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Abstract. Let X be a topological space and I be an ideal in X. A subset A of a topological
space X is called a β-open set if A ⊆ cl(int(cl(A))). A subset A of X is called β-open with
respect to the ideal I, or βI -open, if there exists an open set U such that (1) U − A ∈ I, and
(2) A − cl(int(cl(U))) ∈ I. A space X is said to be a βI -compact space if it is βI -compact as a
subset. An ideal topological space (X, τ, I) is said to be a cβI -compact space if it is cβI -compact
as a subset. An ideal topological space (X, τ, I) is said to be a countably βI -compact space if X
is countably βI -compact as a subset. Two sets A and B in an ideal topological space (X, τ, I) is
said to be βI -separated if clβI

(A)∩B = ∅ = A∩ clβ(B). A subset A of an ideal topological space
(X, τ, I) is said to be βI -connected if it cannot be expressed as a union of two βI -separated sets.
An ideal topological space (X, τ, I) is said to be βI -connected if X βI -connected as a subset.
In this study, we introduced the notions βI -open set, βI -compact, cβI -compact, βI -hyperconnected,
cβI -hyperconnected, βI -connected and βI -separated. Moreover, we investigated the concept β-open
set by determining some of its properties relative to the above-mentioned notions.
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1. Introduction

Topology is an interesting area of mathematics. It is new, being conceive in the 19th
century. But according to Morris [15], the influence of topology is so vast, so that it is
identifiable in various branches of mathematics.

Topological ideas are present not only in mathematics but also in other areas, for
example biochemistry [16] and information systems [17]. Topology as a subject has several
different branches such as point set topology, algebraic topology, differential topology, etc.

The basic component of a topology space are open sets, and overtime there have been
so many generalizations of it. Among them are the following. Stone [18] introduced
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the concept of regular open sets. Levine [19] introduced the concept of semi open sets.
Najasted [20] introduced the concept of α-open sets. Mashhour et al. [31] introduced the
concept of pre-open sets. Abd El-Monsef et al. [1] introduced the concept of β-open sets.

Apart from introducing β-open sets, Abd El-Monsef et al. [1] also introduced β-
continuous mappings and β-open mappings. They studied their properties and discussed
the connections of these notions with the existing ones. Since then, the concept β-open
sets has been a subject of a couple of investigations. Among them were the following.
Abid [22] used the concept β-open set to obtain the properties of the concept non-semi-
predense set. Tahiliani [23] introduced an operation on a family of β-open sets; and
using the operation, the concept β-γ-open sets was defined and investigated. Kannan
and Nagaveni [5] introduced another generalization of the concept β-open sets, called β̂-
generalized closed sets. Mubarki et al. [25] introduced and investigated β∗-open sets,
which is also a generalization of the concept β-open sets. El-Mabhouh and Mizyed [26]
introduced the concept βc-open set which is a particular class of β-open sets. They
also showed that βc-open sets generates the same topology as the class of θ-open sets
in Alexandroff space. Akdag and Ozkan [27] adapted the concept β-open set in soft
topological spaces, and defined the concepts soft β-interior and soft β-closure, and gave
their properties. Arockiarani and Arokia Lancy [28] presented gβ-closed sets and gsβ-
closed sets (which were defined indirectly in terms of the notion of β-open sets) and
introduced parallel concepts in soft topological spaces.

Let X be a topological space and I be an ideal in X. A subset A of a topological
space X is called a β-open set if A ⊆ cl(int(cl(A))). A subset A of X is called β-open with
respect to the ideal I, or βI -open, if there exists an open set U such that (1) U − A ∈ I,
and (2) A − cl(int(cl(U))) ∈ I. A subset A of an ideal topological space (X, τ, I) is said
to be βI -compact if every cover of A by βI -open set has a finite sub-cover. A space X
is said to be a βI -compact space if it is βI -compact as a subset. A subset A of an ideal
topological space (X, τ, I) is said to be a compatible βI -compact, or simply cβI -compact,
if every cover {Uλ : λ ∈ Λ} of A by β-open set has a finite subset Λ0 of Λ such that
A−

⋃
{Uλ : λ ∈ Λ0} ∈ I. An ideal topological space (X, τ, I) is said to be a cβI -compact

space if it is cβI -compact as a subset.
A subset A of an ideal topological space (X, τ, I) is said to be countably βI -compact

if every countable cover {Un : n ∈ N} of A by βI -open set, there exists a finite subset
{i1, i2, . . . , ik} of N such that A−

⋃
{Uij : j = 1, 2, . . . , k} ∈ I. An ideal topological space

(X, τ, I) is said to be a countably βI -compact space if X is countably βI -compact as a
subset.

The concept ∗-hyperconnectedness was introduced by Ekici et al. [2], and the concept
I∗-hyperconnectedness was introduced by Abd El-Monsef et al. [7]. As defined in [4] an
ideal topological space (X, τ, I) is said to be ∗-hyperconnected if cl∗(A) = X for every
non-empty open subset A of X, and as defined in [3], an ideal topological space (X, τ, I)
is said to be I∗-hyperconnected if X − cl∗(A) ∈ I for every non-empty open subset A of
X. Given these insights, we introduce the following parallel concept. An ideal topological
space (X, τ, I) is said to be β∗I -hyperconnected if X − cl∗(A) ∈ I for every non-empty
βI -open subset A of X.
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For the concepts that were not discussed here please refer to [6, 14, 15].

2. β-Open Sets with Respect to an Ideal

In this section, we investigated the concept β-open in a direction parallel to the inves-
tigation of semi-open sets in [32].

Lemma 1. Let (X, τ) be a topological space and A be a subset of X. Then int(A) =
int(cl(A)) = int(cl(int(A))).

Proof. Let (X, τ) be a topological space and A be a subset of X. Then we have,
int(cl(A)) = int(Fr(A)∪ int(A)) = int(A) = int(Fr(int(A))∪ int(A)) = int(cl(int(A))).

Lemma 2 characterizes β-open sets.

Lemma 2. Let (X, τ, I) be an ideal topological space. A subset A of X is β-open if and
only if there exists an open set U such that U ⊆ A ⊆ cl(int(cl(U))).

Proof. Assume that A is β-open. Then A ⊆ cl(int(cl(A))). Let U = int(A). Then U
is open and, by Lemma 1 U ⊆ A ⊆ cl(int(cl(A))) = cl(int(cl(int(A)))) = cl(int(cl(U))).

Conversely, assume that there exists an open set U such that U ⊆ A ⊆ cl(int(cl(U))).
Since U ⊆ A, cl(U) ⊆ cl(A). Hence, int(cl(U)) ⊆ int(cl(A)). And so, cl(int(cl(U))) ⊆
cl(int(cl(A))) Thus, A ⊆ cl(int(cl(A))).

Lemma 3 says that every open set is a βI -open set, every element of the ideal is a
βI -open set, and every β-open set is a βI -open set.

Lemma 3. Let (X, τ, I) be an ideal topological space.

(i) If A is an open set, then A is an βI-open set.

(ii) If A ∈ I, then A is an βI-open set.

(iii) If A is a β-open set, then A is an βI-open set.

Proof. (1) If A is open, then we let U = A. Observe that U − A = ∅ ∈ I, and
A − cl(int(cl(U))) = A − cl(U) = A − cl(A) = ∅ ∈ I. This shows that A is an βI -
open set. (2) If A ∈ I, then we let U = ∅. Observe that U − A = ∅ ∈ I, and
A − cl(int(cl(U))) = A − ∅ = A ∈ I. This shows that A is an βI -open set. (3) If A
is β-open, then by Lemma 2 there exists an open set U such that U ⊆ A ⊆ cl(int(cl(U))).
Observe that U − A = ∅ ∈ I, and A − cl(int(cl(U))) = ∅ ∈ I. This shows that A is an
βI -open set.

Lemma 4 says that if I is the minimal ideal, then the βI -open sets are precisely the
β-open sets.
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Lemma 4. Let (X, τ, I) be an ideal topological space. If I is not countably additive, then
the following statements are equivalent.

(i) If I = {∅}.

(ii) A is a β-open set if and only if A is a βI-open set.

Proof. Assume that I = {∅}, and A be a β-open set. Then by Lemma 3, A is a
βI -open set. Conversely, let A be a βI -open set. Then there exists an open set U such
that U−A ∈ I and A−cl(int(cl(U))) ∈ I. Since ∅, U−A ∈ ∅ and A−cl(int(cl(U))) ∈ ∅,
that is, U ⊆ A and A ⊆ cl(int(cl(U))). Thus, U ⊆ A ⊆ cl(int(cl(U))). By Lemma 2, A is
a β-open set.

Next, assume that A is a β-open set if and only if A is a βI -open set, and suppose
that I 6= {∅}. Let B ∈ I with B 6= ∅. Then by Lemma 3, B is a βI -open set. By
assumption B is a β-open set. By Lemma 2, there exists an open set U1 such that
U1 ⊆ B ⊆ cl(int(cl(U1))). Since B ∈ I and U1 ⊆ B, U1 ∈ I. Hence, U1 ∪ B ∈ I. By
Lemma 2, U1 ∪ B is a βI -open set. By assumption U1 ∪ B is a β-open set. Thus, there
exists an open set U2 such that U2 ⊆ (U1 ∪ B) ⊆ cl(int(cl(U2))). Since U1 ∪ B ∈ I and
U2 ⊆ U1 ∪ B, U2 ∈ I. Hence, U1 ∪ U2 ∪ B ∈ I. By Lemma 2, U1 ∪ U2 ∪ B is a βI -open
set. By assumption U1 ∪ U2 ∪ B is a β-open set. Thus, there exists an open set U3 such
that U3 ⊆ (U1 ∪ U2 ∪ B) ⊆ cl(int(cl(U3))). Since U1 ∪ U2 ∪ B ∈ I and U3 ⊆ U1 ∪ U2 ∪ B,
U3 ∈ I. Hence, U1 ∪ U2 ∪ U3 ∪ B ∈ I. Continuing in this manner we obtain a sequence
〈U1, U2, U3, . . .〉 of set in I such that U1 ∪ U2 ∪ U3 ∪ · · · ∈ I. This is a contradiction since
I is not countably additive. Therefore, I = {∅}.

Theorem 1 says that if I is the minimal ideal, then the notions β-compact, βI -compact
and cβI -compact coincides.

Theorem 1. For an ideal topological space (X, τ, I), the following statements are equiva-
lent.

(i) (X, τ) is a β-compact space.

(ii) (X, τ, {∅}) is a βI-compact space.

(iii) (X, τ, {∅}) is a cβI-compact space.

Proof. (1) ⇒ (2) Assume that (1) holds, and let {Uλ : λ ∈ Λ} be a cover of X by
β-open sets. By Lemma 3 Uλ is a βI -open set for all λ ∈ Λ. Since X is β-compact, there
exists a finite subset Λ0 of Λ such that {Uλ : λ ∈ Λ0} is still a cover of X. By Lemma 4,
Uλ is a βI -open set for all λ ∈ Λ0. Hence, there exists a finite subcover of X by βI -open
sets. This shows that X is a βI compact space.
(2) ⇒ (3) Assume that (2) holds, and let {Uλ : λ ∈ Λ} be a cover of X by β-open sets.
By Lemma 3 Uλ is a βI -open set for all λ ∈ Λ. By assumption, there exists a finite subset
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Λ0 of Λ such that {Uλ : λ ∈ Λ0} is still a cover of X, that is X −
⋃
λ ∈ Λ = ∅ ∈ I. This

show that (3) holds.
(3)⇒ (1) Assume that (3) holds, and let {Uλ : λ ∈ Λ} be a cover of X by β-open sets. By
Lemma 4, if I = {∅}, then a β-open sets is precisely a βI -open set. Thus, Uλ is at the same
time a βI -open set for all λ ∈ Λ. By assumption, there exists a finite subset Λ0 of Λ such
that X −

⋃
{Uλ : λ ∈ Λ0} ∈ I, that is X −

⋃
{Uλ : λ ∈ Λ0} = ∅ (X ⊆

⋃
{Uλ : λ ∈ Λ0}).

Hence, there exists a finite subset Λ0 of Λ such that X ⊆
⋃
{Uλ : λ ∈ Λ0}.This show that

(1) holds.

Theorem 2 characterizes βI -compact space.

Theorem 2. For an ideal topological space (X, τ, I), the following statements are equiva-
lent.

(i) (X, τ, I) is a βI-compact space.

(ii) For every family {Fλ : λ ∈ Λ} of βI-closed sets such that
⋂
{Fλ : λ ∈ Λ} = ∅, there

exist a finite subset Λ0 of Λ such that
⋂
{Fλ : λ ∈ Λ0} = ∅.

Proof. (1)⇒ (2) Assume that (1) holds, and let {Fλ : λ ∈ Λ} be a family of βI -closed
sets such that

⋂
{Fλ : λ ∈ Λ} = ∅. If

⋂
{Fλ : λ ∈ Λ} = ∅, then

⋃
{FCλ : λ ∈ Λ} =

(
⋂
{Fλ : λ ∈ Λ})C = X. Hence,

⋃
{FCλ : λ ∈ Λ} is a covering of X by βI -open sets. By

assumption there exists a finite subset Λ0 of Λ such that
⋃
{FCλ : λ ∈ Λ0} = X, that is⋂

{Fλ : λ ∈ Λ0} = ∅.
(2) ⇒ (1) Assume that (2) holds, and let {Uλ : λ ∈ Λ} be a cover of X by βI -open sets.
If {Uλ : λ ∈ Λ} is a cover of X by βI -open sets, that is

⋃
{Uλ : λ ∈ Λ} = X, then⋂

{UCλ : λ ∈ Λ} = (
⋃
{Uλ : λ ∈ Λ})C = ∅. By assumption, there exists a finite subset Λ0

of Λ such that
⋂
{UCλ : λ ∈ Λ0} = ∅, that is

⋃
{Uλ : λ ∈ Λ0} = X. This show that (1)

holds.
Theorem 3 characterizes βI -compact space.

Theorem 3. In an ideal topological space (X, τ, I), the following statements are equivalent.

(i) (X, τ, I) is a cβI-compact space.

(ii) For every family {Fλ : λ ∈ Λ} of βI-closed sets such that
⋂
{Fλ : λ ∈ Λ} = ∅, there

exist a finite subset Λ0 of Λ such that
⋂
{Fλ : λ ∈ Λ0} ∈ I.

Proof. (1)⇒ (2) Assume that (1) holds, and let {Fλ : λ ∈ Λ} be a family of βI -closed
sets such that

⋂
{Fλ : λ ∈ Λ} = ∅. If

⋂
{Fλ : λ ∈ Λ} = ∅, then

⋃
{FCλ : λ ∈ Λ} =

(
⋂
{Fλ : λ ∈ Λ})C = X. Hence,

⋃
{FCλ : λ ∈ Λ} is a covering of X by βI -open sets. By

assumption there exists a finite subset Λ0 of Λ such that X −
⋃
{FCλ : λ ∈ Λ0} ∈ I, that

is
⋂
{Fλ : λ ∈ Λ0} ∈ I.

(2) ⇒ (1) Assume that (2) holds, and let {Uλ : λ ∈ Λ} be a cover of X by βI -open sets.
If {Uλ : λ ∈ Λ} is a cover of X by βI -open sets, that is

⋃
{Uλ : λ ∈ Λ} = X, then



G. Catalan, R. Padua, M. Baldado Jr. / Eur. J. Pure Appl. Math, 12 (3) (2019), 893-905 898⋂
{UCλ : λ ∈ Λ} = (

⋃
{Uλ : λ ∈ Λ})C = ∅. By assumption, there exists a finite subset Λ0

of Λ such that
⋂
{UCλ : λ ∈ Λ0} ∈ I, that is X −

⋃
{Uλ : λ ∈ Λ0} ∈ I. This show that (1)

holds.

Remark 1. [30] Let (X, τ, I) and (Y, σ, J) be ideal topological spaces.

(i) If f : (X, τ, I)→ (Y, σ) is a function, then f(I) = {f(A) : A ∈ I} is an ideal in Y .

(ii) If f : (X, τ)→ (Y, σ, J) is an injective function, then f−1(J) = {f−1(B) : B ∈ J} is
an ideal in X.

We note that a function f : (X, τ, I)→ (Y, σ, J) is called

(i) βI -open function if f(A) is βJ -open in Y for each βI -open set A in X.

(ii) βI -irresolute function if f−1(B) is βI -open in X for each βJ -open set B in Y .

(iii) βI -continuous function if f−1(B) is βI -open in X for each open set B in Y .

The following Theorems are worth-noting.

Theorem 4. If f : (X, τ, I)→ (Y, σ, J) is a βI-irresolute surjective function and (X, τ, I)
is a cβI-compact space, then (Y, σ, J) is also a cβI-compact space.

Proof. Let {Uλ : λ ∈ Λ} be a cover of Y by βI -open sets. Since f is a βI -irresolute
surjective function, {f−1(Uλ) : λ ∈ Λ} is a cover of X by βI -open sets. Since X is cβI -
compact, there exists a finite subset Λ0 of Λ such that X −

⋃
{f−1(Uλ) : λ ∈ Λ0} ∈ I. By

Remark 1, Y − ∪{f(Uλ) : λ ∈ Λ0} = f(X −
⋃
{f−1(Uλ) : λ ∈ Λ0}) ∈ J .

Theorem 5. If f : (X, τ, I) → (Y, σ, J) is a βf−1(J)-open bijective function and (Y, σ, J)
is a cβJ -compact space, then (X, τ, f−1(J)) is also a cβf−1(J)-compact space.

Proof. Let {Uλ : λ ∈ Λ} be a cover of X by βf−1(J)-open sets. Since f is an open
bijective function, {f(Uλ) : λ ∈ Λ} is a cover of Y by βJ -open sets. Since Y is a cβJ -
compact space, there exists a finite subset Λ0 of Λ such that Y −

⋃
{f(Uλ) : λ ∈ Λ0} ∈ J ,

that is X − ∪{Uλ : λ ∈ Λ0} = f−1(Y −
⋃
{f(Uλ) : λ ∈ Λ0}) ∈ J . This shows that

(X, τ, f−1(J)) is a cβf−1(J)-compact space.

Theorem 6. Every cβI-compact space is also a countably βI-compact space.

Proof. Let (X, τ, I) be cβI -compact space. Let {Un : n ∈ N} be a countable cover of
X by βI -open sets. Since X is a cβI -compact space, there exists a finite subset {ij : j =
1, 2, . . . , k} of N such that X −

⋃
{Uij : j = 1, 2, . . . , k} ∈ I. This shows that (X, τ, I) is a

countably βI -compact space.
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3. Hyperconnectedness with Respect to Ideals

The concept ∗-hyperconnectedness was introduced by Ekici et al. [2], and the concept
I∗-hyperconnectedness was introduced by Abd El-Monsef et al. [7]. These insights pro-
pelled us to create a parallel concept called βI∗-hyperconnectedness, and the investigation
in this section is parallel to the investigation of α-open sets in [24].

Theorem 7. Every βI∗-hyperconnected space is also an I∗-hyperconnected space.

Proof. Let (X, τ, I) be a β∗I -hyperconnected space and A be an open set. Since X is
a β∗I -hyperconnected space and every open set is a βI -open set, X − cl∗(A) ∈ I. Thus,
(X, τ, I) is also an I∗-hyperconnected space.

Lemma 5. The intersection of any family of ideals on X is an ideal on X.

Theorem 8 say that if I is the minimal ideal, then the notions ∗-hyperconnectedness
and I∗-hyperconnectedness are the same. Moreover, if the topological space is clopen, then
the notions ∗-hyperconnectedness, I∗-hyperconnectedness and β∗I -hyperconnectedness are
the same.

Theorem 8. Let (X, τ, {∅}) be an ideal topological space.

(i) If I = {∅}, then the concepts ∗-hyperconnectedness and I∗-hyperconnectedness are
equivalent. [3]

(ii) If I = {∅} and every open set is closed, then the concepts ∗-hyperconnectedness,
I∗-hyperconnectedness and β∗I -hyperconnectedness are equivalent.

Proof. (1) If (X, τ, I) is a β∗I -hyperconnected space and A is a non-empty open set,
then cl∗(A) = X. Hence, X − cl∗(A) = ∅ ∈ I. Thus, (X, τ, I) is an I∗-hyperconnected
space.

Conversely, if (X, τ, I) is an I∗-hyperconnected space and A is a non-empty open set,
then X − cl∗(A) ∈ I. Since I = {∅}, X − cl∗(A) = ∅, that is cl∗(A) = X. Thus, (X, τ, I)
is an ∗-hyperconnected space.
(2) Assume that I = {∅} and every open set is closed.
Claim 1. A is an open set if and only if A is a β-open set.
If A is an open set, then cl(int(cl(A))) = A. Hence, A is a β-open set. Conversely, if
A is a β-open set, then by Lemma 2 there exists an open set U such that U ⊆ A ⊆
cl(int(cl(U))) = U , that is A = U . Hence, A is an open set. This shows the claim.
Claim 2. The concepts I∗-hyperconnectedness and β∗I -hyperconnectedness are equivalent.
if (X, τ, I) is an I∗-hyperconnected space and A is a non-empty open set, then X −
cl∗(A) ∈ I. By Claim 1 and Lemma 5, any open set is precisely a βI -open set. Hence,
X − cl∗(A) ∈ I for every non-empty βI -open set. Thus, (X, τ, I) is a β∗I -hyperconnected
space. Conversely, if (X, τ, I) is a β∗I -hyperconnected space and A is a non-empty βI -
open set, then X − cl∗(A) ∈ I. By Claim 1 and Lemma 5, any open set is precisely a
βI -open set. Hence, X − cl∗(A) ∈ I for every non-empty open set. Thus, (X, τ, I) is an
I∗-hyperconnected space.

Accordingly, by statement (1) and Claim 2, statement (2) follows.
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Theorem 9. If an ideal topological space (X, τ, {∅}) is a βI∗-hyperconnected space, then
X − cl∗(A) ∈ I for every non-empty β-open subset A of X.

Proof. Let (X, τ, I) be a β∗I -hyperconnected space and A is a non-empty β-open set.
Since by Lemma 4 every β-open set is a βI -open set, A is a non-empty βI -open set also.
If (X, τ, I) is a β∗I -hyperconnected space, then X − cl∗(A) ∈ I.

Theorem 10 characterizes a β∗I -hyperconnected space.

Theorem 10. For an ideal topological space (X, τ, I), the following statements are equiv-
alent.

(i) X is a β∗I -hyperconnected space.

(ii) int∗(A) ∈ I for every proper βI-closed subset A of X.

Proof. (1) ⇒ (2) Assume that (1) holds, and let B be a βI -closed set. If B is a βI -
closed set, then X −B is a βI -open set. Moreover, if B is a proper subset, then BC 6= ∅.
By assumption, int∗(B) = X − cl∗(X −B) ∈ I.
(2) ⇒ (1) Assume that (2) holds, and let A be a non-empty βI -open set. If A is a
non-empty βI -open set, then X − A is a proper βI -open subset of X. By assumption,
X − cl∗(A) = X − cl∗(X − (X − A)) = int∗(X − A) ∈ I. This shows that X is a β∗I -
hyperconnected space.

4. Separation Notions with Respect to Ideals

Let (X, τ, I) be an ideal topological space and A be a subset of X. The βI -closure of
A is the smallest βI -closed set containing A, denoted by clβI (A).

Recall that two sets A and B in an ideal topological space (X, τ, I) is said to be βI -
separated if clβI (A) ∩ B = ∅ = A ∩ clβ(B), and a subset A of an ideal topological space
(X, τ, I) is said to be βI -connected if it cannot be expressed as a union of two βI -separated
sets. An ideal topological space (X, τ, I) is said to be βI -connected if X βI -connected as
a subset. A subset A of an ideal topological space (X, τ, I) is said to be βI -connected if
it cannot be expressed as a union of two βI -separated sets. An ideal topological space
(X, τ, I) is said to be βI -connected if X βI -connected as a subset.

Lemma 6. Let (X, τ, I) be an ideal topological space. If A and B are non-empty disjoint
subsets of X such that A is β-open and B is βI-open, then A and B are βI-separated sets.

Proof. Suppose that A and B are βI -separated sets, that is clβI (A) ∩ B 6= ∅ or
A ∩ clβ(B) 6= ∅. Since A and B are non-empty disjoint subsets of X, A ⊆ BC and
B ⊆ AC . If A is β-open and B is βI -open, then AC is β-closed and BC is βI -closed. Hence,
BC ∩B ⊇ clβI (A) ∩B 6= ∅ or A ∩AC ⊇ A ∩ clβ(B) 6= ∅. This is a contradiction.

The next statement, Lemma 7, stressed that every βI -connected space is connected.
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Lemma 7. If an ideal topological space (X, τ, I) is βI-connected, then (X, τ) is connected.

Proof. Suppose that X is not connected. Let A and B be non-empty disjoint open
sets such that X = A∪B. Since every open set is both β-open and βI -open, A and B are
both β-open and βI -open. Since A = BC and B = AC , A and B are also both β-closed
and βI -closed. Thus A = clβI (A) and B = clβ(B). Hence, clβI (A) ∩ B = A ∩ B = ∅ and
A ∩ clβ(B) = A ∩B = ∅. Therefore, (X, τ, I) is not βI -connected.

Theorem 11. Let (X, τ, I) be an ideal topological space and Y be an open set. If A is a
βI subset of X, then A ∩ Y is βIY -open subset of Y .

Proof. If A is a βI subset of X, then there exists an open set U ′ such that U ′ −A ∈ I
and A− cl(int(cl(U))) ∈ I. Let U = U ′ ∩ Y . Then

U − (A ∩ Y ) = U ∩ (A ∩ Y )C

= (U ′ ∩ Y ) ∩ (AC ∪ Y C)
= (U ′ ∩ Y ∩AC) ∪ (U ′ ∩ Y ∩ Y C)
= U ′ ∩ Y ∩AC
= (U ′ −A) ∩ Y ∈ IY .

Moreover,

(A ∩ Y )− cl(int(cl(U))) = (A ∩ Y )− cl(int(cl(U ′ ∩ Y )))
= (A ∩ Y )− cl(int(cl(U ′))) ∩ Y
= [A− cl(int(cl(U ′)))] ∩ Y ∈ IY .

Therefore, A ∩ Y is βIY -connected.

Remark 2. Let (X, τ, I) be an ideal topological space. If Y ⊆ X, then IY = {A∩ Y : A ∈
I} is a subset of I.

The succeeding Theorems are worth-noting.

Theorem 12. Let (X, τ, I) be an ideal topological space, Y be an open set, and A ⊆ Y .
A is a βIY -open subset of Y if and only if it is a βI-open subset of X.

Proof. Assume that A is a βIY -open set. Then there exists an open set U such that
U − A ∈ IY and A − cl(int(cl(U))) ∈ IY . Let U ′ = U ∩ Y . Since Y is open, U ′ is open.
Thus, by Remark 2 U ′−A ∈ I and A− cl(int(cl(U ′))) ∈ I. This shows that A is βI -open.

Conversely, assume that A is a βI -open set. Then there exists an open set U such that
U−A ∈ I and A−cl(int(cl(U))) ∈ I. Note that Y ∩ (U−A) ∈ IY and A−cl(int(cl(U))) ∈
IY , that is (Y ∩ U) − A ∈ IY and A − cl(int(cl(Y ∩ U))) ∈ IY . This shows that A is
βIY -open.

Theorem 13. Let (X, τ, I) be an ideal topological space, Y be an open set, and A ⊆ Y .
Then clβIY (A) = clβI (A) ∩ Y .
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Proof. Let w /∈ clβI (A) ∩ Y . Then w ∈ X − clβI (A). By Theorem 12, (X − clβI (A)) ∩
Y is a βIY -open subset of Y . Note that w must be in (X − clβI (A)). Hence, Y −
[(X − clβI (A)) ∩ Y ] is a βIY -closed set in Y , which does not contain w. Thus, x /∈ clβI (A).
Therefore, clβIY (A) ⊆ clβI (A) ∩ Y .

Next, let z /∈ clβIY (A). Then z ∈ X − clβIY (A). By Theorem 12, (Y − clβIY (A))
is a βI -open subset of X. Note that (Y − clβIY (A)) must contain w. Thus, X − (Y −
clβIY (A)) is a βI -closed set in X, which does not contain z. Thus, clβI (A) =

⋂
{F :

F is a βI -closed set and A ⊆ F} does not contain z, that is z /∈ clβI (A). Therefore,
clβIY (A) ⊇ clβI (A) ∩ Y .

Theorem 14. Let (X, τ, I) be an ideal topological space, Y be an open set, and A and B
be subsets of Y . Then the following statements are equivalent.

(i) A and B are βIY -separated in Y .

(ii) A and B are βI-separated in X.

Proof. (1)⇒ (2) Assume that (1) holds. If A and B are βIY -separated in Y , then by
the assumption and by Theorem 13 clβI (A)∩B = clβI (A)∩ (B∩Y ) = (clβI (A)∩Y )∩B =
clβIY (A)∩B = ∅ and A∩clβ(B) = (A∩Y )∩clβ(B) = A∩(clβ(B)∩Y ) = A∩clβY (B) = ∅.
This shows that A and B are βI -separated.
(2)⇒ (1) Assume that (2) holds. IfA andB are βI -separated inX, then by the assumption
and by Theorem 13 ∅ = clβI (A)∩B = clβI (A)∩(B∩Y ) = (clβI (A)∩Y )∩B = clβIY (A)∩B
and ∅ = A ∩ clβ(B) = (A ∩ Y ) ∩ clβ(B) = A ∩ (clβ(B) ∩ Y ) = A ∩ clβY (B). This shows
that A and B are βIY -separated.

Theorem 15. An ideal topological space (X, τ, I) is a βI-connected if and only if it cannot
be written as a disjoint union of a non-empty β-open set and a βI-open set.

Proof. Suppose that (X, τ, I) is a βI -connected space and X can be written as a disjoint
union of a non-empty β-open set and a βI -open set. Let A be a non-empty β-open set
and B be a βI -open set with X = A ∪B and A ∩B 6= ∅. If X = A ∪B and A ∩B 6= ∅,
then AC = B and BC = A. Since AC = B and BC = A, A is a βI -closed set and B be a
β-closed set. Thus, clβI (A) ∩B = A ∩B = ∅ and A ∩ clβ(B) = A ∩B = ∅. Thus, A and
B are βI -separated sets. This is a contradiction since X is a βI -connected space.

Conversely, assume that X cannot be written as a disjoint union of a non-empty β-
open set and a βI -open set. If (X, τ, I) is not βI -connected, then X can be written as a
union of two βI -separated sets, say A and B, with X = A ∪ B. Thus, clβI (A) ∩ B = ∅
and A ∩ clβ(B) = ∅, that is clβI (A) = BC and clβ(B) = AC . This implies that A is a
non-empty β-open set and B is a βI -open set. This is a contradiction since X cannot be
written as a disjoint union of a non-empty β-open set and a βI -open set.

Theorem 16. Let (X, τ, I) be an ideal topological space and A be an open set. If A is
βI-connected, and H and G are βI-separated with A ⊆ H ∪ G, then either A ⊆ H or
A ⊆ G.
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Proof. Suppose that A ∩H 6= ∅ and A ∩ G 6= ∅. Since A ⊆ H ∪ G, A = (A ∩H) ∪
(A ∩ G). Since H and G are βI -separated, clβI (A ∩ H) ∩ (A ∩ G) = clβI (H) ∩ (G) = ∅
and (A ∩ H) ∩ clβ(A ∩ G) = H ∩ clβ(G) = ∅. Thus, [clβI (A ∩H) ∩A] ∩ (A ∩ G) = ∅
and (A ∩H) ∩ [clβ(A ∩G) ∩A] = ∅. By Theorem 13, clβIA (A ∩H) ∩ (A ∩ G) = ∅ and
(A∩H)∩clβA(A∩G) = ∅. This implies that A is not βI -connected. This is a contradiction.
Therefore, either A ∩H = ∅ or A ∩G = ∅, that is H ⊆ A or G ⊆ A.

Theorem 17. Let (X, τ, I) be an ideal topological space and, A and B be βI-separated
subsets of X. If C and D are two non-empty subsets of X such that C ⊆ D and D ⊆ B,
then C and D are also βI-separated.

Proof. If A and B are βI -separated, then clβI (A) ∩ B = ∅ and A ∩ clβ(B) = ∅.
Hence, clβI (C) ∩ D ⊆ clβI (A) ∩ B = ∅ and C ∩ clβ(D) = A ∩ clβ(B) = ∅, that is
clβI (C) ∩D = ∅ = C ∩ clβ(D). This shows that C and D are βI -separated.

Theorem 18. If A is a βI-connected subset of a βI-connected ideal topological space
(X, τ, I) such that X −A is the union of two βI-separated sets B and C, then A ∪B and
A ∪ C are βI-connected.

Theorem 19. The continuous image a βI-connected space is connected.

Theorem 20. Let (X, τ, I) be an ideal topological space. If the union of two βI-separated
sets is a β-closed set, then one of the sets is β-closed and the other is βI-closed.

Proof. Let A and B be βI -separated such that A ∪ B is β-closed. If A and B is βI -
separated, then clβI (A) ∩B = ∅ = A ∩ clβ(B) = ∅. Moreover, if A ∪B is β-closed, then
clβ(A∪B) = A∪B. Thus, A ⊆ A∪B implies clβI (A) ⊆ clβI (A∪B) ⊆ clβ(A∪B) = A∪B.
Hence, clβI (A) ⊆ clβI (A) ∩ (A ∪ B) = clβI (A) ∩ A ∪ clβI (A) ∩ B = clβI (A) ∩ A = A, that
is A is βI -closed. Similarly, B ⊆ A ∪ B implies clβ(B) ⊆ clβ(A ∪ B) = A ∪ B. Hence,
clβ(B) ⊆ clβ(B) ∩ (A ∪ B) = clβ(B) ∩ A ∪ clβ(B) ∩ B = clβ(B) ∩ B = B, that is B is
β-closed.
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