#### EUROPEAN JOURNAL OF PURE AND APPLIED MATHEMATICS

Vol. 12, No. 2, 2019, 590-604 ISSN 1307-5543 – www.ejpam.com Published by New York Business Global



# On a nonsingular equation of length 9 over torsion free groups

M. Fazeel Anwar<sup>1,\*</sup>, Mairaj Bibi<sup>2</sup>, M. Saeed Akram<sup>3</sup>

<sup>1</sup> Department of Mathematics, Sukkur IBA University, Sukkur.

<sup>2</sup> Department of Mathematics, COMSATS Institute of Information Technology, Islamabad.

<sup>3</sup> Department of Mathematics, Khwaja Fareed University of Engineering & Information

Technology, Rahim Yar Khan.

**Abstract.** In [11], Levin conjectured that every equation is solvable over a torsion free group. In this paper we consider a nonsingular equation  $g_1tg_2tg_3tg_4tg_5tg_6t^{-1}g_7tg_8tg_9t^{-1} = 1$  of length 9 and show that it is solvable over torsion free groups modulo some exceptional cases.

2010 Mathematics Subject Classifications: 20F05, 57M05

**Key Words and Phrases**: Asphericity; relative group presentations; torsion-free groups; group equations.

#### 1. Introduction

Let G be a non-trivial group, t be an unknown and let F be a free group generated by t. An equation in t over G is an expression of the form

$$s(t) = g_1 t^{\epsilon_1} g_2 t^{\epsilon_2} \cdots g_n t^{\epsilon_n} = 1 \ (g_i \in G, \ \epsilon_i = \pm 1)$$

in which it is assumed that  $\epsilon_i + \epsilon_{i+1} = 0$  implies  $g_{i+1} \neq 1$  in G. We call the integer n the length of the equation. A solution of s(t) = 1 over G is an embedding  $\phi$  of G into a group H and an element  $h \in H$  such that  $\phi(g_1)h^{\epsilon_1}\phi(g_2)h^{\epsilon_2}\cdots\phi(g_n)h^{\epsilon_1} = 1$  in H. Equivalently s(t) = 1 is solvable over G if and only if the natural map from G to  $\langle G * F | s(t) \rangle$  is injective, where G \* F is the free product of G and F. If G is a torsion free group then by Levin's conjecture every equation is solvable [11]. The conjecture is known to be true for  $n \leq 7$  [5, 7, 9, 12]. The authors have done significant work in [1, 2, 4] to establish the conjecture for n = 8.

The equation of length 9 have been consider in [3]. It has been proved that there are only three equations of length 9 which are still open. In this paper we consider a nonsingular equation of length 9 (one of three) and show that the equation has a solution

Email addresses: fazeel.anwar@iba-suk.edu.pk (M. Fazeel Anwar)

http://www.ejpam.com

© 2019 EJPAM All rights reserved.

<sup>\*</sup>Corresponding author.

DOI: https://doi.org/10.29020/nybg.ejpam.v12i2.3405

over G modulo some exceptional cases. This paper is the first step in proving Levin's conjecture for equations of length 9.

We first give some basic definitions. A relative group presentation is a presentation of the form  $\mathcal{P} = \langle G, x | r \rangle$  where r is a set of cyclically reduced words in  $G * \langle x \rangle$ . If the relative presentation is orientable and aspherical then the natural map from G to  $\langle G, x | r \rangle$  is injective. In our case x and r consist of the single element t and s(t) respectively, therefore  $\mathcal{P}$  is orientable and so asphericity implies s(t) = 1 is solvable. In this paper we use the weight test and the curvature distribution method to show that  $\mathcal{P}$  is aspherical [6].

The star graph  $\Gamma$  of  $\mathcal{P}$  has vertex set  $x \cup x^{-1}$  and edge set  $r^*$ , where  $r^*$  is the set of all cyclic permutations of the elements of  $r \cup r^{-1}$  which begin with an element of  $x \cup x^{-1}$ . For  $R \in r^*$  write R = Sg where  $g \in G$  and S begins and ends with x symbols. Then  $\mathfrak{i}(R)$  is the inverse of the last symbol of S,  $\tau(R)$  the first symbol of S and  $\lambda(R) = g$ . A weight function  $\theta$  on  $\Gamma$  is a real valued function on the set of edges of  $\Gamma$  which satisfies  $\theta(Sh) = \theta(S^{-1}h^{-1})$ . A weight function  $\theta$  is called aspherical if the following three conditions are satisfied

(W1) Let  $R \in r^*$  with  $R = x_1^{\epsilon_1} g_1 \cdots x_n^{\epsilon_n} g_n$ . Then

$$\sum_{i=1}^{n} \left( 1 - \theta(x_i^{\epsilon_i} g_i \cdots x_n^{\epsilon_n} g_n x_1^{\epsilon_1} g_1 \cdots x_{i-1}^{\epsilon_{i-1}} g_{i-1}) \right) \ge 2.$$

(W2) Each admissible cycle in  $\Gamma$  has weight at least 2 (where admissible means having a label trivial in G).

(W3) Each edge of  $\Gamma$  has a non-negative weight.

If  $\Gamma$  admits an aspherical weight function then  $\mathcal{P}$  is aspherical [6]. The following lemma [10] tells us that we can apply asphericity test in k-steps.

**Lemma 1.** Let the relative presentation  $P = \langle H, x : r \rangle$  define a group G and let  $Q = \langle G, t : s \rangle$  be another relative presentation. If Q and P are both aspherical, then the relative presentation  $R = \langle H, x \cup t : r \cup \tilde{s} \rangle$  is aspherical, where  $\tilde{s}$  is an element of H \* F(x) \* F(t) obtained from s by lifting.

For a detailed account on the curvature distribution method see [3]. It is clear from our definition of a group equation that if  $g_i$  is a coefficient between a negative and a positive power of t than  $g_i$  is not trivial in G. This fact will be used in all subsequent proofs without reference.

## 2. Main Results

We now turn our attention to length 9 equations. A list of these equations is given in [3]. Consider the nonsingular equation of length 9 given by  $atbtctdtetft^{-1}gthtit^{-1} = 1$ . We write this as  $\mathcal{P} = \langle G, t | s(t) \rangle$ , where  $s(t) = atbtctdtetft^{-1}gthtit^{-1}$ .

Here  $b, c, d, e, h \in G$  and  $a, f, g, i \in G \setminus \{1\}$ . The star graph  $\Gamma$  for  $\mathcal{P}$  is given in Figure 2. We apply the transformation x = tb to get that b = 1 in G. By using the methods



Figure 1: Star graph  $\Gamma$ 

given in [5, 8] we conclude that possible vertices of degree 2 (in the diagram associated to  $\mathcal{P}$ ) are (upto cyclic permutation and inversion)

$$S = \{ag, ag^{-1}, fi, fi^{-1}, bc^{-1}, bd^{-1}be^{-1}, bh^{-1}, cd^{-1}, ce^{-1}, ch^{-1}, de^{-1}, dh^{-1}, eh^{-1}\}.$$

Since G is torsion free therefore it is clear that ag and  $ag^{-1}$  can not both hold at the same time. Similarly fi and  $fi^{-1}$  can not both hold at the same time. The following lemma gives some general results that will greatly simplify the proofs. This is an application of the results given in [1, 2].



Figure 2: Star graph  $\Gamma$ 

**Lemma 2.** The presentation  $\mathcal{P} = \langle G, t | s(t) \rangle$ , where  $s(t) = atbtctdtetft^{-1}gthtit^{-1}$  is aspherical if any one of the following holds:

- (*i*)  $a = g^{-1}$
- (ii) a = g, f = i

(iii) 
$$a = g, b = h$$

*Proof.* A new generator x will be introduced to obtain the presentation  $\mathcal{Q} = \langle G, t, x | r_1, r_2 \rangle$ .

- (i) Let  $a = g^{-1}$ . The relator s(t) is given by  $s(t) = atbtctdtetft^{-1}a^{-1}thtit^{-1}$ . We substitute  $x = t^{-1}a^{-1}t$  to get  $r_1 = x^{-1}btctdtetfxhti$  and  $r_2 = t^{-1}a^{-1}tx^{-1}$ . The star graph  $\Gamma$  for  $\mathcal{Q}$  is given by Figure 1 (a) in which (using  $r_1$ )  $\alpha_1 = e, \alpha_2 = d, \alpha_3 = c, \alpha_4 = b, \alpha_5 = f, \alpha_6 = i, \alpha_7 = h$ ; and (using  $r_2$ )  $\beta_1 = a^{-1}, \beta_2 = 1, \beta_3 = 1$ . We assign a weight function  $\theta$  such that  $\theta(\alpha_4) = \theta(\alpha_6) = \theta(\beta_1) = \theta(\beta_2) = 0$ . All other edges are assigned a weight 1. Then  $\Sigma(1 \theta(\alpha_i)) = \Sigma(1 \theta(\beta_j)) = 2$  shows that (W1) is satisfied. Also each cycle in  $\Gamma$  of weight less than 2 has label  $a^m$  or  $i^m$ ,  $(m \neq 0)$  and  $(a, i \neq 1)$  and since G is torsion free (W2) is satisfied. Moreover (W3) clearly holds.
- (ii) We have

$$s(t) = atbtctdtetit^{-1}athtit^{-1}, r_1 = xbtctdtexh, r_2 = tit^{-1}atx^{-1}$$

The star graph  $\Gamma$  is given by Figure 1 (b) in which  $\alpha_1 = c$ ,  $\alpha_2 = d$ ,  $\alpha_3 = e$ ,  $\alpha_4 = h$ ,  $\alpha_5 = b$ ; and  $\beta_1 = a$ ,  $\beta_2 = i$ ,  $\beta_3 = 1$ ,  $\beta_4 = 1$ . We assign a weight function  $\theta$  such that  $\theta(\alpha_3) = \theta(\alpha_5) = \theta(\beta_1) = \theta(\beta_2) = 0$ . All other edges are assigned a weight 1. Then  $\Sigma(1 - \theta(\alpha_i)) = \Sigma(1 - \theta(\beta_j)) = 2$  shows that (W1) is satisfied. Also each cycle in  $\Gamma$  of weight less than 2 has label  $a^m$  or  $i^m$ ,  $(m \neq 0)$  and  $(a, i \neq 1)$  and since G is torsion free (W2) is satisfied. Moreover (W3) clearly holds.

(iii) We have

$$s(t) = atbtctdtetft^{-1}atbtit^{-1}, r_1 = xctdtetfxi, r_2 = t^{-1}atbtx^{-1}$$

The star graph  $\Gamma$  is given by Figure 1 (c) in which  $\alpha_1 = e, \alpha_2 = d, \alpha_3 = f, \alpha_4 = i, \alpha_5 = c$ ; and  $\beta_1 = a, \beta_2 = b, \beta_3 = 1, \beta_4 = 1$ . We assign a weight function  $\theta$  such that  $\theta(\alpha_3) = \theta(\alpha_5) = \theta(\beta_1) = \theta(\beta_3)$ . All other edges are assigned a weight 1. We have the desired result.

**Corollary 1.** The presentation  $\mathcal{P} = \langle G, t | s(t) \rangle$ , is aspherical if any one of the following holds:

$$\begin{array}{l} (i) \ a = g^{-1} \ and \ R \in \{fi, \ fi^{-1}, \ bc^{-1}, \ bd^{-1} \ be^{-1}, \ bh^{-1}, \ cd^{-1}, \ ce^{-1}, \ ch^{-1}, \ de^{-1}, \ dh^{-1}, \ eh^{-1}\} \\ (ii) \ a = g, \ f = i \ and \ R \in \{bc^{-1}, \ bd^{-1} \ be^{-1}, \ bh^{-1}, \ cd^{-1}, \ ce^{-1}, \ ch^{-1}, \ de^{-1}, \ dh^{-1}, \ eh^{-1}\} \\ (iii) \ a = g, \ b = h \ and \ R \in \{cd^{-1}, \ ce^{-1}, \ ch^{-1}, \ de^{-1}, \ dh^{-1}, \ eh^{-1}\} \end{array}$$

*Proof.* The result is clear from lemma 3 by taking the weight function as given in lemma 3, part 1, 2 and 3 respectively.

**Lemma 3.** The presentation  $\mathcal{P} = \langle G, t | s(t) \rangle$ , where  $s(t) = atbtctdtetft^{-1}gthtit^{-1}$  is aspherical if any one of the following holds:

- (i) a = g, b = c(ii) a = g, b = d(iii) a = g, b = e(iv) a = g, c = d(v) a = g, c = e
- (vi) a = g, c = h
- (vii) a = g, d = e
- (viii) a = g, d = h
- (ix) a = g, e = h
- $(x) \ b = c, \ d = h$
- (xi) b = c, e = h
- (xii) b = d, c = e
- (xiii) b = d, c = h
- $(xiv) \ b = d, \ e = h$
- $(xv) \ b = e, \ c = h$
- (xvi) b = h, c = d
- (xvii) b = c, d = e

Proof.

(i) In this case  $\Delta$  is shown in Figure 3. Since  $d_{\Delta}(v_a) = d_{\Delta}(v_b) = 2$  or  $d_{\Delta}(v_b) = d_{\Delta}(v_c) = 2$  can not occur therefore it can be assumed that  $d_{\Delta}(v_a) = d_{\Delta}(v_c) = d_{\Delta}(v_g) = 2$  as shown in Figure 3. In this case  $c(\Delta) \leq 0$ .



Figure 3: Region  $\Delta$ 

- (ii) In this case  $\Delta$  is shown in Figure 4. Since degree of vertices  $v_a$  and  $v_b$  can not be 2 together so there are the following two cases to consider:
  - (a)  $d_{\Delta}(v_a) = d_{\Delta}(v_d) = d_{\Delta}(v_g) = 2;$ (b)  $d_{\Delta}(v_b) = d_{\Delta}(v_d) = d_{\Delta}(v_g) = 2.$

as shown in Figure 4. In both of these cases  $c(\Delta) \leq 0$ .



(iii) In this case  $\Delta$  is shown in Figure 5. Since degree of vertices  $v_a$  and  $v_b$  can not be 2 together so there are the following two cases to consider:

- M. Fazeel Anwar, Mairaj Bibi, M. Saeed Akram / Eur. J. Pure Appl. Math, 12 (2) (2019), 590-604 596
  - (a)  $d_{\Delta}(v_a) = d_{\Delta}(v_e) = d_{\Delta}(v_g) = 2;$ (b)  $d_{\Delta}(v_b) = d_{\Delta}(v_e) = d_{\Delta}(v_g) = 2.$

as shown in Figure 5. In both of these cases  $c(\Delta) \leq 0$ .



Figure 5: Region  $\Delta$ 

- (iv) In this case  $\Delta$  is shown in Figure 6. Since degree of vertices  $v_a$  and  $v_b$  can not be 2 together so there are the following two cases to consider:
  - (a)  $d_{\Delta}(v_a) = d_{\Delta}(v_c) = d_{\Delta}(v_g) = 2;$
  - (b)  $d_{\Delta}(v_a) = d_{\Delta}(v_d) = d_{\Delta}(v_g) = 2.$

as shown in Figure 6. In both of these cases  $c(\Delta) \leq 0$ .



Figure 6: Region  $\Delta$ 

(v) In this case  $\Delta$  is shown in Figure 7. Here  $d_{\Delta}(v_a) = d_{\Delta}(v_c) = d_{\Delta}(v_e) = d_{\Delta}(v_g) = 2$ which implies  $l_{\Delta}(v_a) = ag^{-1}$ ,  $l_{\Delta}(v_c) = ce^{-1}$ ,  $l_{\Delta}(v_e) = ec^{-1}$  ans  $l_{\Delta}(v_g) = ga^{-1}$  as shown in Figure 7. In order to have positive curvature the remaining vertices must be of degree 3. Observe that  $l_{\Delta}(v_a) = ag^{-1}$  and  $l_{\Delta}(v_c) = ce^{-1}$  implies that  $l_{\Delta}(v_b) =$  $h^{-1}bd^{-1}w$  where  $w \in \{b, c, d, e, h\}$  which implies  $d_{\Delta}(v_b) > 3$ . Notice that  $l_{\Delta}(v_e) =$  $ec^{-1}$  and  $l_{\Delta}(v_g) = ga^{-1}$  implies that  $l_{\Delta}(v_f) = d^{-1}fi^{-1}w$  where  $w \in \{b, c, d, e, h\}$ which implies  $d_{\Delta}(v_f) > 3$ . Since  $d_{\Delta}(v_b) > 3$  and  $d_{\Delta}(v_f) > 3$  so  $c(\Delta) \leq 0$ .



Figure 7: Region  $\Delta$ 

(vi) In this case  $\Delta$  is shown in Figure 8. Since degree of vertices  $v_g$  and  $v_h$  can not be 2 together so there are the following two cases to consider:

- M. Fazeel Anwar, Mairaj Bibi, M. Saeed Akram / Eur. J. Pure Appl. Math, 12 (2) (2019), 590-604 598
  - (a)  $d_{\Delta}(v_a) = d_{\Delta}(v_c) = d_{\Delta}(v_g) = 2;$ (b)  $d_{\Delta}(v_a) = d_{\Delta}(v_c) = d_{\Delta}(v_h) = 2.$

as shown in Figure 8. In both of these cases  $c(\Delta) \leq 0$ .



Figure 8: Region  $\Delta$ 

- (vii) In this case  $\Delta$  is shown in Figure 9. Since degree of vertices  $v_d$  and  $v_e$  can not be 2 together so there are the following two cases to consider:
  - (a)  $d_{\Delta}(v_a) = d_{\Delta}(v_d) = d_{\Delta}(v_g) = 2;$
  - (b)  $d_{\Delta}(v_a) = d_{\Delta}(v_e) = d_{\Delta}(v_g) = 2.$

as shown in Figure 9. In both of these cases  $c(\Delta) \leq 0$ .



- (viii) In this case  $\Delta$  is shown in Figure 10. Since degree of vertices  $v_g$  and  $v_h$  can not be 2 together so there are the following two cases to consider:
  - (a)  $d_{\Delta}(v_a) = d_{\Delta}(v_d) = d_{\Delta}(v_g) = 2;$

(b) 
$$d_{\Delta}(v_a) = d_{\Delta}(v_d) = d_{\Delta}(v_h) = 2.$$

as shown in Figure 10. In both of these cases  $c(\Delta) \leq 0$ .



Figure 10: Region  $\Delta$ 

- (ix) In this case  $\Delta$  is shown in Figure 11. Since degree of vertices  $v_g$  and  $v_h$  can not be 2 together so there are the following two cases to consider:
  - (a)  $d_{\Delta}(v_a) = d_{\Delta}(v_e) = d_{\Delta}(v_g) = 2;$ (b)  $d_{\Delta}(v_a) = d_{\Delta}(v_e) = d_{\Delta}(v_h) = 2.$

as shown in Figure 11. In both of these cases  $\varphi(\Delta) \leq 0$ .



Figure 11: Region  $\Delta$ 

(x) In this case  $\Delta$  is shown in Figure 12. Since  $d_{\Delta}(v_b) = d_{\Delta}(v_c) = 2$  or  $d_{\Delta}(v_c) = d_{\Delta}(v_d) = 2$  can not occur therefore it can be assumed that  $d_{\Delta}(v_b) = d_{\Delta}(v_d) = d_{\Delta}(v_d) = d_{\Delta}(v_b) = 2$  as shown in Figure 12. In this case  $c(\Delta) \leq 0$ .



- (xi) In this case  $\Delta$  is shown in Figure 13. Since degree of vertices  $v_b$  and  $v_c$  can not be 2 together so there are the following two cases to consider:
  - (a)  $d_{\Delta}(v_b) = d_{\Delta}(v_e) = d_{\Delta}(v_h) = 2;$
  - (b)  $d_{\Delta}(v_c) = d_{\Delta}(v_e) = d_{\Delta}(v_h) = 2.$

as shown in Figure 13. In both of these cases  $c(\Delta) \leq 0$ .



Figure 13: Region  $\Delta$ 

(xii) In this case  $\Delta$  is shown in Figure 14. Since  $d_{\Delta}(v_b) = d_{\Delta}(v_c) = 2$  or  $d_{\Delta}(v_c) = d_{\Delta}(v_c) = 2$  or  $d_{\Delta}(v_d) = d_{\Delta}(v_e) = 2$  can not occur therefore  $c(\Delta) \leq 0$ .



Figure 14: Region  $\Delta$ 

(xiii) In this case  $\Delta$  is shown in Figure 15. Since  $d_{\Delta}(v_b) = d_{\Delta}(v_c) = 2$  or  $d_{\Delta}(v_c) = d_{\Delta}(v_d) = 2$  can not occur therefore it can be assumed that  $d_{\Delta}(v_b) = d_{\Delta}(v_d) = d_{\Delta}(v_d) = d_{\Delta}(v_b) = 2$  as shown in Figure 15. In this case  $c(\Delta) \leq 0$ .



- (xiv) In this case  $\Delta$  is shown in Figure 16. Since degree of vertices  $v_d$  and  $v_e$  can not be 2 together so there are the following two cases to consider:
  - (a)  $d_{\Delta}(v_b) = d_{\Delta}(v_d) = d_{\Delta}(v_h) = 2;$
  - (b)  $d_{\Delta}(v_b) = d_{\Delta}(v_e) = d_{\Delta}(v_h) = 2.$

as shown in Figure 16. In both of these cases  $c(\Delta) \leq 0$ .



- (xv) In this case  $\Delta$  is shown in Figure 17. Since degree of vertices  $v_b$  and  $v_c$  can not be 2 together so there are the following two cases to consider:
  - (a)  $d_{\Delta}(v_b) = d_{\Delta}(v_e) = d_{\Delta}(v_h) = 2;$
  - (b)  $d_{\Delta}(v_c) = d_{\Delta}(v_e) = d_{\Delta}(v_h) = 2.$

as shown in Figure 17. In both of these cases  $c(\Delta) \leq 0$ .



Figure 17: Region  $\Delta$ 

(xvi) In this case  $\Delta$  is shown in Figure 18. Since  $d_{\Delta}(v_b) = d_{\Delta}(v_c) = 2$  or  $d_{\Delta}(v_c) = d_{\Delta}(v_d) = 2$  can not occur therefore it can be assumed that  $d_{\Delta}(v_b) = d_{\Delta}(v_d) = d_{\Delta}(v_d) = d_{\Delta}(v_b) = 2$  as shown in Figure 18. In this case  $c(\Delta) \leq 0$ .



(xvii) In this case  $\Delta$  is shown in Figure 19. Since  $d_{\Delta}(v_b) = d_{\Delta}(v_c) = 2$  or  $d_{\Delta}(v_c) = d_{\Delta}(v_c) = 2$  or  $d_{\Delta}(v_d) = d_{\Delta}(v_e) = 2$  can not occur therefore  $c(\Delta) \leq 0$ .



Figure 19: Region  $\Delta$ 

**Remark 1.** It is worth mentioning here that a few of the cases still remain open for this equation. These cases are extremely technical in detail and will be considered in a different article.

### References

- [1] M F Anwar, M Bibi, and M S Akram. On solvability of certain equations of arbitrary length over torsion-free groups. *Preprint*, 2019.
- [2] M F Anwar, M Bibi, and S Iqbal. On certain equations of arbitrary length over torsion-free groups. *Preprint*, 2019.
- [3] M Bibi. Equations of length seven over torsion free groups. PhD thesis, University of Notingham, 2013.

- [4] M Bibi, M F Anwar, S Iqbal, and M S Akram. Solution of a non-singular equation of length 8 over torsion free groups. *Preprint*, 2019.
- [5] M Bibi and M Edjvet. Solving equations of length seven over torsion-free groups. Journal of Group Theory, 21(1):147–164, 2018.
- [6] W A Bogley and S J Pride. Aspherical relative presentations. Proceedings of the Edinburgh Mathematical Society, 35, 1992.
- [7] S D Brodski and J Howie. One-relator products of torsion-free groups. Glasgow Mathematical Journal, 35(1):99–104, 1993.
- [8] J Howie. The solution of length three equations over groups. Proceedings of the Edinburgh Mathematical Society, 26(2):89–96, 1983.
- [9] S V Ivanov and A A Klyachko. Solving equations of length at most six over torsion-free groups. *Journal od Group Theory*, 3(3):329–337, 2000.
- [10] S K Kim. On the asphericity of length-6 relative presentations with torsion-free coefficients. Proceedings of the Edinburgh Mathematical Society, 51(1):201–214, 2008.
- [11] F Levin. Solutions of equations over groups. Bulletin of American Mathematical Society, 68, 1962.
- [12] M I Prishchepov. On small length equations over torsion-free groups. International Journal of Algebra and Computation, 4(4):575–589, 1994.