EUROPEAN JOURNAL OF PURE AND APPLIED MATHEMATICS
Vol. 12, No. 4, 2019, 1811-1818
ISSN 1307-5543 - www.ejpam.com
Published by New York Business Global

Curvature Inequalities for Submanifolds of S-space form

Najma Abdul Rehman
Department of Mathematics, COMSATS University Islamabad, Sahiwal Campus, Pakistan

Abstract

In this paper we establish new results of squared mean curvature and Ricci curvature for the sub manifolds of S-space from that is the generalization of complex and contact structures. Obtained results are discussed for invariant, anti invariant and CR sub manifolds of S-space from. 2010 Mathematics Subject Classifications: 53C40, 53C25

Key Words and Phrases: Curvature, Sub manifolds, S-space form

1. Introduction

One of the main and useful idea in submanifolds conjectures is to derive relationship among squared mean curvature and Ricci curvature of submanifolds, was explained by Chen [6], [7]. After this many authors derived Chen inequalities for complex and contact space forms [1], [11], [12] and on hyper surfaces of a Lorentzian manifold [9].
After the generalization of complex and contact space forms into S -space form [4], it is natural to study the inequalities of Ricci curvature for submanifolds of S-space forms. Geometry of S-space forms were studied by many authors i.e. [10], [13].
In this paper we find relations between squared mean curvature and Ricci curvature for the sub manifolds of S-space form and discuss this relation for invariant, anti invariant and CR sub manifolds of S-space form. After introduction, second section contains basics of S-space forms and submanifolds. Third section contains main results.

2. Preliminaries

This section presents some well known facts related to S -space form and sub manifolds.
Yano[14] presented that almost complex and almost contact structures can be generalized as f - structure on a smooth manifold of dimension $2 m+s$. The idea for the f -structure is to consider a tensor field with condition $f^{3}+f=0$, of type $(1,1)$ and rank $2 m$.

DOI: https://doi.org/10.29020/nybg.ejpam.v12i4.3435
Email address: najma_ar@hotmail.com (N. A. Rehman)

Consider manifold $M^{2 m+s}$ along an f-structure of rank $2 m$. We take s structural vector fields $\xi_{1}, \xi_{2}, \ldots, \xi_{s}$ on M such as:

$$
\begin{equation*}
f \xi_{\alpha}=0, \quad \eta_{\alpha} \circ f=0, \quad f^{2}=-I+\sum \xi_{\alpha} \otimes \eta_{\alpha} \tag{1}
\end{equation*}
$$

where η_{α} and ξ_{α} are the dual forms to each other, therefore complemented frames exist on f-structure. For f- manifold we define a Riemannian metric g as

$$
g(Y, X)=g(f Y, f Z)+\sum \eta_{\alpha}(Y) \eta_{\alpha}(Z)
$$

for vector fields Y and Z on M [4].
An f-structure f is normal, if there exist complemented frames and

$$
[f, f]+2 \sum \xi_{\alpha} \otimes d \eta_{\alpha}=0
$$

where $[f, f]$ is Nijenhuis torsion of f. Let fundamental 2-form B be defined as $B(Y, Z)=$ $g(Y, f Z), Y, Z \in T(M) . f$-structure that is normal and $d \eta_{1}=\cdots=d \eta_{s}=B$ is known as an S-structure. A smooth manifold along with an S-structure known as an S-manifold. Blair described such types of manifolds in [4].

For Sasakian manifolds we take $s=1$. For $s \geq 2$ we may have some attractive applications discussed in [4].

If M is an S-manifold, then we consider the formulas [4]:

$$
\begin{align*}
& \tilde{\nabla}_{Y} \xi_{\alpha}=-f Y, \quad Y \in T(M), \quad \alpha=1, \ldots, s, \tag{2}\\
& \left(\widetilde{\nabla}_{Y} f\right) Z=\sum_{\alpha}\left\{g(f Y, f Z) \xi_{\alpha}+\eta_{\alpha}(Z) f^{2} Y\right\}, \quad Y, Z \in T(M), \tag{3}
\end{align*}
$$

where $\tilde{\nabla}$ is the Riemannian connection of g . The projection tensor $-f^{2}$ determine the distribution L and $f^{2}+I$ determine the complementary distribution \mathfrak{M} which is determined and spanned by ξ_{1}, \ldots, ξ_{s}. It can be observe that if $Y \in L$ then $\eta_{\alpha}(Y)=0$ for all α, and for $Y \in \mathfrak{M}$, we have $f Y=0$. A plane section Π on M is said to be f - section if it is established by a vector $Y \in L(p), p \in M$, such that $\{Y, f Y\}$ span the section. We take the Sectional curvature of Π as the f -sectional curvature. If M is an S-manifold of constant f-sectional curvature k , then its curvature tensor is as:

$$
\begin{align*}
\widetilde{R}(Y, Z) U= & \sum_{\alpha, \beta}\left\{\eta^{\alpha}(Y) \eta^{\beta}(U) f^{2} Z-\eta^{\alpha}(Z) \eta^{\beta}(U) f^{2} Y-g(f Y, f U) \eta^{\alpha}(Z) \xi_{\beta}\right. \\
& \left.+g(f Z, f U) \eta^{\alpha}(Y) \xi_{\beta}\right\}+\frac{k+3 s}{4}\left\{-g(f Z, f U) f^{2} Y+g(f Y, f U) f^{2} Z\right\} \\
& +\frac{k-s}{4}\{g(Y, f U) f Z-g(Z, f U) f Y+2 g(Y, f Z) f U\}, \tag{4}
\end{align*}
$$

$\mathrm{Y}, \mathrm{Z}, \mathrm{U} \in T(M)$. Such a manifold $M(k)$ will be called an S-space form. Examples of S-space forms are The Euclidean space $E^{2 n+s}$ and the hyperbolic space $H^{2 n+s}$.

Consider immersed submanifold M^{m} of $N^{2 n+s}$. Then M is an invariant submnaifold if $\xi_{\alpha} \in T M$ for any α and $f Y \in T M$ for any $Y \in T M$. It is said to be anti-invariant submanifold if $f Y \in T M^{\perp}$ for any $Y \in T M$. For a vector field $Y \in T M^{\perp}$, it can be written as $f Y=t Y+S Y$, where $t Y$ represents tangent component of $f Y, S Y$ shows normal component of fY. If S does not disappear, then its an f-structure [5].
For a vector field $Z \in T M$, it can be written as $f Z=P Z+N Z$, where $P Z$ is tangent component of $f Z, N Z$ is normal component of $£ Z$.

Let $\operatorname{dim}(M) \geq s$ and we take the structure vector fields $\xi_{1}, \xi_{2}, \ldots, \xi_{s}$ as tangents to M. M is known as CR-submaifold of N if we have two differentiable distributions D and D^{\perp} on $\mathrm{M}, T M=D+D^{\perp}$ satisfying

- D and D^{\perp} are mutually orthogonal to each other.
- If $f D_{p}=D_{p}$, for any $p \in M$ then the distribution D is known as invariant under f .
- If $f D_{p}^{\perp} \subseteq T_{p} M^{\perp}$, for any $p \in M$ then the distribution D^{\perp} is known as anti invariant under f .

The Gauss equation for the submanifold M^{m} into a $(m+q)$-dimensional Riemannian manifold N^{m+q} is

$$
\widetilde{R}^{\prime}(Y, Z, U, W)=R^{\prime}(Y, Z, U, W)+g\left(h^{\prime}(Y, U), h^{\prime}(Z, W)\right)-g\left(h^{\prime}(Y, W), h^{\prime}(Z, U)\right) .
$$

Consider k-plan section of $T_{p} M$ denoted by D and let X be a unit vector in D . We can choose orthonormal basis $e_{1}, e_{2}, \ldots, e_{k}$ of D and we consider $e_{1}=X$, then Ricci curvature $R_{i c}$ of D at X can be define as

$$
\operatorname{Ric}_{D}(x)=K_{12}+K_{13}+\cdots+K_{1 k},
$$

where $K_{i j}$ represents sectional curvature of 2-plane section spanned by e_{i}, e_{j}. Therefore the scalar curvature τ of the k-plane section D can be written as

$$
\tau(D)=\sum_{1 \leq i<j \leq k} K_{i j} .
$$

3. Main Results

Theorem 1. Let M^{m}, be a sub manifold of S-space form $N^{2 n+s}(K)$ of constant f-sectional curvature k, with structural vector fields $\xi_{1}, \xi_{2}, \ldots, \xi_{s}$ tangent to M^{m}, then
for each unit vector $X \in T_{p} M$, orthogonal to $\xi_{1}, \xi_{2}, \ldots, \xi_{s}$
$\operatorname{Ric}(X) \leq \frac{1}{4}\left[m^{2}\|H\|^{2}+(m-1)(k+3 s)+\frac{3}{2}\|P X\|^{2}(k-s)-\frac{1}{2}(3 s-1)(k+3 s-4)\right]$

Proof. Let M^{m} be a sub manifold of S-space form $N^{2 n+s}(K)$ with constant f-sectional curvature K. For a point $p \in M$, take a unit vector $X \in T_{p} M$. Choose an orthonormal basis
$e_{1}, e_{2}, \ldots, e_{m-s}, e_{m-s+1}, \ldots, e_{m-s+s}, e_{m-s+s+1}, \ldots, e_{2 n+s}$ on $T_{p} N$. Then it is clear that $e_{1}, e_{2}, \ldots, e_{m-s}, e_{m-s+1}, \ldots, e_{m-s+s}$ are unit tangent vectors to M at p. We take $X=e_{1}$. From the curvature tensor of S-space form $N^{2 n+s}(K)$, after summation $1 \leq i, j \leq m$ we have

$$
\widetilde{R}^{\prime}\left(e_{i}, e_{j}, e_{j}, e_{i}\right)=\frac{1}{4}(k+3 s) m(m-1)+\frac{k+3 s-4}{4}(2 s-2 m s)+\frac{3}{4}(k-1)\|P\|^{2}
$$

Using Gauss equation
$\frac{1}{4}(k+3 s) m(m-1)+\frac{k+3 s-4}{4}(2 s-2 m s)+\frac{3}{4}(k-1)\|P\|^{2}=2 \tau-m^{2}\|H\|^{2}+\|h\|^{2}$,
where H represents mean curvature, h represents second fundamental form and τ is scalar curvature. Now we take the notation for second fundamental form has $h_{i j}^{r}=$ $g\left(h\left(e_{i}, e_{j}\right), e_{r}\right),\|h\|^{2}=\sum_{i, j=1}^{m} g\left(h\left(e_{i}, e_{j}\right), h\left(e_{i}, e_{j}\right)\right)$ and $\|P\|^{2}=\sum_{i, j=1}^{m} g^{2}\left(P e_{i}, e_{j}\right)$. Also we know that mean curvature $H(p)=\frac{1}{m} \sum_{i=1}^{m} h\left(e_{i}, e_{i}\right)$. Then from (6), we have

$$
\begin{align*}
n^{2}\|H\|^{2} & =2 \tau+\frac{1}{2} \sum_{r=m+1}^{2 n+s}\left[\left(h_{11}^{r}+\cdots+h_{m m}^{r}\right)^{2}+\left(h_{11}^{r}-h_{22}^{r}-\cdots-h_{m m}^{r}\right)^{2}\right] \\
& +2 \sum_{r=m+1}^{2 n+s} \sum_{i<j}\left(h_{i j}^{r}\right)^{2}-2 \sum_{r=m+1}^{2 n+s} \sum_{2 \leq i<j \leq n} h_{i i}^{r} h_{j j}^{r} \\
& -\frac{1}{4}(k+3 s) m(m-1)-\frac{k+3 s-4}{4}(2 s-2 m s)-\frac{3}{4}(k-s)\|P\|^{2} \tag{7}
\end{align*}
$$

Since sectional curvature for sub manifold M can be represented as

$$
\begin{align*}
\sum_{2 \leq i, j \leq n} K_{i j} & =\frac{1}{4}(k+3 s)(m-2)(m-1)-\frac{k+3 s-4}{4}(2(m-2) s-(s-1)) \\
& +\frac{1}{4}(k-s)\left(3\|P\|^{2}-3\left\|P e_{1}\right\|^{2}\right) \tag{8}
\end{align*}
$$

By Gauss equation, on S-space form we can write

$$
\begin{align*}
\sum_{2 \leq i, j \leq n} \tilde{K}_{i j} & =\frac{1}{4}(k+3 s)(m-2)(m-1)-\frac{k+3 s-4}{4}(2(m-2) s-(s-1)) \\
& +\frac{1}{4}(k-s)\left(3\|P\|^{2}-3\left\|P e_{1}\right\|^{2}\right)+\sum_{r=m+1}^{2 m+s} \sum_{2 \leq i<j \leq n}\left(h_{i i}^{r} h_{j j}^{r}-\left(h_{i j}^{r}\right)^{2}\right) \tag{9}
\end{align*}
$$

Substituting (9) in (7), we get

$$
\begin{align*}
\frac{1}{2} n^{2}\|H\|^{2} & =2 \operatorname{Ric}(X)+\frac{1}{2} \sum_{r=m+1}^{2 n+s}\left(h_{11}^{r}-h_{22}^{r}-\cdots-h_{m m}^{r}\right)^{2}+\sum_{r=m+1}^{2 n+s} \sum_{j=1}^{m}\left(h_{1 j}^{r}\right)^{2} \\
& -2(m-1) \frac{k+3 s}{4}-3\|P X\|^{2} \frac{k-s}{4}+(3 s-1) \frac{k+3 s-4}{4} \tag{10}
\end{align*}
$$

therefore

$$
\begin{equation*}
\frac{1}{2} n^{2}\|H\|^{2} \geq 2 \operatorname{Ric}(X)-2(m-1) \frac{k+3 s}{4}-3\|P X\|^{2} \frac{k-s}{4}+(3 s-1) \frac{k+3 s-4}{4}, \tag{11}
\end{equation*}
$$

that gives required result.
Corollary 1. In Theorem 1, equality holds at point $p \in M$, if
(i) $H(p)=0$ and X is normal to $T_{p} M$
(ii) p is totally geodesic point

Proof. (1) When $H(p)=0$, we get $h_{11}^{r}=h_{22}^{r}=\cdots=h_{m m}^{r}=0$ and when X is normal to $T_{p} M$, we have $h_{12}^{r}=h_{13}^{r}=\cdots=h_{1 m}^{r}=0, r \in\{m+1, \ldots, 2 n+s\}$ and from (10) equality holds.
(2)When p is totally geodesic point, $h_{i j}^{r}=0$ for all $\mathrm{i}, \mathrm{j}, r \in\{m+1, \ldots, 2 n\}$ and from (10) equality holds.

Corollary 2. Let M be an m-dimensional invariant sub manifold tangent to structure vector fields $\xi_{1}, \xi_{2}, \ldots, \ldots, \xi_{s}$ in S-space form $N^{2 n+s}(k)$, then for each unit vector $X \in T_{p} M$ orthogonal to $\xi_{1}, \xi_{2}, \ldots, \ldots, \xi_{s}$, we have

$$
\begin{equation*}
\operatorname{Ric}(X) \leq \frac{1}{4}\left[(m-1)(k+3 s)+\frac{3}{2}(k-s)-\frac{1}{2}(3 s-1)(k+3 s-4)\right] \tag{12}
\end{equation*}
$$

Proof. We know that every invariant sub manifold of S-space form is minimal [14] i.e. mean curvature vanishes and since X in unit tangent vector to $\mathrm{M},\|f X\|=\|P X\|=\|$ $X \|=1$, therefore from (5), we get result.

Corollary 3. Let M be an m-dimensional anti-invariant sub manifold tangent to structure vector fields $\xi_{1}, \xi_{2}, \ldots, \ldots, \xi_{s}$ in S-space form $N^{2 n+s}(k)$, then for each unit vector $X \in T_{p} M$ orthogonal to $\xi_{1}, \xi_{2}, \ldots, \ldots, \xi_{s}$, we have

$$
\begin{equation*}
\operatorname{Ric}(X) \leq \frac{1}{4}\left[m^{2}\|H\|^{2}+(m-1)(k+3 s)-\frac{1}{2}(3 s-1)(k+3 s-4)\right] \tag{13}
\end{equation*}
$$

Proof. Here for anti invariant sub manifolds, $\|P X\|=0$ and we have required result.

Corollary 4. Let M be an m-dimensional CR-submanifold of S-space form $N^{2 n+s}(K)$ then
(i) For each unit vector $X \in D_{p}$,

$$
\begin{equation*}
\operatorname{Ric}(X) \leq \frac{1}{4}\left[m^{2}\|H\|^{2}+(m-1)(k+3 s)+\frac{3}{2}(k-s)-\frac{1}{2}(3 s-1)(k+3 s-4)\right] \tag{14}
\end{equation*}
$$

(i) For each unit vector $X \in D_{p}^{\perp}$,

$$
\begin{equation*}
\operatorname{Ric}(X) \leq \frac{1}{4}\left[m^{2}\|H\|^{2}+(m-1)(k+3 s)-\frac{1}{2}(3 s-1)(k+3 s-4)\right] \tag{15}
\end{equation*}
$$

Let M^{m}, be a submanifold of $N^{2 n+s}(K)$ s-space form of constant f-sectional curvature k , using the results of Theorem 1, we can find a relation between the k-Ricci curvature of M^{m} and the squared mean curvature $\|H\|^{2}$. Before this result first we define shape operator.
Let $p \in M^{m}$ and $\left\{e_{1}, e_{2}, \ldots, e_{m}\right\}$ an orthonormal basis of $T_{p} M^{m}$. We choose the ortho normal basis $\left\{e_{1}, e_{2}, \ldots, e_{m}, e_{m+1}, \ldots, e_{2 n+s}\right\}$ on $T_{p} N^{2 n+s}$. Then shape operator takes the form (see [12])

$$
A_{e_{m+1}}=\left(\begin{array}{cccc}
a_{1} & 0 & \ldots & 0 \\
0 & a_{2} & \ldots & 0 \\
. & . & . & . \\
. & . & . & . \\
. & . & . & . \\
0 & 0 & 0 & a_{m}
\end{array}\right)
$$

$A_{e_{r}}=\left(h_{i j}^{r}\right), i, j=1, \ldots, m ; r=m+2, \ldots, 2 n+s, \operatorname{trace} A_{e_{r}}=0$.
We can take

$$
m^{2}\|H\|^{2}=\left(\sum_{i=1}^{m} a_{i}\right)^{2}=\sum_{i=1}^{m} a_{i}^{2}+2 \sum_{i<j} a_{i} a_{j} \leq m \sum_{i=1}^{m} a_{i}^{2}
$$

Since we know that $0 \leq \sum_{i<j}\left(a_{i}-a_{j}\right)^{2}=(n-1) \sum_{i=1}^{m} a_{i}^{2}-2 \sum_{i<j} a_{i} a_{j}$, therefore

$$
\begin{equation*}
\sum_{i=1}^{m} a_{i}^{2} \geq m\|H\|^{2} \tag{16}
\end{equation*}
$$

Proposition 3.1. Let M^{m}, be a submanifold of s-space form $N^{2 n+s}(K)$ of constant f sectional curvature k, tangent to $\xi_{1}, \xi_{2}, \ldots, \xi_{s}$ then we have

$$
m^{2}\|H\|^{2} \geq \frac{2 \tau}{m(m-1)}-\frac{1}{4}(k+3 s)-\frac{k+3 s-4}{4} \frac{(2 s-2 m s)}{m(m-1)}-\frac{3}{4}(k-1) \frac{\|P X\|^{2}}{m(m-1)}
$$

Proof. We choose orthonormal basis $e_{1}, e_{2}, \ldots, e_{m-s}, e_{m-s+1}, \ldots, e_{m-s+s}, e_{m-s+s+1}, \ldots, e_{2 n+s}$ on $T_{p} N$ with e_{m+1} parallel to mean curvature vector $H(p)$. From (6)

$$
\begin{aligned}
m^{2}\|H\|^{2} & =2 \tau+\|h\|^{2}-\frac{1}{4}(k+3 s) m(m-1)-\frac{k+3 s-4}{4}(2 s-2 m s)-\frac{3}{4}(k-1)\|P\|^{2} \\
& =2 \tau+\sum_{i=1}^{m} a_{i}^{2}+\sum_{r=m+2}^{2 n} \sum_{i, j=1}^{m}\left(h_{i j}^{r}\right)^{2}-\frac{1}{4}(k+3 s) m(m-1) \\
& -\frac{k+3 s-4}{4}(2 s-2 m s)-\frac{3}{4}(k-1)\|P X\|^{2}
\end{aligned}
$$

by (16)

$$
\begin{aligned}
m^{2}\|H\|^{2} & \geq 2 \tau+m\|H\|^{2}-\frac{1}{4}(k+3 s) m(m-1) \\
& -\frac{k+3 s-4}{4}(2 s-2 m s)-\frac{3}{4}(k-1)\|P X\|^{2}
\end{aligned}
$$

which proves the required result.
Remark 1. - For $s=0$, we have the results of Theorem 1, Corollary 3, Corollary 2, Proposition 3.1 for Khaler manifold.

- For $s=1$, we have the results of Theorem 1, Corollary 3, Corollary 2, Proposition 3.1 for Sasakian Manifolds.

Acknowledgements

This work is partially supported by Higher Education Commission Pakistan.

References

[1] P. Alegre, A. Carriazo, Y. H. Kim, D. W. Yoon, B.Y. Chens inequality for submanifolds of generalized space forms, Indian J. Pure Appl. Math., 38 (2007), no. 3, 185-201.
[2] H. Aytimur and C. Ozgur, Inequalities for submanifolds in statistical manifolds of quasi-constant curvature, Ann. Polon. Math. 121 (2018), no. 3, 197-215.
[3] H. Aytimur and C. Ozgur, Inequalities for submanifolds of Sasaki-like statistical manifolds, Turkish J. Math. 42 (2018), no. 6, 3149-3163.
[4] D.E. Blair, Geometry of manifolds with structural group $U(n) \times O(s)$, J. Differential Geom. 4 (1970). 155-167.
[5] Jose L. Cabrerizo, Luis M. Fernandez, Manuel Fernandez (Sevilla), On normal CRsubmanifolds of S-manifolds, Colloquim Mathematicum, Vol. LXIV, (1993), FASC. 2.
[6] B.Y. Chen, Strings of Riemannian invariants, inequalities, ideal immersions and their applications, The Third Pacific Rim Geometry Conference (Seoul, 1996), 760, Monogr. Geom. Topology, 25, Int. Press, Cambridge, MA, 1998.
[7] B. Y. Chen, Some pinching and classification theorems for minimal submanifolds, Arch. Math. (Basel), 60 (1993), no. 6, 568-578.
[8] A. Friedmann and J. A. Schouten, Uber die Geometrie der halbsymmetrischen Ubertragungen, Math. Z., 21 (1924), no. 1, 211-223.
[9] M. Glbahar, Erol Kilic and Sadik Kele, Chen-like inequalities on lightlike hypersurfaces of a Lorentzian manifold, Journal of Inequalities and Applications 2013, 2013:266.
[10] S. Ianus, G. E. Vlcu, and R. C. Voicu, Harmonic maps and Riemannian submersions between manifolds endowed with special structures, Algebra, Geometry and Mathematical Physics, vol. 93, pp. 277288, Banach Center Publications, 2011.
[11] T. Imai, Notes on semi-symmetric metric connections, Vol. I. Tensor (N.S.), 24 (1972), 293-296.
[12] A. Mihai and Cihan Ozgur, Chen inequalities for submanifolds of real space forms with a semi-symmetric metric connection, Taiwanese J. Math., to appear.
[13] Najma Abdul Rehman, Mehwish Bari, Biharmonic Maps into S-Space forms, European Journal of Pure and Applied Mathematics, Vol. 11, No. 1, 2018, 150-159.
[14] K. Yano and M. Kon, Structures on manifolds, vol. 3, Series in pure Math., World Scientific, Singapore, 1984.
[15] K. Yano and M. Kon, On semi-symmetric metric connection, Rev. Roun. Math. Pures Appl. 15 (1970), 1579-1586.

