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Curvature Inequalities for Submanifolds of S-space form
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Abstract. In this paper we establish new results of squared mean curvature and Ricci curvature
for the sub manifolds of S-space from that is the generalization of complex and contact structures.
Obtained results are discussed for invariant, anti invariant and CR sub manifolds of S-space from.
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1. Introduction

One of the main and useful idea in submanifolds conjectures is to derive relationship
among squared mean curvature and Ricci curvature of submanifolds, was explained by
Chen [6], [7]. After this many authors derived Chen inequalities for complex and contact
space forms [1], [11], [12] and on hyper surfaces of a Lorentzian manifold [9].
After the generalization of complex and contact space forms into S-space form [4], it is
natural to study the inequalities of Ricci curvature for submanifolds of S-space forms.
Geometry of S-space forms were studied by many authors i.e. [10], [13].
In this paper we find relations between squared mean curvature and Ricci curvature for
the sub manifolds of S-space form and discuss this relation for invariant, anti invariant
and CR sub manifolds of S-space form. After introduction, second section contains basics
of S-space forms and submanifolds. Third section contains main results.

2. Preliminaries

This section presents some well known facts related to S-space form and sub manifolds.

Yano[14] presented that almost complex and almost contact structures can be gen-
eralized as f - structure on a smooth manifold of dimension 2m + s . The idea for the
f-structure is to consider a tensor field with condition f3 + f = 0, of type (1,1) and rank
2m .
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Consider manifold M2m+s along an f -structure of rank 2m. We take s structural
vector fields ξ1, ξ2, . . . , ξs on M such as:

fξα = 0, ηα ◦ f = 0, f2 = −I +
∑

ξα ⊗ ηα, (1)

where ηα and ξα are the dual forms to each other, therefore complemented frames exist
on f -structure. For f- manifold we define a Riemannian metric g as

g(Y,X) = g(fY, fZ) +
∑

ηα(Y )ηα(Z)

for vector fields Y and Z on M [4].
An f -structure f is normal, if there exist complemented frames and

[f, f ] + 2
∑

ξα ⊗ dηα = 0,

where [f, f ] is Nijenhuis torsion of f . Let fundamental 2-form B be defined as B(Y,Z) =
g(Y, fZ), Y , Z ∈ T (M). f -structure that is normal and dη1 = · · · = dηs = B is known as
an S-structure. A smooth manifold along with an S-structure known as an S-manifold.
Blair described such types of manifolds in [4].

For Sasakian manifolds we take s = 1. For s ≥ 2 we may have some attractive
applications discussed in [4].

If M is an S-manifold, then we consider the formulas [4]:

∇̃Y ξα = −fY, Y ∈ T (M), α = 1, . . . , s, (2)

(∇̃Y f)Z =
∑
α

{g(fY, fZ)ξα + ηα(Z)f2Y }, Y, Z ∈ T (M), (3)

where ∇̃ is the Riemannian connection of g. The projection tensor −f2 determine the
distribution L and f2+I determine the complementary distribution M which is determined
and spanned by ξ1, . . . , ξs. It can be observe that if Y ∈ L then ηα(Y ) = 0 for all α, and
for Y ∈ M, we have fY = 0. A plane section Π on M is said to be f - section if it is
established by a vector Y ∈ L(p), p ∈ M, such that {Y, fY } span the section. We take the
Sectional curvature of Π as the f-sectional curvature. If M is an S-manifold of constant
f -sectional curvature k, then its curvature tensor is as:

R̃(Y,Z)U =
∑
α,β

{
ηα(Y )ηβ(U)f2Z − ηα(Z)ηβ(U)f2Y − g(fY, fU)ηα(Z)ξβ

+g(fZ, fU)ηα(Y )ξβ}+
k + 3s

4

{
−g(fZ, fU)f2Y + g(fY, fU)f2Z

}
+
k − s

4
{g(Y, fU)fZ − g(Z, fU)fY + 2g(Y, fZ)fU} , (4)

Y, Z, U ∈ T (M). Such a manifold M(k) will be called an S-space form. Examples of
S-space forms are The Euclidean space E2n+s and the hyperbolic space H2n+s .
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Consider immersed submanifold Mm of N2n+s. Then M is an invariant submnaifold
if ξα ∈ TM for any α and fY ∈ TM for any Y ∈ TM . It is said to be anti-invariant
submanifold if fY ∈ TM⊥ for any Y ∈ TM . For a vector field Y ∈ TM⊥, it can be
written as fY = tY + SY , where tY represents tangent component of fY , SY shows
normal component of fY. If S does not disappear, then its an f-structure [5].
For a vector field Z ∈ TM , it can be written as fZ = PZ + NZ, where PZ is tangent
component of fZ, NZ is normal component of fZ.

Let dim(M) ≥ s and we take the structure vector fields ξ1, ξ2, . . . , ξs as tangents to M.
M is known as CR-submaifold of N if we have two differentiable distributions D and D⊥

on M, TM = D +D⊥ satisfying

• D and D⊥ are mutually orthogonal to each other.

• If fDp = Dp, for any p ∈M then the distribution D is known as invariant under f.

• If fD⊥p ⊆ TpM⊥, for any p ∈M then the distribution D⊥ is known as anti invariant
under f.

The Gauss equation for the submanifold Mm into a (m+ q)-dimensional Riemannian
manifold Nm+q is

R̃′(Y,Z, U,W ) = R′(Y, Z, U,W ) + g(h′(Y,U), h′(Z,W ))− g(h′(Y,W ), h′(Z,U)).

Consider k-plan section of TpM denoted by D and let X be a unit vector in D. We can
choose orthonormal basis e1, e2, . . . , ek of D and we consider e1 = X, then Ricci curvature
RicD of D at X can be define as

RicD(x) = K12 +K13 + · · ·+K1k,

where Kij represents sectional curvature of 2-plane section spanned by ei, ej . Therefore
the scalar curvature τ of the k-plane section D can be written as

τ(D) =
∑

1≤i<j≤k
Kij .

.

3. Main Results

Theorem 1. Let Mm, be a sub manifold of S-space form N2n+s(K) of constant f -sectional
curvature k, with structural vector fields ξ1, ξ2, . . . , ξs tangent to Mm, then
for each unit vector X ∈ TpM , orthogonal to ξ1, ξ2, . . . , ξs

Ric(X) ≤ 1

4

[
m2 ‖ H ‖2 +(m− 1)(k + 3s) +

3

2
‖ PX ‖2 (k − s)− 1

2
(3s− 1)(k + 3s− 4)

]
(5)
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Proof. Let Mm be a sub manifold of S-space form N2n+s(K) with constant f -sectional
curvature K. For a point p ∈ M , take a unit vector X ∈ TpM . Choose an orthonormal
basis
e1, e2, . . . , em−s, em−s+1, . . . , em−s+s, em−s+s+1, . . . , e2n+s on TpN . Then it is clear that
e1, e2, . . . , em−s, em−s+1, . . . , em−s+s are unit tangent vectors to M at p. We take X = e1.
From the curvature tensor of S-space form N2n+s(K), after summation 1 ≤ i, j ≤ m we
have

R̃′(ei, ej , ej , ei) =
1

4
(k + 3s)m(m− 1) +

k + 3s− 4

4
(2s− 2ms) +

3

4
(k − 1) ‖ P ‖2 .

Using Gauss equation

1

4
(k + 3s)m(m− 1) +

k + 3s− 4

4
(2s− 2ms) +

3

4
(k − 1) ‖ P ‖2= 2τ −m2 ‖ H ‖2 + ‖ h ‖2, (6)

where H represents mean curvature, h represents second fundamental form and τ is
scalar curvature. Now we take the notation for second fundamental form h as hrij =

g(h(ei, ej), er), ‖ h ‖2=
∑m

i,j=1 g(h(ei, ej), h(ei, ej)) and ‖ P ‖2=
∑m

i,j=1 g
2(Pei, ej). Also

we know that mean curvature H(p) = 1
m

∑m
i=1 h(ei, ei). Then from (6), we have

n2 ‖ H ‖2 = 2τ +
1

2

2n+s∑
r=m+1

[
(hr11 + · · ·+ hrmm)2 + (hr11 − hr22 − · · · − hrmm)2

]
+ 2

2n+s∑
r=m+1

∑
i<j

(hrij)
2 − 2

2n+s∑
r=m+1

∑
2≤i<j≤n

hriih
r
jj

− 1

4
(k + 3s)m(m− 1)− k + 3s− 4

4
(2s− 2ms)− 3

4
(k − s) ‖ P ‖2 (7)

Since sectional curvature for sub manifold M can be represented as∑
2≤i,j≤n

Kij =
1

4
(k + 3s)(m− 2)(m− 1)− k + 3s− 4

4
(2(m− 2)s− (s− 1))

+
1

4
(k − s)

(
3 ‖ P ‖2 −3 ‖ Pe1 ‖2

)
. (8)

By Gauss equation, on S-space form we can write∑
2≤i,j≤n

K̃ij =
1

4
(k + 3s)(m− 2)(m− 1)− k + 3s− 4

4
(2(m− 2)s− (s− 1))

+
1

4
(k − s)

(
3 ‖ P ‖2 −3 ‖ Pe1 ‖2

)
+

2m+s∑
r=m+1

∑
2≤i<j≤n

(hriih
r
jj − (hrij)

2) (9)

Substituting (9) in (7), we get



N. A. Rehman / Eur. J. Pure Appl. Math, 12 (4) (2019), 1811-1818 1815

1

2
n2 ‖ H ‖2 = 2Ric(X) +

1

2

2n+s∑
r=m+1

(hr11 − hr22 − · · · − hrmm)2 +
2n+s∑
r=m+1

m∑
j=1

(hr1j)
2

− 2(m− 1)
k + 3s

4
− 3 ‖ PX ‖2 k − s

4
+ (3s− 1)

k + 3s− 4

4
, (10)

therefore

1

2
n2 ‖ H ‖2≥ 2Ric(X)− 2(m− 1)

k + 3s

4
− 3 ‖ PX ‖2 k − s

4
+ (3s− 1)

k + 3s− 4

4
, (11)

that gives required result.

Corollary 1. In Theorem 1, equality holds at point p ∈M , if

(i) H(p) = 0 and X is normal to TpM

(ii) p is totally geodesic point

Proof. (1) When H(p) = 0 , we get hr11 = hr22 = · · · = hrmm = 0 and when X is normal
to TpM , we have hr12 = hr13 = · · · = hr1m = 0, r ∈ {m + 1, . . . , 2n + s} and from (10)
equality holds.
(2)When p is totally geodesic point, hrij = 0 for all i, j, r ∈ {m+ 1, . . . , 2n} and from (10)
equality holds.

Corollary 2. Let M be an m-dimensional invariant sub manifold tangent to structure
vector fields ξ1, ξ2, . . . , . . . , ξs in S-space form N2n+s(k), then for each unit vector X ∈ TpM
orthogonal to ξ1, ξ2, . . . , . . . , ξs, we have

Ric(X) ≤ 1

4

[
(m− 1)(k + 3s) +

3

2
(k − s)− 1

2
(3s− 1)(k + 3s− 4)

]
(12)

Proof. We know that every invariant sub manifold of S-space form is minimal [14] i.e.
mean curvature vanishes and since X in unit tangent vector to M, ‖ fX ‖=‖ PX ‖=‖
X ‖= 1, therefore from (5), we get result.

Corollary 3. Let M be an m-dimensional anti-invariant sub manifold tangent to structure
vector fields ξ1, ξ2, . . . , . . . , ξs in S-space form N2n+s(k), then for each unit vector X ∈ TpM
orthogonal to ξ1, ξ2, . . . , . . . , ξs, we have

Ric(X) ≤ 1

4

[
m2 ‖ H ‖2 +(m− 1)(k + 3s)− 1

2
(3s− 1)(k + 3s− 4)

]
. (13)

Proof. Here for anti invariant sub manifolds, ‖ PX ‖= 0 and we have required result.
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Corollary 4. Let M be an m-dimensional CR-submanifold of S-space form N2n+s(K)
then
(i) For each unit vector X ∈ Dp,

Ric(X) ≤ 1

4

[
m2 ‖ H ‖2 +(m− 1)(k + 3s) +

3

2
(k − s)− 1

2
(3s− 1)(k + 3s− 4)

]
. (14)

(i) For each unit vector X ∈ D⊥p ,

Ric(X) ≤ 1

4

[
m2 ‖ H ‖2 +(m− 1)(k + 3s)− 1

2
(3s− 1)(k + 3s− 4)

]
. (15)

Let Mm, be a submanifold of N2n+s(K) s-space form of constant f -sectional curvature
k, using the results of Theorem 1, we can find a relation between the k-Ricci curvature
of Mm and the squared mean curvature ‖ H ‖2. Before this result first we define shape
operator.
Let p ∈ Mm and {e1, e2, . . . , em} an orthonormal basis of TpM

m. We choose the ortho
normal basis {e1, e2, . . . , em, em+1, . . . , e2n+s} on TpN

2n+s. Then shape operator takes the
form (see [12])

Aem+1 =



a1 0 . . . 0
0 a2 . . . 0
. . . .
. . . .
. . . .
0 0 0 am


Aer = (hrij), i, j = 1, . . . ,m; r = m+ 2, . . . , 2n+ s, traceAer = 0.
We can take

m2 ‖ H ‖2=

(
m∑
i=1

ai

)2

=

m∑
i=1

a2i + 2
∑
i<j

aiaj ≤ m
m∑
i=1

a2i .

Since we know that 0 ≤
∑

i<j(ai − aj)2 = (n− 1)
∑m

i=1 a
2
i − 2

∑
i<j aiaj , therefore

m∑
i=1

a2i ≥ m ‖ H ‖2 . (16)

Proposition 3.1. Let Mm, be a submanifold of s-space form N2n+s(K) of constant f -
sectional curvature k, tangent to ξ1, ξ2, . . . , ξs then we have

m2 ‖ H ‖2 ≥ 2τ

m(m− 1)
− 1

4
(k + 3s)− k + 3s− 4

4

(2s− 2ms)

m(m− 1)
− 3

4
(k − 1)

‖ PX ‖2

m(m− 1)
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Proof. We choose orthonormal basis e1, e2, . . . , em−s, em−s+1, . . . , em−s+s, em−s+s+1, . . . , e2n+s
on TpN with em+1 parallel to mean curvature vector H(p). From (6)

m2 ‖ H ‖2 = 2τ+ ‖ h ‖2 −1

4
(k + 3s)m(m− 1)− k + 3s− 4

4
(2s− 2ms)− 3

4
(k − 1) ‖ P ‖2

= 2τ +
m∑
i=1

a2i +
2n∑

r=m+2

m∑
i,j=1

(hrij)
2 − 1

4
(k + 3s)m(m− 1)

− k + 3s− 4

4
(2s− 2ms)− 3

4
(k − 1) ‖ PX ‖2

by (16)

m2 ‖ H ‖2 ≥ 2τ +m ‖ H ‖2 −1

4
(k + 3s)m(m− 1)

− k + 3s− 4

4
(2s− 2ms)− 3

4
(k − 1) ‖ PX ‖2

which proves the required result.

Remark 1. • For s = 0, we have the results of Theorem 1, Corollary 3, Corollary 2,
Proposition 3.1 for Khaler manifold.

• For s = 1, we have the results of Theorem 1, Corollary 3, Corollary 2, Proposition
3.1 for Sasakian Manifolds.
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