** Suppose that every ideal of a Γ -seminearring R is a weakly primary. If M_1 and M_2 are two maximal ideals of R then either $M_1\Gamma M_2=0$ or $M_1\Gamma M_2=N=M_1\cap M_2$. **Example 15.** Let $R = \{0, 1, e, a, b, c\}$ be a Γ - seminearring with $\Gamma = \{1, \alpha\}$. Let $I = \{0, a, b, c\}$ and $J = \{0, e, c\}$ be the two maximal ideals of R. Clearly $I\Gamma J = \{0\}$ and $J\Gamma I = \{0, c\} = I \cap J$. ### References - [1] W. G. Van Hoorn, and B. Van Rootselaar, Fundamental notions in the theory of seminearrings, Compositio Math. 18 (1967), 65-78. - [2] Y. B. Jun and K. H. Kim, On structures of gamma-seminear-rings, (submitted) - [3] K. H. Kim, On prime and semiprime ideals in gamma-seminearrings, Sci. Math. Jap. Online, 4, (2001), 885-889. - [4] K. V. Krishna and N. Chatterjee, A necessary condition to test the minimality of generalized linear sequential machines using the theory of near-semirings, Algebra and Discrete Mathematics. 3 (2005), 30 –45. - [5] H. J. Weinert, Seminear-rings, seminearfieds and their semigroup theoretic background, Semigroup Forum 24 (1982), 235-254.