## EUROPEAN JOURNAL OF PURE AND APPLIED MATHEMATICS

Vol. 12, No. 4, 2019, 1811-1818 ISSN 1307-5543 – www.ejpam.com Published by New York Business Global



# Curvature Inequalities for Submanifolds of S-space form

Najma Abdul Rehman

Department of Mathematics, COMSATS University Islamabad, Sahiwal Campus, Pakistan

**Abstract.** In this paper we establish new results of squared mean curvature and Ricci curvature for the sub manifolds of S-space from that is the generalization of complex and contact structures. Obtained results are discussed for invariant, anti invariant and CR sub manifolds of S-space from.

2010 Mathematics Subject Classifications: 53C40, 53C25

Key Words and Phrases: Curvature, Sub manifolds, S-space form

## 1. Introduction

One of the main and useful idea in submanifolds conjectures is to derive relationship among squared mean curvature and Ricci curvature of submanifolds, was explained by Chen [6], [7]. After this many authors derived Chen inequalities for complex and contact space forms [1], [11], [12] and on hyper surfaces of a Lorentzian manifold [9].

After the generalization of complex and contact space forms into S-space form [4], it is natural to study the inequalities of Ricci curvature for submanifolds of S-space forms. Geometry of S-space forms were studied by many authors i.e. [10], [13].

In this paper we find relations between squared mean curvature and Ricci curvature for the sub manifolds of S-space form and discuss this relation for invariant, anti invariant and CR sub manifolds of S-space form. After introduction, second section contains basics of S-space forms and submanifolds. Third section contains main results.

## 2. Preliminaries

This section presents some well known facts related to S-space form and sub manifolds.

Yano[14] presented that almost complex and almost contact structures can be generalized as f - structure on a smooth manifold of dimension 2m + s. The idea for the f-structure is to consider a tensor field with condition  $f^3 + f = 0$ , of type (1,1) and rank 2m.

DOI: https://doi.org/10.29020/nybg.ejpam.v12i4.3435

Email address: najma\_ar@hotmail.com (N. A. Rehman)

http://www.ejpam.com

1811

© 2019 EJPAM All rights reserved.

Consider manifold  $M^{2m+s}$  along an *f*-structure of rank 2m. We take *s* structural vector fields  $\xi_1, \xi_2, \ldots, \xi_s$  on *M* such as:

$$f\xi_{\alpha} = 0, \qquad \eta_{\alpha} \circ f = 0, \qquad f^2 = -I + \sum \xi_{\alpha} \otimes \eta_{\alpha},$$
 (1)

where  $\eta_{\alpha}$  and  $\xi_{\alpha}$  are the dual forms to each other, therefore complemented frames exist on *f*-structure. For f- manifold we define a Riemannian metric *g* as

$$g(Y,X) = g(fY, fZ) + \sum \eta_{\alpha}(Y)\eta_{\alpha}(Z)$$

for vector fields Y and Z on M [4].

An f-structure f is normal, if there exist complemented frames and

$$[f,f] + 2\sum \xi_{\alpha} \otimes d\eta_{\alpha} = 0,$$

where [f, f] is Nijenhuis torsion of f. Let fundamental 2-form B be defined as  $B(Y, Z) = g(Y, fZ), Y, Z \in T(M)$ . f-structure that is normal and  $d\eta_1 = \cdots = d\eta_s = B$  is known as an S-structure. A smooth manifold along with an S-structure known as an S-manifold. Blair described such types of manifolds in [4].

For Sasakian manifolds we take s = 1. For  $s \ge 2$  we may have some attractive applications discussed in [4].

If M is an S-manifold, then we consider the formulas [4]:

$$\widetilde{\nabla}_Y \xi_\alpha = -fY, \qquad Y \in T(M), \quad \alpha = 1, \dots, s,$$
(2)

$$(\widetilde{\nabla}_Y f)Z = \sum_{\alpha} \{g(fY, fZ)\xi_{\alpha} + \eta_{\alpha}(Z)f^2Y\}, \quad Y, Z \in T(M),$$
(3)

where  $\widetilde{\nabla}$  is the Riemannian connection of g. The projection tensor  $-f^2$  determine the distribution L and  $f^2+I$  determine the complementary distribution  $\mathfrak{M}$  which is determined and spanned by  $\xi_1, \ldots, \xi_s$ . It can be observe that if  $Y \in L$  then  $\eta_{\alpha}(Y) = 0$  for all  $\alpha$ , and for  $Y \in \mathfrak{M}$ , we have fY = 0. A plane section  $\Pi$  on M is said to be f - section if it is established by a vector  $Y \in L(p)$ ,  $p \in M$ , such that  $\{Y, fY\}$  span the section. We take the Sectional curvature of  $\Pi$  as the f-sectional curvature. If M is an S-manifold of constant f-sectional curvature k, then its curvature tensor is as:

$$\widetilde{R}(Y,Z)U = \sum_{\alpha,\beta} \left\{ \eta^{\alpha}(Y)\eta^{\beta}(U)f^{2}Z - \eta^{\alpha}(Z)\eta^{\beta}(U)f^{2}Y - g(fY,fU)\eta^{\alpha}(Z)\xi_{\beta} + g(fZ,fU)\eta^{\alpha}(Y)\xi_{\beta} \right\} + \frac{k+3s}{4} \left\{ -g(fZ,fU)f^{2}Y + g(fY,fU)f^{2}Z \right\} + \frac{k-s}{4} \left\{ g(Y,fU)fZ - g(Z,fU)fY + 2g(Y,fZ)fU \right\},$$
(4)

Y, Z, U  $\in T(M)$ . Such a manifold M(k) will be called an S-space form. Examples of S-space forms are The Euclidean space  $E^{2n+s}$  and the hyperbolic space  $H^{2n+s}$ .

1812

Consider immersed submanifold  $M^m$  of  $N^{2n+s}$ . Then M is an invariant submanifold if  $\xi_{\alpha} \in TM$  for any  $\alpha$  and  $fY \in TM$  for any  $Y \in TM$ . It is said to be anti-invariant submanifold if  $fY \in TM^{\perp}$  for any  $Y \in TM$ . For a vector field  $Y \in TM^{\perp}$ , it can be written as fY = tY + SY, where tY represents tangent component of fY, SY shows normal component of fY. If S does not disappear, then its an f-structure [5].

For a vector field  $Z \in TM$ , it can be written as fZ = PZ + NZ, where PZ is tangent component of fZ, NZ is normal component of fZ.

Let  $dim(M) \ge s$  and we take the structure vector fields  $\xi_1, \xi_2, \ldots, \xi_s$  as tangents to M. M is known as CR-submaifold of N if we have two differentiable distributions D and  $D^{\perp}$  on M,  $TM = D + D^{\perp}$  satisfying

- D and  $D^{\perp}$  are mutually orthogonal to each other.
- If  $fD_p = D_p$ , for any  $p \in M$  then the distribution D is known as invariant under f.
- If  $fD_p^{\perp} \subseteq T_pM^{\perp}$ , for any  $p \in M$  then the distribution  $D^{\perp}$  is known as anti invariant under f.

The Gauss equation for the submanifold  $M^m$  into a (m+q)-dimensional Riemannian manifold  $N^{m+q}$  is

$$R'(Y, Z, U, W) = R'(Y, Z, U, W) + g(h'(Y, U), h'(Z, W)) - g(h'(Y, W), h'(Z, U)).$$

Consider k-plan section of  $T_pM$  denoted by D and let X be a unit vector in D. We can choose orthonormal basis  $e_1, e_2, \ldots, e_k$  of D and we consider  $e_1 = X$ , then Ricci curvature  $Ric_D$  of D at X can be define as

$$Ric_D(x) = K_{12} + K_{13} + \dots + K_{1k},$$

where  $K_{ij}$  represents sectional curvature of 2-plane section spanned by  $e_i$ ,  $e_j$ . Therefore the scalar curvature  $\tau$  of the k-plane section D can be written as

$$\tau(D) = \sum_{1 \le i < j \le k} K_{ij}$$

 $\Box$ .

#### 3. Main Results

**Theorem 1.** Let  $M^m$ , be a submanifold of S-space form  $N^{2n+s}(K)$  of constant f-sectional curvature k, with structural vector fields  $\xi_1, \xi_2, \ldots, \xi_s$  tangent to  $M^m$ , then for each unit vector  $X \in T_pM$ , orthogonal to  $\xi_1, \xi_2, \ldots, \xi_s$ 

$$Ric(X) \le \frac{1}{4} \left[ m^2 \parallel H \parallel^2 + (m-1)(k+3s) + \frac{3}{2} \parallel PX \parallel^2 (k-s) - \frac{1}{2}(3s-1)(k+3s-4) \right]$$
(5)

*Proof.* Let  $M^m$  be a sub-manifold of S-space form  $N^{2n+s}(K)$  with constant f-sectional curvature K. For a point  $p \in M$ , take a unit vector  $X \in T_pM$ . Choose an orthonormal basis

 $e_1, e_2, \ldots, e_{m-s}, e_{m-s+1}, \ldots, e_{m-s+s}, e_{m-s+s+1}, \ldots, e_{2n+s}$  on  $T_pN$ . Then it is clear that  $e_1, e_2, \ldots, e_{m-s}, e_{m-s+1}, \ldots, e_{m-s+s}$  are unit tangent vectors to M at p. We take  $X = e_1$ . From the curvature tensor of S-space form  $N^{2n+s}(K)$ , after summation  $1 \leq i, j \leq m$  we have

$$\widetilde{R}'(e_i, e_j, e_j, e_j, e_i) = \frac{1}{4}(k+3s)m(m-1) + \frac{k+3s-4}{4}(2s-2ms) + \frac{3}{4}(k-1) \parallel P \parallel^2.$$

Using Gauss equation

$$\frac{1}{4}(k+3s)m(m-1) + \frac{k+3s-4}{4}(2s-2ms) + \frac{3}{4}(k-1) \parallel P \parallel^2 = 2\tau - m^2 \parallel H \parallel^2 + \parallel h \parallel^2, (6)$$

where H represents mean curvature, h represents second fundamental form and  $\tau$  is scalar curvature. Now we take the notation for second fundamental form h as  $h_{ij}^r = g(h(e_i, e_j), e_r)$ ,  $\|h\|^2 = \sum_{i,j=1}^m g(h(e_i, e_j), h(e_i, e_j))$  and  $\|P\|^2 = \sum_{i,j=1}^m g^2(Pe_i, e_j)$ . Also we know that mean curvature  $H(p) = \frac{1}{m} \sum_{i=1}^m h(e_i, e_i)$ . Then from (6), we have

$$n^{2} \parallel H \parallel^{2} = 2\tau + \frac{1}{2} \sum_{r=m+1}^{2n+s} \left[ (h_{11}^{r} + \dots + h_{mm}^{r})^{2} + (h_{11}^{r} - h_{22}^{r} - \dots - h_{mm}^{r})^{2} \right] + 2 \sum_{r=m+1}^{2n+s} \sum_{i < j} (h_{ij}^{r})^{2} - 2 \sum_{r=m+1}^{2n+s} \sum_{2 \le i < j \le n} h_{ii}^{r} h_{jj}^{r} - \frac{1}{4} (k+3s)m(m-1) - \frac{k+3s-4}{4} (2s-2ms) - \frac{3}{4} (k-s) \parallel P \parallel^{2}$$
(7)

Since sectional curvature for sub manifold M can be represented as

$$\sum_{2 \le i,j \le n} K_{ij} = \frac{1}{4} (k+3s)(m-2)(m-1) - \frac{k+3s-4}{4} (2(m-2)s - (s-1)) + \frac{1}{4} (k-s) \left(3 \parallel P \parallel^2 - 3 \parallel Pe_1 \parallel^2\right).$$
(8)

By Gauss equation, on S-space form we can write

$$\sum_{2 \le i,j \le n} \tilde{K}_{ij} = \frac{1}{4} (k+3s)(m-2)(m-1) - \frac{k+3s-4}{4} \left(2(m-2)s - (s-1)\right) \\ + \frac{1}{4} (k-s) \left(3 \parallel P \parallel^2 - 3 \parallel Pe_1 \parallel^2\right) + \sum_{r=m+1}^{2m+s} \sum_{2 \le i < j \le n} (h_{ij}^r h_{jj}^r - (h_{ij}^r)^2)$$
(9)

Substituting (9) in (7), we get

$$\frac{1}{2}n^2 \parallel H \parallel^2 = 2Ric(X) + \frac{1}{2}\sum_{r=m+1}^{2n+s} (h_{11}^r - h_{22}^r - \dots - h_{mm}^r)^2 + \sum_{r=m+1}^{2n+s} \sum_{j=1}^m (h_{1j}^r)^2 - 2(m-1)\frac{k+3s}{4} - 3 \parallel PX \parallel^2 \frac{k-s}{4} + (3s-1)\frac{k+3s-4}{4}, \quad (10)$$

therefore

$$\frac{1}{2}n^2 \parallel H \parallel^2 \ge 2Ric(X) - 2(m-1)\frac{k+3s}{4} - 3 \parallel PX \parallel^2 \frac{k-s}{4} + (3s-1)\frac{k+3s-4}{4}, \quad (11)$$

that gives required result.

**Corollary 1.** In Theorem 1, equality holds at point  $p \in M$ , if

- (i) H(p) = 0 and X is normal to  $T_pM$
- *(ii)* p is totally geodesic point

*Proof.* (1) When H(p) = 0, we get  $h_{11}^r = h_{22}^r = \cdots = h_{mm}^r = 0$  and when X is normal to  $T_pM$ , we have  $h_{12}^r = h_{13}^r = \cdots = h_{1m}^r = 0$ ,  $r \in \{m + 1, \dots, 2n + s\}$  and from (10) equality holds.

(2) When p is totally geodesic point,  $h_{ij}^r = 0$  for all i, j,  $r \in \{m + 1, ..., 2n\}$  and from (10) equality holds.

**Corollary 2.** Let M be an m-dimensional invariant sub manifold tangent to structure vector fields  $\xi_1, \xi_2, \ldots, \xi_s$  in S-space form  $N^{2n+s}(k)$ , then for each unit vector  $X \in T_pM$  orthogonal to  $\xi_1, \xi_2, \ldots, \xi_s$ , we have

$$Ric(X) \le \frac{1}{4} \left[ (m-1)(k+3s) + \frac{3}{2}(k-s) - \frac{1}{2}(3s-1)(k+3s-4) \right]$$
(12)

*Proof.* We know that every invariant sub manifold of S-space form is minimal [14] i.e. mean curvature vanishes and since X in unit tangent vector to M, || fX || = || PX || = || X || = 1, therefore from (5), we get result.

**Corollary 3.** Let M be an m-dimensional anti-invariant sub manifold tangent to structure vector fields  $\xi_1, \xi_2, \ldots, \xi_s$  in S-space form  $N^{2n+s}(k)$ , then for each unit vector  $X \in T_pM$  orthogonal to  $\xi_1, \xi_2, \ldots, \xi_s$ , we have

$$Ric(X) \le \frac{1}{4} \left[ m^2 \parallel H \parallel^2 + (m-1)(k+3s) - \frac{1}{2}(3s-1)(k+3s-4) \right].$$
(13)

*Proof.* Here for anti invariant sub manifolds, || PX || = 0 and we have required result.

**Corollary 4.** Let M be an m-dimensional CR-submanifold of S-space form  $N^{2n+s}(K)$  then

(i) For each unit vector  $X \in D_p$ ,

$$Ric(X) \le \frac{1}{4} \left[ m^2 \parallel H \parallel^2 + (m-1)(k+3s) + \frac{3}{2}(k-s) - \frac{1}{2}(3s-1)(k+3s-4) \right].$$
(14)

(i) For each unit vector  $X \in D_p^{\perp}$ ,

$$Ric(X) \le \frac{1}{4} \left[ m^2 \parallel H \parallel^2 + (m-1)(k+3s) - \frac{1}{2}(3s-1)(k+3s-4) \right].$$
(15)

Let  $M^m$ , be a submanifold of  $N^{2n+s}(K)$  s-space form of constant f-sectional curvature k, using the results of Theorem 1, we can find a relation between the k-Ricci curvature of  $M^m$  and the squared mean curvature  $\parallel H \parallel^2$ . Before this result first we define shape operator.

Let  $p \in M^m$  and  $\{e_1, e_2, \ldots, e_m\}$  an orthonormal basis of  $T_p M^m$ . We choose the orthonormal basis  $\{e_1, e_2, \ldots, e_m, e_{m+1}, \ldots, e_{2n+s}\}$  on  $T_p N^{2n+s}$ . Then shape operator takes the form (see [12])

$$A_{e_{m+1}} = \begin{pmatrix} a_1 & 0 & \dots & 0 \\ 0 & a_2 & \dots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & 0 & a_m \end{pmatrix}$$

 $A_{e_r} = (h_{ij}^r), i, j = 1, \dots, m; r = m + 2, \dots, 2n + s, trace A_{e_r} = 0.$ We can take

$$m^2 \parallel H \parallel^2 = \left(\sum_{i=1}^m a_i\right)^2 = \sum_{i=1}^m a_i^2 + 2\sum_{i < j} a_i a_j \le m \sum_{i=1}^m a_i^2.$$

Since we know that  $0 \leq \sum_{i < j} (a_i - a_j)^2 = (n-1) \sum_{i=1}^m a_i^2 - 2 \sum_{i < j} a_i a_j$ , therefore

$$\sum_{i=1}^{m} a_i^2 \ge m \parallel H \parallel^2.$$
(16)

**Proposition 3.1.** Let  $M^m$ , be a submanifold of s-space form  $N^{2n+s}(K)$  of constant f-sectional curvature k, tangent to  $\xi_1, \xi_2, \ldots, \xi_s$  then we have

$$m^{2} \parallel H \parallel^{2} \geq \frac{2\tau}{m(m-1)} - \frac{1}{4}(k+3s) - \frac{k+3s-4}{4}\frac{(2s-2ms)}{m(m-1)} - \frac{3}{4}(k-1)\frac{\parallel PX \parallel^{2}}{m(m-1)}$$

1816

#### REFERENCES

*Proof.* We choose orthonormal basis  $e_1, e_2, \ldots, e_{m-s}, e_{m-s+1}, \ldots, e_{m-s+s}, e_{m-s+s+1}, \ldots, e_{2n+s}$ on  $T_pN$  with  $e_{m+1}$  parallel to mean curvature vector H(p). From (6)

$$m^{2} \parallel H \parallel^{2} = 2\tau + \parallel h \parallel^{2} -\frac{1}{4}(k+3s)m(m-1) - \frac{k+3s-4}{4}(2s-2ms) - \frac{3}{4}(k-1) \parallel P \parallel^{2}$$
$$= 2\tau + \sum_{i=1}^{m} a_{i}^{2} + \sum_{r=m+2}^{2n} \sum_{i,j=1}^{m} (h_{ij}^{r})^{2} - \frac{1}{4}(k+3s)m(m-1)$$
$$- \frac{k+3s-4}{4}(2s-2ms) - \frac{3}{4}(k-1) \parallel PX \parallel^{2}$$

by (16)

$$m^{2} \parallel H \parallel^{2} \geq 2\tau + m \parallel H \parallel^{2} -\frac{1}{4}(k+3s)m(m-1) \\ - \frac{k+3s-4}{4}(2s-2ms) - \frac{3}{4}(k-1) \parallel PX \parallel^{2}$$

which proves the required result.

- **Remark 1.** For s = 0, we have the results of Theorem 1, Corollary 3, Corollary 2, Proposition 3.1 for Khaler manifold.
  - For s = 1, we have the results of Theorem 1, Corollary 3, Corollary 2, Proposition 3.1 for Sasakian Manifolds.

## Acknowledgements

This work is partially supported by Higher Education Commission Pakistan.

## References

- P. Alegre, A. Carriazo, Y. H. Kim, D. W. Yoon, B.Y. Chens inequality for submanifolds of generalized space forms, Indian J. Pure Appl. Math., 38 (2007), no. 3, 185-201.
- [2] H. Aytimur and C. Ozgur, Inequalities for submanifolds in statistical manifolds of quasi-constant curvature, Ann. Polon. Math. 121 (2018), no. 3, 197-215.
- [3] H. Aytimur and C. Ozgur, Inequalities for submanifolds of Sasaki-like statistical manifolds, Turkish J. Math. 42 (2018), no. 6, 3149-3163.
- [4] D.E. Blair, Geometry of manifolds with structural group  $U(n) \times O(s)$ , J. Differential Geom. 4 (1970). 155-167.

- [5] Jose L. Cabrerizo, Luis M. Fernandez, Manuel Fernandez (Sevilla), On normal CRsubmanifolds of S-manifolds, Colloquim Mathematicum, Vol. LXIV, (1993), FASC.
   2.
- [6] B.Y. Chen, Strings of Riemannian invariants, inequalities, ideal immersions and their applications, The Third Pacific Rim Geometry Conference (Seoul, 1996), 760, Monogr. Geom. Topology, 25, Int. Press, Cambridge, MA, 1998.
- B. Y. Chen, Some pinching and classification theorems for minimal submanifolds, Arch. Math. (Basel), 60 (1993), no. 6, 568-578.
- [8] A. Friedmann and J. A. Schouten, Uber die Geometrie der halbsymmetrischen Ubertragungen, Math. Z., 21 (1924), no. 1, 211-223.
- [9] M. Glbahar, Erol Kilic and Sadik Kele, *Chen-like inequalities on lightlike hypersurfaces* of a Lorentzian manifold, Journal of Inequalities and Applications 2013, 2013:266.
- [10] S. Ianus, G. E. Vlcu, and R. C. Voicu, Harmonic maps and Riemannian submersions between manifolds endowed with special structures, Algebra, Geometry and Mathematical Physics, vol. 93, pp. 277288, Banach Center Publications, 2011.
- [11] T. Imai, Notes on semi-symmetric metric connections, Vol. I. Tensor (N.S.), 24 (1972), 293-296.
- [12] A. Mihai and Cihan Ozgur, *Chen inequalities for submanifolds of real space forms* with a semi-symmetric metric connection, Taiwanese J. Math., to appear.
- [13] Najma Abdul Rehman, Mehwish Bari, Biharmonic Maps into S-Space forms, European Journal of Pure and Applied Mathematics, Vol. 11, No. 1, 2018, 150-159.
- [14] K. Yano and M. Kon, Structures on manifolds, vol. 3, Series in pure Math., World Scientific, Singapore, 1984.
- [15] K. Yano and M. Kon, On semi-symmetric metric connection, Rev. Roun. Math. Pures Appl. 15 (1970), 1579-1586.