On Topologies Induced by Graphs Under Some Unary and Binary Operations

Caen Grace S. Nianga¹*, Sergio R. Canoy Jr.¹

¹ Department of Mathematics and Statistics, College of Science and Mathematics, Center of Graph Theory, Algebra, and Analysis-PRISM, Mindanao State University-Iligan Institute of Technology, 9200 Iligan City, Philippines

Abstract. Let \(G = (V(G), E(G)) \) be any simple undirected graph. The open hop neighborhood of \(v \in V(G) \) is the set \(N^2_G(v) = \{ u \in V(G) : d_G(u, v) = 2 \} \). Then \(G \) induces a topology \(\tau_G \) on \(V(G) \) with base consisting of sets of the form \(F^2_G[A] = V(G) \setminus N^2_G[A] \), where \(N^2_G[A] = A \cup \{ v \in V(G) : N^2_G(v) \cap A \neq \emptyset \} \) and \(A \) ranges over all subsets of \(V(G) \). In this paper, we describe the topologies induced by the complement of a graph, the join, the corona, the composition and the Cartesian product of graphs.

2010 Mathematics Subject Classifications: 05C76

Key Words and Phrases: Join, Corona, Lexicographic product, Cartesian product, Open hop neighborhood

1. Introduction

Let \(G = (V(G), V(H)) \) be any simple undirected graph. The distance \(d(u, v) \) between two vertices \(u \) and \(v \) in \(G \) is the length of a shortest path joining \(u \) and \(v \). Let \(v \in V(G) \). The neighborhood of \(v \) is the set \(N(v) \) consisting of all \(u \in V(G) \) which are adjacent with \(v \) and the closed neighborhood is \(N[v] = N(v) \cup \{ v \} \). For any \(A \subseteq V(G) \), \(N(A) = \{ x : xa \in E(G) \text{ for some } a \in A \} \) is called the neighborhood of \(A \) and \(N[A] = N(A) \cup A \) is called the closed neighborhood of \(A \). Moreover, for each \(v \in V(G) \), the open hop neighborhood of \(v \) is the set \(N^2_G(v) = \{ u \in V(G) : d_G(u, v) = 2 \} \) and the closed hop neighborhood of \(v \) is the set \(N^2_G[v] = \{ v \} \cup N^2_G(v) \). Also, for any \(A \subseteq V(G) \), \(N^2_G[A] = \{ v \in V(G) : N^2_G(v) \cap A \neq \emptyset \} \) is called the open hop neighborhood of \(A \) and the set \(N^2_G[A] = A \cup N^2_G(A) \) is the called closed hop neighborhood of \(A \). Denote by \(F^2_G[A] \) the complement of \(N^2_G[A] \), i.e., \(F^2_G[A] = V(G) \setminus N^2_G[A] \).

In 1983, Diesto and Gervacio in [5] proved that given a simple graph \(G = (V(G), E(G)) \), \(G \) induces a topology on \(V(G) \), denoted by \(\tau_G \), with base consisting of sets of the form

*Corresponding author.

DOI: https://doi.org/10.29020/nybg.ejpam.v12i2.3421

Email addresses: caengrace1997@gmail.com (C. Nianga), sergio.canoy@g.msuiit.edu.ph (S. Canoy Jr.)
$F_G(A) = V(G) \setminus N_G(A)$, where $N_G(A) = A \cup \{x : xa \in E \text{ for some } a \in A\}$ and A ranges over all subsets of $V(G)$. Their construction was further investigated in [2], [3] and [6]. In particular, Canoy and Lemence in [2] described the topologies induced by the complement of a graph, the join of graphs, composition and Cartesian product of graphs.

In [1], Canoy and Gimeno presented another way of constructing a topology τ_G from a connected graph G by considering the family $\Omega(G) = \{F_G^2[A] : A \subseteq V(G)\}$ where $F_G^2[A] = \{x \in V(G) : x \notin A \text{ and } d_G(x, a) \neq 2 \text{ for all } a \in A\}$. They showed that this family is a base for some topology τ_G on $V(G)$. This construction is also studied by Nianga et al, in [4] for any graph G. It is also shown that the family $B_G = \{F_G^2[A] : A \subseteq V(G)\}$ and $S_G = \{F_G^2[v] : v \in V(G)\}$ are, respectively, base and subbase for the topology τ_G on $V(G)$.

Concepts on Graph Theory and Topology are taken from [7] and [8], respectively.

2. Results

Definition 1. The complement of graph G, denoted by \overline{G} is the graph with $V(G) = V(\overline{G})$ and $uv \in E(\overline{G})$ if and only if $uv \notin E(G)$, where $u, v \in V(G) = V(\overline{G})$.

Theorem 1. Let G be any graph and \overline{G} its complement. Then for each $v \in V(G)$,

$$F_G^2[v] = \begin{cases} F_G[v] \cup \left(\bigcap_{u \in F_G[v]} N_G(u) \right), & \text{if } F_G[v] \neq \emptyset \\ N_G(v), & \text{if } F_G[v] = \emptyset. \end{cases} \tag{1}$$

Proof. Let G be any graph and \overline{G} its complement. Let $v \in V(G)$ and set $A = \bigcap_{u \in F_G[v]} N_G(u)$. Suppose $F_G[v] = \emptyset$. Then $N_G(v) = V(G) \setminus \{v\}$. Hence, v is an isolated vertex in \overline{G}. Thus, $F_G^2[v] = N_G(v)$. Suppose $F_G[v] \neq \emptyset$. Let $u \in F_G[v]$. Then $u \neq v$ and $u \notin N_G(v)$. Hence, $u \neq v$ and $u \in N_{\overline{G}}(v)$. Thus, $u \in F_G^2[v]$. Next, let $w \in A$. Then $w \in N_G(u)$ for all $u \in F_G[v]$. Since $u \notin N_G(v)$, it follows that $w \neq v$. Also, $w \notin N_{\overline{G}}(u)$ for all $u \in N_{\overline{G}}(v)$. It implies that $d_{\overline{G}}(w, v) \neq 2$. Hence, $w \in F_G^2[v]$. Consequently, $F_G[v] \cup \left(\bigcap_{u \in F_G[v]} N_G(u) \right) \subseteq F_G^2[v]$. Next, let $x \in F_G^2[v]$. Then $x \neq v$ and $x \notin N_G(v)$. If $x \in F_G[v]$, then we are done. Suppose $x \notin F_G[v]$. Then $x \notin N_G(v)$. Suppose further that there exists $u \in F_G[v]$ such that $x \notin N_G(u)$. Thus, $u \in N_G(v)$ and $x \in N_{\overline{G}}(u)$. Also, since $x \in N_G(v), x \neq N_{\overline{G}}(v)$. Thus, $d_{\overline{G}}(x, v) = 2$, that is, $x \in N_{\overline{G}}^2(v)$, a contradiction. Therefore, $x \in N_G(u)$ for all $u \in F_G[v]$. This shows that $x \in A$. Accordingly, $F_G^2[v] \subseteq F_G[v] \cup \left(\bigcap_{u \in F_G[v]} N_G(u) \right)$. This establishes the desired equality. \hfill \Box

Theorem 2. Let G be any graph and \overline{G} its complement. If v is an isolated vertex of G (or of \overline{G}), then $\{v\} \in \tau_G \cap \tau_{\overline{G}}$.

Proof. Suppose v is an isolated vertex of G (or of \overline{G}). Then $\{v\} = F_G^2[V(G) \setminus \{v\}] = F_{\overline{G}}^2[V(\overline{G}) \setminus \{v\}]$ and so, $\{v\} \in B_G$ and $\{v\} \in B_{\overline{G}}$. Thus, $\{v\} \in \tau_G$ and $\{v\} \in \tau_{\overline{G}}$. Therefore, $\{v\} \in \tau_G \cap \tau_{\overline{G}}$. \hfill \Box
Remark 1. The converse of theorem 17 is not true.

Consider $G = P_3 = [a, b, c, d, e]$. Then $\{e\} = F^2_G[a, b]$ and $\{e\} = F^2_G[a, c]$. However, e is not an isolated vertex of G nor of \overline{G}.

Definition 2. The join $G_1 + G_2$ of graphs G_1 and G_2 is the graph G with $V(G) = V(G_1) \cup V(G_2)$ and

$$E(G) = E(G_1) \cup E(G_2) \cup \{uv : u \in V(G_1) \text{ and } v \in V(G_2)\}.$$

Theorem 3. Let $G = (V(G), E(G))$ and $H = (V(H), E(H))$ be graphs and let $\emptyset \neq A \subseteq V(G)$ and $\emptyset \neq B \subseteq V(H)$. Then

(i) $F^2_{G + H}[A] = V(H) \cup \cup_{a \in A}N_G(a)$;

(ii) $F^2_{G + H}[B] = V(G) \cup \cup_{b \in B}N_H(b)$ and

(iii) $F^2_G[\emptyset] = V(G) \cup V(H)$.

Proof. Let $G = (V(G), E(G))$ and $H = (V(H), E(H))$ be graphs. Let $\emptyset \neq A \subseteq V(G)$ and $\emptyset \neq B \subseteq V(H)$.

(i) Note that

$$N^2_{G + H}[A] = A \cup \{v \in V(G + H) : d_{G + H}(v, a) = 2 \text{ for some } a \in A\}.$$

Since $V(H) \subseteq N_{G + H}(A)$,

$$N^2_{G + H}[A] = A \cup \{v \in V(G) : d_{G + H}(v, a) = 2 \text{ for some } a \in A\} \subseteq A \cup \{v \in V(G) : d_G(v, a) \neq 1 \text{ for some } a \in A\}.$$

Hence,

$$F^2_{G + H}[A] = V(H) \cup \cup_{a \in A}N_G(a).$$

(ii) Similarly,

$$F^2_{G + H}[B] = V(G) \cup \cup_{b \in B}N_H(b).$$

(iii) Clearly, $F^2_{G + H}[\emptyset] = V(G) \cup V(H)$.

Remark 2. Let G be any graph and let $A_1, A_2 \subseteq V(G)$. Then

$$N^2_G[A_1 \cup A_2] = N^2_G[A_1] \cup N^2_G[A_2].$$

Theorem 4. Let $G = (V(G), E(G))$ and $H = (V(H), E(H))$ be graphs. Then for any $A \subseteq V(G + H)$ such that $A \cap V(G) = A_G \neq \emptyset$ and $A \cap V(H) = A_H \neq \emptyset$,

$$F^2_{G + H}[A] = F^2_{G + H}[A_G] \cap F^2_{G + H}[A_H].$$
Case 2. Suppose \(A \subseteq V(G + H) \). Suppose \(A \cap V(G) = A_G \neq \emptyset \) and \(A \cap V(H) = A_H \neq \emptyset \). Then \(x \in F^2_{G+H}[A] \) if and only if \(x \notin N^2_{G+H}(A) \). By Remark 2, \(x \in F^2_{G+H}[A] \) if and only if \(x \in F^2_{G+H}[A] \cap F^2_{G+H}[A] \).

The next theorem follows from Theorem 3 (i) and (ii).

Corollary 1. Let \(G = (V(G), E(G)) \) and \(H = (V(H), E(H)) \) be graphs. Then for any \(v \in V(G) \cup V(H) \),

\[
F^2_{G+H}[v] = \begin{cases} V(H) \cup N_G(v), & \text{if } v \in V(G) \\ V(G) \cup N_G(v), & \text{if } v \in V(H). \end{cases}
\]

Definition 3. The corona \(G \circ H \) of graphs \(G \) and \(H \) is the graph obtained by taking one copy of \(G \) and \(|V(G)| \) copies \(H \) and then forming the sum \((v) + H^v = v + H^v \) for each \(v \in V(G) \), where \(H^v \) is a copy of \(H \) corresponding to the vertex \(v \).

Theorem 5. Let \(G = (V(G), E(G)) \) and \(H = (V(H), E(H)) \) be graphs. Then for any \(a \in V(G \circ H) \),

\[
F^2_{G \circ H}[a] = \begin{cases} \mathcal{F}^2_G[a] \cup \bigcup_{v \in V(G) \setminus N_G(a)} V(H^v), & \text{if } a \in V(G) \\ N_{H^v}(a) \cup [V(G) \setminus N_G(w)] \cup \bigcup_{v \in V(G) \setminus \{w\}} V(H^v), & \text{if } a \in V(H^w). \end{cases}
\]

Proof. Let \(x \in F^2_{G \circ H}[a] \). Then \(x \neq a \) and \(x \notin N^2_{G \circ H}(a) \). Consider the following cases:

Case 1. Suppose \(a \in V(G) \). If \(x \in V(G) \), then \(x \notin N^2_G(a) \) since \(x \notin N^2_{G \circ H}(a) \). Hence, \(x \notin F^2_G[a] \). Suppose \(x \notin V(G) \). Let \(u \in V(G) \) such that \(x \in V(H^u) \). If \(u = a \), then \(x \in V(H^u) \) and \(u \in V(G) \setminus N_G(a) \). Suppose \(u \neq a \). Since \(x \notin N^2_G(a) \) and \(d_{G \circ H}(a, y) = 2 \) for all \(y \in V(H^2) \) with \(z \in N_G(a) \), it follows that \(u \in V(G) \setminus N_G(a) \). Thus,

\[
F^2_{G \circ H}[a] \subseteq \mathcal{F}^2_G[a] \cup \bigcup_{v \in V(G) \setminus N_G(a)} V(H^v) = X.
\]

Now, let \(w \in X \). If \(w \in \mathcal{F}^2_G[a] \), then \(w \notin N^2_G[a] \). Hence, \(w \notin N^2_{G \circ H}[a] \). This implies that \(w \notin F^2_G[a] \). Suppose \(w \in \bigcup_{v \in V(G) \setminus N_G(a)} V(H^v) \). Then there exists \(v \in V(G) \setminus N_G(a) \) such that \(w \in V(H^v) \). It follows that \(w \neq a \) and \(d_{G \circ H}(w, a) \neq 2 \). Thus, \(w \in F^2_{G \circ H}[a] \). Therefore,

\[
\mathcal{F}^2_G[a] \cup \bigcup_{v \in V(G) \setminus N_G(a)} V(H^v) \subseteq F^2_{G \circ H}[a].
\]

Case 2. Suppose \(a \in V(H^w) \) for some \(w \in V(G) \). If \(x = w \), then \(x \in V(G) \setminus N_G(w) \). Suppose \(x \neq w \). If \(x \in V(G) \), then \(d_G(x, w) \neq 1 \) because \(d_{G \circ H}(x, a) \neq 2 \). Hence, \(x \in V(H^w) \) for some \(q \in V(G) \). If \(q = w \), then \(x \in V(H^w) \). Since \(x \neq a \) and \(a \in V(H^w) \), \(a \in N_{H^w}(a) \) (otherwise, \(d_{G \circ H}(a, x) = 2 \)). Suppose \(q \neq w \). Then \(x \in V(H^q) \) and \(q \in V(G) \). Thus,

\[
z \in N_{H^w}(a) \cup [V(G) \setminus N_G(w)] \cup \bigcup_{v \in V(G) \setminus \{w\}} V(H^v) = Y.
\]
Suppose now that \(p \in Y \). If \(p \in N_{H^w(a)} \), then \(d_{G \circ H}(p,a) = d_{H^w}(p,a) = 1 \). Hence, \(p \in F_{G \circ H}^2[a] \). If \(p \in V(G) \setminus N_G(w) \), then \(d_{G \circ H}(p,w) = d_G(p,w) \neq 1 \). Hence, \(p \neq a \) and \(d_{G \circ H}(a,p) \neq 2 \). This implies that \(p \in F_{G \circ H}^2[a] \). Finally, if \(p \in \cup_{v \in V(G) \setminus \{w\}} V(H^v) \), then there exists \(r \in V(G) \backslash \{w\} \) such that \(p \in V(H^r) \). Since

\[
d_{G \circ H}(a,p) = d_{G \circ H}(a,w) + d_{G \circ H}(r,w) + d_{G \circ H}(r,p) = 2 + d_{G \circ H}(r,w) \geq 3,
\]

it follows that \(p \in F_{G \circ H}^2[a] \). Therefore,

\[
N_{H^w}(a) \cup V(G) \setminus N_G(w) \cup \left[\cup_{v \in V(G) \setminus \{w\}} V(H^v) \right] \subseteq F_{G \circ H}^2[a].
\]

Accordingly, the desired equality follows.

Definition 4. The lexicographic product (composition) of graphs \(G \) and \(H \), denoted by \(G[H] \), is the graph with \(V(G[H]) = V(G) \times V(H) \) and \((u,v)(u',v') \in E(G[H]) \) if and only if either \(uu' \in E(G) \) or \(u = u' \) and \(vv' \in E(H) \).

Theorem 6. Let \(G = (V(G),E(G)) \) and \(H = (V(H),E(H)) \) be any two graphs and let \((v,a) \in V(G[H])\). Then

\[
F_{G[H]}^2[(v,a)] = (F_G^2[v] \times V(H)) \cup (\{v\} \times F_H^2[a]).
\]

Proof. Note that \((x,q) \in F_{G[H]}^2[(v,a)]\) if and only if \((x,q) \neq (v,a)\) and \(d_{G[H]}((x,q),(v,a)) \neq 2\). Consider the following cases:

- **Case 1.** Suppose \(x = v \). Then \(q \neq a \). Since

\[
d_{G[H]}((v,q),(v,a)) = d_H(a,q) \neq 2, q \in F_H^2[a],
\]

\(q \in F_H^2[a] \). Hence, \((x,q) \in \{v\} \times F_H^2[a] \).

- **Case 2.** Suppose \(x \neq v \). Then

\[
d_G(x,v) = d_{G[H]}((x,q),(v,a)) \neq 2.
\]

Hence, \(x \in F_G^2[v] \) and \((x,q) \in F_G^2[v] \times V(H) \). Therefore,

\[
F_{G[H]}^2[(v,a)] \subseteq (F_G^2[v] \times V(H)) \cup (\{v\} \times F_H^2[a]).
\]

Next, let \((w,p) \in F_G^2[v] \times V(H) \). Then \(w \in F_G^2[v] \), that is, \(w \neq v \) and \(d_G(w,v) \neq 2 \). It follows that \((w,p) \neq (v,a)\) and

\[
d_{G[H]}((w,p),(v,a)) = d_G(w,v) \neq 2.
\]

This shows that \((w,p) \in F_{G[H]}^2[(v,a)] \). Hence, \(F_G^2[v] \times V(H) \subseteq F_{G[H]}^2[(v,a)] \). Finally, let \((z,t) \in \{v\} \times F_H^2[a] \). Then \(z = v \) and \(t \in F_H^2[a] \). Hence, \(t \neq a \) and \(d_H(a,t) \neq 2 \). Consequently, \((z,t) \neq (v,a)\) and

\[
d_{G[H]}((z,t),(v,a)) = d_H(a,t) \neq 2,
\]

showing that \((z,t) \in F_{G[H]}^2[a] \). Thus, \(\{v\} \times F_H^2[a] \subseteq F_{G[H]}^2[(v,a)] \). This establishes the desired equality.
Definition 5. The Cartesian Product of two graphs G_1 and G_2 denoted by $G_1 \Box G_2$ is a graph with $V(G_1 \Box G_2) = V(G_1) \times V(G_2)$ and two vertices $a = (u_1, u_2)$ and $b = (v_1, v_2)$ are adjacent in $G_1 \Box G_2$ if and only if either $u_1 = v_1$ and $u_2 = v_2$ or $u_1 v_1 \in E(G_1)$.

Theorem 7. Let $K = G \Box H = (V(K), E(K))$, where $G = (V(G), E(G))$ and $H = (V(H), E(H))$. Then for each $(v, a) \in V(K)$,

$$F_K^2[(v, a)] = [F_G^2[v] \times \{a\}] \cup \{(v) \times F_H^2[a]\} \cup [F_G[v] \times V(H) \setminus \{a\}] \cup [N_G(v) \times F_G[a]].$$

Proof. Let $(v, a) \in V(K) = V(G \Box H)$ and $(x, q) \in F_K^2[(v, a)]$. Then $(v, a) \neq (x, q)$ and $d_K((v, a), (x, q)) \neq 2$. Now, consider the following cases:

Case 1. Assume that $x = v$. Then $q \neq a$ and $d_H(q, a) = d_K((x, q), (x, a)) \neq 2$ and so, $q \in F_H^2[a]$. Hence, $(x, q) \in \{(v) \times F_H^2[a]\}$.

Case 2. Assume that $x \neq v$.

Subcase 1. Let $q = a$. Then $d_G(x, v) = d_K((x, q), (v, q)) \neq 2$ and thus, $x \in F_G^2[v]$. It follows that $(x, q) \in F_G^2[v] \times \{a\}$.

Subcase 2. Let $q \neq a$. Suppose that $x \in N_G(v)$. If $q \in N_H(a)$, then

$$d_K((x, q), (v, a)) = d_G(x, v) + d_H(q, a) = 2,$$

a contradiction. Thus, $q \in V(H) \setminus N_H[a]$. Hence, $(x, q) \in N_G(v) \times F_G[a]$. Suppose $x \in N_G(v)$. Then $x \in F_G[v]$. Hence, $(x, q) \in F_G[v] \times V(H) \setminus \{a\}$. Therefore,

$$F_K^2[(v, a)] \subseteq [F_G^2[v] \times \{a\}] \cup \{(v) \times F_H^2[a]\} \cup [F_G[v] \times V(H) \setminus \{a\}] \cup [N_G(v) \times F_G[a]].$$

Next, let $(v, p) \in \{v\} \times F_H^2[a]$. Then $p \neq a$ and $d_H(a, p) \neq 2$. Hence, $(v, p) \neq (v, a)$ and $d_K((v, p), (v, a)) = d_H(a, p) \neq 2$, that is, $(v, p) \in F_K^2[(v, a)]$. If $(x, a) \in F_G^2[v] \times \{a\}$, then $x \neq v$ and $d_G(x, v) \neq 2$. Hence, $(x, a) \neq (v, a)$ and $d_K((v, a), (x, a)) = d_G(x, v) \neq 2$, that is, $(x, a) \in F_K^2[(v, a)]$. Now, $(y, b) \in N_G(v) \times F_H[a]$ implies $d_G(y, v) = 1$ and $d_H(b, a) \geq 2$. It follows that $(y, b) \neq (v, a)$ and

$$d_K((y, b), (v, a)) = d_G(y, v) + d_H(b, a) \geq 3.$$

Hence, $(y, b) \in F_K^2[(v, a)]$. Finally, $(z, t) \in [F_G[v] \times V(H) \setminus \{a\}]$ implies $d_G(z, v) \geq 2$ and $d_H(t, a) \geq 1$. This means that $(z, t) \neq (v, a)$ and

$$d_K((z, t), (v, a)) = d_G(z, v) + d_H(t, a) \geq 3.$$

Thus, $(z, t) \in F_K^2[(v, a)]$. Therefore,

$$[F_G^2[v] \times \{a\}] \cup \{(v) \times F_H^2[a]\} \cup [F_G[v] \times V(H) \setminus \{a\}] \cup [N_G(v) \times F_G[a]] \subseteq F_K^2[(v, a)].$$

This establishes the desired equality.
Acknowledgements

This research is funded by the Philippine Department of Science and Technology-Accelerated Science and Technology Human Resource Development Program (DOST-ASTHRDP) and Mindanao State University-Iligan Institute of Technology.

References

