Finite Groups With Certain Permutability Criteria

Rola A. Hijazi¹, Fatme M. Charaf¹,*

¹ Department of Mathematics, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia

Abstract. Let G be a finite group. A subgroup H of G is said to be S-permutable in G if it permutes with all Sylow subgroups of G. In this note we prove that if P, the Sylow p-subgroup of G ($p > 2$), has a subgroup D such that $1 < |D| < |P|$ and all subgroups H of P with $|H| = |D|$ are S-permutable in G, then G' is p-nilpotent.

2010 Mathematics Subject Classifications: 20D10, 20D20

Key Words and Phrases: S-Permutable Subgroup, p-Nilpotent Group, Solvable Group, Supersolvable Group.

1. Introduction

Throughout this note, G denotes a finite group. The relationship between the properties of the Sylow subgroups of a group G and its structure has been investigated by many authors. Starting from Gaschütz and Itô ([10], Satz 5.7, p.436) who proved that a group G is solvable if all its minimal subgroups are normal. In 1970, Buckely [4] proved that a group of odd order is supersolvable if all its minimal subgroups are normal (a subgroup of prime order is called a minimal subgroup). Recall that a subgroup is said to be S-permutable in G if it permutes with all Sylow subgroup of G. This concept, as a generalization of normality, was introduced by Kegel [11] in 1962 and has been studied extensively in many notes. For example, Srinivasan [15] in 1980 obtained the supersolvability of G under the assumption that the maximal subgroups of all Sylow subgroups are S-permutable in G. In 2000, Ballester-Bolinches et al. [3] introduced the c-supplementation concept of a finite group: A subgroup H of a group G is said to be c-supplemented in G if there exists a subgroup K of G such that $G = HK$ and $H \cap K \leq H_G$, where $H_G = \text{Core}_G(H)$ is the largest normal subgroup of G contained in H. By using this concept they were able to prove that a group G is solvable if and only if every Sylow subgroup of G is c-supplemented in G. Moreover, as an application, they got the supersolvability of a group G if all its minimal subgroups and the cyclic subgroups of order 4 are c-supplemented in G.

*Corresponding author.
DOI: https://doi.org/10.29020/nybg.ejpam.v12i2.3399

Email addresses: Rhijazi@kau.edu.sa (R. Hijazi), fa-sharaf@hotmail.com (F. Charaf)
In 2014, Heliel [8] proved that G is solvable if each subgroup of prime odd order of G is c-supplemented in G. Also he proved that G is solvable if and only if every Sylow subgroup of odd order of G is c-supplemented in G. This improved and generalized the results of Hall [6, 7], Ballester-Bolinches and Guo [2], and Ballester-Bolinches et al. [3].

Heliel also posted the following conjecture:

Let G be a finite group such that every non-cyclic Sylow subgroup P of odd order of G has a subgroup D such that $1 < |D| < |P|$ and all subgroups H of P with $|H| = |D|$ are c-supplemented in G. Is G solvable?

In the same year, Li et al. [12] presented a counterexample to show that the answer of this conjecture is negative in general and then gave a generalization of Heliel’s theorems.

Example 1. Let $G = A_5 \times H$, where A_5 is the alternating group of degree 5 and H is an elementary group of order p^n with $p > 5$ and $n \geq 2$. Then G satisfies the condition of the preceding conjecture, but G is not solvable.

In 2015, Hijazi [9] continued the above mentioned investigations and proved the following: Suppose that each Sylow subgroup P of G has a subgroup D such that $1 < |D| < |P|$ and all subgroups H of P with $|H| = |D|$ are S-permutable in G. Then G is solvable.

The main goal of this note is to prove the following main theorem:

Main Theorem 1. Let P be a Sylow p-subgroup of G ($p > 2$). Suppose that P has a subgroup D such that $1 < |D| < |P|$ and all subgroups H of P with $|H| = |D|$ are S-permutable in G. Then G' is p-nilpotent.

As immediate consequences of the main theorem we have:

Corollary 1. Let P be a Sylow p-subgroup of G ($p > 2$). Suppose that P has a subgroup D such that $1 < |D| < |P|$ and all subgroups H of P with $|H| = |D|$ are permutable in G. Then G' is p-nilpotent.

Corollary 2 ([9], Theorem 3.1). Suppose that each Sylow subgroup P of G has a subgroup D such that $1 < |D| < |P|$ and all subgroups H of P with $|H| = |D|$ are S-permutable in G. Then G is solvable.

Corollary 3 (Gaschütz and Itô [10], Satz 5.7, p.436). A group G is solvable if all its minimal subgroups are normal.

2. Proofs

We first prove the following theorems:

Theorem 2. Let P be a Sylow p-subgroup of a group G, where p is an odd prime. If each subgroup of P of order p is S-permutable in G, then G' is p-nilpotent.

Proof. We prove the theorem by induction on $|G|$. Hence if each subgroup of P of order p is normal in G, then each subgroup of G' of order p is normal in G'. Let L be a
In particular, hence by Schur-Zassenhaus Theorem, \(G' \) is \(p \)-nilpotent. Thus we may assume that there exists a subgroup \(H \) of order \(p \) such that \(H \) is not normal in \(G \). By the hypothesis, \(H \) is \(S \)-permutable in \(G \) and hence by ([13], Lemma A), \(O^p(G) \leq N_G(H) < G \). Let \(M \) be a maximal subgroup of \(G \) such that \(N_G(H) \leq M < G \). Then \(M \triangleleft G \) and \(|G/M| = p \). By induction on \(|G|\), \(M' \) is \(p \)-nilpotent. Hence if \(O_{p'}(G) \neq 1 \), \(G/O_{p'}(G) \) satisfies the hypothesis of the theorem and \(G/O_{p'}(G) \) is \(p \)-nilpotent which implies that \(G' \) is \(p \)-nilpotent. Thus assume that \(O_{p'}(G) = 1 \). Since \(M' \) char \(M \) and \(M < G \), we have \(M' \lhd G \). As \(M' \) is \(p \)-nilpotent and \(O_{p'}(G) = 1 \), we have \(M' \) is a \(p \)-group. Then \(P_1 \triangleleft M \) where \(P_1 \) is a Sylow \(p \)-subgroup of \(M \). By Schur-Zassenhaus Theorem ([5, Theorem 6.2.1, p. 221]), \(M = P_1 K \), where \(K \) is a \(p' \)-Hall subgroup of \(M \). Hence if \(C_G(P_1) \leq P_1 \), \(K \) is a \(p' \)-group of automorphisms of \(P_1 \), and since \(K \) leaves each subgroup of \(P_1 \) invariant because every subgroup of \(P \) of prime order is \(S \)-permutable, then by ([14], Lemma 2.20), \(K \) is cyclic. Let \(Q \) be a Sylow \(q \)-subgroup of \(K \), where \(q \) is a prime divisor of the order of \(K \). Hence if \(p < q \), then \(P_1 Q = P_1 \times Q \) and this means that \(Q \leq C_G(P_1) \), a contradiction. Thus \(p \) is the largest prime dividing \(|G|\) and since \(K \) is cyclic, it follows, by Burnside's \(p \)-Nilpotent Theorem ([10], Satz 2.8, p.420), that \(P < G \). But \(G/P \cong K \), therefore \(G/P \) is cyclic and so abelian, then \(G' \leq P \). This completes the proof of the theorem.

As a corollary of Theorem 2.1:

Corollary 4. If each subgroup of prime order of \(G \) is \(S \)-permutable in \(G \), then \(G \) is solvable, \(S \triangleleft G' \) and \(G'/S \) is nilpotent, where \(S \) is a Sylow 2-subgroup of \(G' \).

Proof. By Theorem 2.1, \(G' \) is \(p \)-nilpotent for each odd prime \(p \) dividing \(|G|\). So \(G'/S \) is nilpotent, \(S \) is a Sylow 2-subgroup of \(G' \) and hence \(G \) is solvable.

Theorem 3. Let \(p \) be an odd prime and let \(P \) be a Sylow \(p \)-subgroup of \(G \). Suppose that \(P \) has a subgroup \(D \) such that \(1 < |D| < |P| \) and all subgroups \(H \) of \(P \) with \(|H| = |D| \) are normal in \(G \). Then \(G' \) is \(p \)-nilpotent.

Proof. We prove the theorem by induction on \(|G|\). Clearly, \(P \cap G' \) is a Sylow \(p \)-subgroup of \(G' \). Set \(P_1 = P \cap G' \). We deal with the following two cases:

Case 1. \(|P_1| \leq |D|\).

Hence if \(|D| = p\), \(|P_1| = p\), and \(P_1 \triangleleft G \). Then \(G' \leq C_G(P_1) \) and so \(P_1 \leq Z(G') \).

Hence, by Schur-Zassenhaus Theorem, \(G' = P_1 \times K \), where \(K \) is a \(p' \)-Hall subgroup of \(G' \).

In particular, \(G' \) is \(p \)-nilpotent.

Thus we may assume that \(|D| = p^n \) (\(n \geq 2 \)). Let \(H \) be a subgroup of \(P \) with \(|H| = |D| \) such that \(P_1 \leq H < P \). By the hypothesis, \(H \triangleleft G \). Assume that \(\Phi(H) \neq 1 \) and consider the factor group \(G/\Phi(H) \). Obviously, \(G/\Phi(H) \) satisfies the theorem hypothesis and so \((G/\Phi(H))' = G'/\Phi(H) \). By induction on \(|G|\), \(G'/\Phi(H) \) is \(p \)-nilpotent.

But \(G'/\Phi(H) \) is \(p \)-nilpotent by the induction on \(|G|\). Hence, \(G'/\Phi(H) \leq G' \cap \Phi(H) \) and \(\Phi(H) \leq \Phi(G) \), then we have \(G' \cap \Phi(H) \leq G' \cap \Phi(G) \) and therefore...
$G'/G' \cap \Phi(G)$ is p-nilpotent. Now $G'\Phi(G)/\Phi(G) \cong G'/G' \cap \Phi(G)$ is p-nilpotent implies that $G'\Phi(G)$ is p-nilpotent and consequently G' is p-nilpotent.

Thus we may assume that $\Phi(H) = 1$ and so H is elementary abelian p-group of order p^n ($n \geq 2$). Let L be a subgroup of P contains such that H is maximal in L. Clearly, L is not cyclic because H is elementary abelian group of order p^n ($n \geq 2$). Then L contains a subgroup H_1 such that $|H_1| = |L|$ and $H_1 \neq H$. By the hypothesis, $H_1 < G$ and since $H < G$, we have $L = H_1 \triangleleft G$ and so $\Phi(L) \leq \Phi(G)$. Hence if $\Phi(L) \neq 1$, $\Phi(L) \leq H_1 < L \leq P$. Since L is not cyclic, we have $\Phi(L)$ is contained properly in H_1. Now it is easy to notice that the factor group $G/\Phi(L)$ satisfies the hypothesis of the theorem, so by induction on $|G|$, G' is p-nilpotent. Thus we may assume that $\Phi(L) = 1$ and so P_1 is elementary abelian p-group. Since $P_1 \leq H < L \leq P$ and H is maximal in L, it follows that $|L| = p^{n+1}$. Let $L_1 = \langle x_1 \rangle$ be a subgroup of P_1 of order p. Then $L = \langle x_1 \rangle \times \langle x_2 \rangle \times \cdots \times \langle x_{n+1} \rangle$.

By the hypothesis, each maximal subgroup of L is normal in G. Applying ([1], Lemma 2.9) implies that each subgroup of L of order p is normal in G; in particular each subgroup L_1 of P_1 of order p is normal in G. So, $G^p \leq C_G(L_1)$ and consequently $P_1 \leq Z(G')$.

By Schur-Zassenhaus Theorem, $G' = P_1 \times K_1$, where K_1 is a p'-Hall subgroup of G; in particular G' is p-nilpotent.

Case 2. $|P_1| > |D|$. Hence if $|D| = p$, then every subgroup of P_1 of order p is normal in G, so $\Omega_1(P_1) \leq Z(G')$ which implies that G' is p-nilpotent by ([10], Satz 5.5(a), p 435). Thus assume that $|D| = p^n$ ($n \geq 2$). Hence if $\Phi(D) \neq 1$, $G/\Phi(D)$ satisfies the hypothesis of the theorem and so $(G/\Phi(D))'' = G'/\Phi(D)/\Phi(D)$ is p-nilpotent by induction on $|G|$ which implies that $G'/G' \cap \Phi(G)$ is p-nilpotent; in particular G' is p-nilpotent. Thus we may assume that $\Phi(D) = 1$. Let $L \leq P_1$ such that D is maximal in L. Then $|L| = p^{n+1}$ ($n \geq 2$).

Clearly L is not cyclic. Then there exists a maximal subgroup $L_1 \neq D$ in L. By the hypothesis $L_1 \triangleleft G$ and $D \triangleleft G$ which implies that $L = L_1 D \triangleleft G$. Hence if $\Phi(L) \neq 1$, $\Phi(L) \leq D < L \leq P_1$ and since L is not cyclic, it follows that $\Phi(L) < D$. By induction on $|G|$, $G'\Phi(L)/\Phi(L) \cong G'/G' \cap \Phi(L)$ is p-nilpotent. In particular, $G'\Phi(G)/\Phi(G)$ is p-nilpotent and it follows easily that G' is p-nilpotent. So we may assume that $\Phi(D) = 1$ and so L is elementary abelian. Let $L_1 < P$ such that $|L_1| = p$. Then $L_1 < L \leq P_1$ and so $L_1 \triangleleft G$ by ([1], Lemma 2.9). In particular, $\Omega_1(P_1) \leq Z(G')$. Again by ([10], Satz 5.5(a), p 435), G' is p-nilpotent. This completes the proof of the theorem.

Now we can move forward to prove our main theorem:

Proof. We prove the theorem by induction on $|G|$. Hence if $O_{p'}(G) \neq 1$, $G/O_{p'}(G)$ satisfies the hypothesis of the theorem and so $(G/O_{p'}(G))''$ is p-nilpotent by induction on $|G|$; in particular, G' is p-nilpotent. Thus we may assume that $O_{p'}(G) = 1$. If each subgroup H of P with $|H| = |D|$ is normal in G, then G' is p-nilpotent by Theorem 2.2. So we may assume that there exists a subgroup H of P with $|H| = |D|$ and H is not normal in G. By hypothesis, H is S-permutable in G. Since $H \triangleleft G$ and $H \triangleleft G$ is S-permutable in G, we have by ([13], Lemma A) that $O_p(G) \leq N_G(H) < G$. Let M be a maximal subgroup of G contains $N_G(H)$ properly. Then $M \triangleleft G$ and $|G/M| = p$. Let $P = P \cap M$ be a Sylow p-subgroup of M. By the hypothesis, $|D| \leq |P_1|$. If $|D| = |P_1|$, then $|H| = |P_1|$. So
Proof of the theorem.

Let $P \leq N_G(H)$, and since $O^p(G) \leq N_G(H)$, we have $PO^p(G) = G \leq N_G(H) < M$ which is impossible. Thus we may assume that $|D| < |P_1|$. Now M' is p-nilpotent, by the inductive hypothesis, implies that M' is a p-group because $O_p'(G) = 1$. Then P_1 is characteristic in M and since $M < G$, we have $P_1 < G$. If $P < G$, then G/P is abelian and since all subgroups H of P with $|H| = |D|$ are S-permutable in G, we have that G is supersolvable by ([14], Theorem 1.3) and so G' is nilpotent; in particular G'' is p-nilpotent. Thus we may assume that $P \not\triangleleft G$ and $P_1 = F(G)$ the Fitting subgroup of G (recall that $O_p'(G) = 1$ and that $F(G) = \langle O_p(G) \rangle$ for all p divides $|G|$). Consider the subgroup $\Phi(P_1)$ and assume that $\Phi(P_1) \neq 1$. Hence if $|\Phi(P_1)| < |D|$, then $(G/\Phi(P_1))'$ is p-nilpotent by induction on $|G|$; in particular G' is p-nilpotent. So assume that $|\Phi(P_1)| \geq |D|$. If $|\Phi(P_1)| = |D|$, then $P/\Phi(P_1)$ is not cyclic. Let $L/\Phi(P_1)$ be a proper subgroup of $P/\Phi(P_1)$ such that $|L/\Phi(P_1)| = p$ (L is not cyclic; otherwise $\Phi(P_1)$ is cyclic and this implies that there exists $L_1 \leq \Phi(P_1)$ such that $L_1 < G$; in particular $G/C_G(L_1)$ is isomorphic to a subgroup of $Aut(L_1)$ and so $G' \leq C_G(L_1)$ and we conclude then that G' is p-nilpotent). As $|L/\Phi(P_1)| = p$, then there exists a maximal subgroup L_1 of L such that $|L_1| = |\Phi(P_1)| = |D|$ and $L_1 \neq \Phi(P_1)$. But $L_1\Phi(P_1)$ is S-permutable in G, then $L_1\Phi(P_1)/\Phi(P_1) = L/\Phi(P_1)$ is S-permutable in $G/\Phi(P_1)$. By Theorem 2.1, $(G/\Phi(P_1))' = G'\Phi(P_1)/\Phi(P_1)$ is p-nilpotent and so G' is p-nilpotent. Thus we may assume that $\Phi(P_1) = 1$ and P_1 is elementary abelian. Since all subgroups H of P_1 with $|H| = |D|$ are normal in M, we have by ([1], Lemma 2.9) that all subgroups of P_1 of order p are normal in M. So $P_1 \cap Z(P) \neq 1$. Let $L \leq P_1 \cap Z(P)$ such that $|L| = p$. Then $L < G$ and since $G/C_G(L)$ is isomorphic to a subgroup of $Aut(L)$, we have that $G' \leq C_G(L)$, in particular $G'L/L$ is p-nilpotent and so G' is p-nilpotent. This completes the proof of the theorem.

References

