EUROPEAN JOURNAL OF PURE AND APPLIED MATHEMATICS

Vol. 12, No. 3, 2019, 1187-1198 ISSN 1307-5543 – www.ejpam.com Published by New York Business Global

On C-co-epi-retractable modules

Abdoul Djibril Diallo¹, Papa Cheikhou Diop^{2,*}, Mamadou Barry¹

 ¹ Département de Mathématiques et Informatique, Faculté des Sciences et Techniques, Université Cheikh Anta Diop, Dakar, Sénégal
 ² Département de Mathématiques, UFR Sciences et Technologies, Université de Thiès, Thiès, Sénégal

Abstract. In this paper, we introduce the notion of c-co-epi-retractable modules. An R-module M is called c-co-epi-retractable if it contains a copy of its factor module by a complement submodule. The ring R is called c-co-pri if R_R is c-co-epi-retractable. Conditions are found under which, a c-co-epi-retractable module is extending, retractable, semi-simple, quasi-injective, injective and simple. Also, we investigate when c-co-epi-retractable modules have finite uniform dimension. Finally, right SI-rings, semi-simple artinian rings and quasi-Frobenius rings are characterized in termes of c-co-epi-retractable modules.

2010 Mathematics Subject Classifications: 13B10,13C05,13C13

Key Words and Phrases: co-epi-retractable modules, c-co-epi-retactable modules, extending modules, Rickart modules

1. Introduction

Throughout all rings are associative with identity and all modules are unitary right module. In [10], Ghorbani introduced the co-epi-retractable modules. An R-module Mis called co-epi-retractable if it contains any of its factor modules. A ring R is called co-pri if R_R is a co-epi-retractable module. It is was shown in [10], that a ring R is copri iff its right ideals is the right annihilator of an element of R. Also co-pi-retractable modules have been investigated by Mostafanasab [15]. He studied the simplicity and the semi-simplicity of co-pi-retractable modules. Recall that a module M is called extending if every complement submodule is a direct summand. Motivated by the definition of a co-epi-retractable module and the definition of a extending module, we say that a module is c-co-epi-retractable if it contains a copy of its factor modules by a complement submodule. Every co-epi-retractable module and every extending module is c-co-epi-retractable. In particular uniform modules and semi-simple modules are c-co-epi-retractable. In this

Email addresses: cheikpapa@yahoo.fr (P. C. Diop),

dialloabdoulaziz 58@yahoo.fr (A. D. Diallo), mansabadion1@hotmail.com (M. Barry)

http://www.ejpam.com

© 2019 EJPAM All rights reserved.

^{*}Corresponding author.

DOI: https://doi.org/10.29020/nybg.ejpam.v12i3.3461

Our paper is structured as follows:

ules.

In the second section, we give preliminary definitions and results which we will use throughout this paper.

In the third section, we define the c-co-epi-retractable modules. Our aim in this section is to work on the concept of c-co-epi-retractable modules. We show, among others, the following results.

(1) For an R-module with regular endomorphism ring, the properties, c-co-epi-retractable, extending, continuous and quasi-continuous are all equivalent.

(2) If M is a c-co-epi-retractable module with $Udim(M) = n \ge 2$, then M is retractable and for any $0 \ne C \subseteq_c M$, M/C is uniform.

(3) Let R be a right self-injective ring and M be a self-hereditary R-module. Then M is c-co-epi-retractable iff it is finitely generated semi-simple injective.

(4) Let M be a c-co-epi-retractable R-module such that S satisfies DCC for cyclic right ideals. If for any finitely generated right ideal $I \subseteq S$, r(KerI) = I then M has finite uniform dimension.

(5) The following conditions are euivalent for a right SI-ring R:

- (a) $R_R^{(\mathbb{N})}$ is extending.
- (b) Every *R*-module is c-co-epi-retractable.
- (c) Every R-module is extending.

For an *R*-module $M, S = End_R(M)$ denotes the endomorphism ring of M. For $\phi \in S$, $Ker\phi$ and $Im\phi$ stand for kernel and image of ϕ , respectively. The notations $N \leq M$, $N \leq_e M$ and $N \leq^{\oplus} M$ mean that N is a submodule of M, an essential submodule and a direct summand of M, respectively. Also E(M) denotes the injective hull of M.

2. Preliminaries

In this section, we are going to give preliminary definitions and results which we will use throughout this paper.

Definition 1. 1. An R-module M is called CS module if every complement submodule of M is a direct summand.

2. An R-module M is called continuous if it is a CS module and satisfies the following condition: (C2) Every submodule of M that is isomorphic to a direct summand M is itself a direct summand of M.

3. An *R*-module *M* is called quasi-continuous if it is a *CS* module and satisfies the following condition: (C3) If *N* and *K* are direct summands of *M* with $N \cap K = \{0\}$, then $N \oplus K$ is a direct summand of *M*.

Definition 2. Let M be an R-module, put $Z(M) = \{m \in M : ann_R(m) \leq_e R\}$. M is called nonsingular if $Z(M) = \{0\}$, and singular if Z(M) = M. The Goldie torsion submodule $Z_2(M)$ of M is defined by $Z(M/Z(M)) = Z_2(M)/Z(M)$. M is Z_2 -torsion if, $Z_2(M) = M$.

3. C-co-epi-retractable modules and some applications

Definition 3. An R-module M is called c-co-epi-retractable if, for every complement submodule N of M, there exists a monomorphism $f: M/N \longrightarrow M$. The ring R is called c-co-pri if R_R is c-co-epi-retractable.

Remark 1. Clearly, every co-epi-retractable module is c-co-epi-retractable while the converse is not true. For example \mathbb{Q} as \mathbb{Z} -module is c-co-epi-retractable but it is not co-epi-retractable.

Lemma 1. The following statements are equivalent for an *R*-module *M*:

(1) M is a c-co-epi-retractable module.

(2) There exists $\varphi \in End_R(M)$ such that $Ker\varphi = N$ for any nonzero $N \subseteq_c M$.

Proposition 1. Let M be a c-co-epi-retractable R-module. Then a fully invariant complement submodule of a M is also c-co-epi-retractable.

Proof.

Let M be a c-co-epi-retractable module and $N \subseteq_c M$ with N fully invariant. Let $K \subseteq_c N$. Then, $K \subseteq_c M$. So, there is an endomorphism $f: M \longrightarrow M$ such that K = Kerf. Then $f|_N: N \longrightarrow N$ and $K = Ker(f|_N)$. Therefore, N is a c-co-epi-retractable module.

Corollary 1. Every fully invariant direct summand of a c-co-epi-retractable module is c-co-epi-retractable.

Proposition 2. Let M be an R-module with $S = End_R(M)$ regular. Then the following conditions are equivalent:

(1) M is a c-co-epi-retractable module.

(2) M is an extending module.

Proof.

(1) \Rightarrow (2) Suppose M is a c-co-epi-retractable module and K a complement submodule of M. Then, there is $0 \neq g \in End_R(M)$ such that Kerg = K. By our assumption, Kerg = K is a direct summand of M. Therefore, M is an extending module. (2) \Rightarrow (1) is obvious.

Corollary 2. A ring R is regular c-co-pri if and only if it is right nonsingular right continuous.

Proposition 3. A ring R is c-co-pri if and only if every complement right ideal of R is the right annihilator of an element of R.

A. D. Diallo, P. C. Diop, M. Barry / Eur. J. Pure Appl. Math, 12 (3) (2019), 1187-1198

Proof.

Let I be a right complement ideal of R. If R is c-co-pri, there is a monomorphism $f: R/I \longrightarrow R$. Set x = f(1+I), then I = r(x), where r(x) denotes the right annihilator of x. On the other hand, if I = r(x) is a right complement ideal of R for an element $x \in R$, then $R/I \cong xR$.

Let M be an R-module. The left annihilator of $N \leq M$ in $S = End_R(M)$ is denoted by $L_S(N) = \{\phi \in S : \phi N = \{0\}\}$ and the right annihilator of a left ideal I of S is $r_M(I) = \{m \in M : Im = \{0\}\}$

Recall that an *R*-module is called Baer if, for all $N \leq M$, $L_S(N) = Se$, with $e^2 = e \in S$. Equivalenly, *M* is Baer if, for all ideal $I \leq_S S$, $r_M(I) = eM$ with $e^2 = e \in S$. An *R*-module *M* is called Rickart if any endomorphism of *M* has a direct summand kernel. A module *M* is called \mathcal{K} -nonsingular if, $\forall \varphi \in End(M)$, $Ker\varphi \leq_e M$ implies $\varphi = 0$.

Lemma 2. ([16], Lemma 2.14)

Any \mathcal{K} -nonsingular extending module is Baer.

In the two following results, we show that for a c-co-epi-retractable *R*-module or a module with c-co-pri endomorphism ring the properties Rickart and Baer are equivalent.

Proposition 4. Let M be a c-co-epi-retractable R-module. Then M is Rickart if and only if M is Baer.

Proof.

Suppose M is Rickart. Since, M is c-co-epi-retractable, it is also extending by Proposition 2. Now, suppose $Kerf \leq_e M$ for some $f \in End_R(M)$. The property of Rickart implies that $Kerf \leq^{\oplus} M$, and so Kerf = M. Consequently, f = 0. Therefore, according to Lemma 2, M is Baer. The converse implication is clear.

Corollary 3. Let R be a c-co-pri ring. Then R is Baer if and only if R is right Rickart.

Proposition 5. Let M be an R-module for which S is c-co-pri. Then the following statements are equivalent:

(1) M is Baer.

- (2) M is Rickart.
- (3) S is right Rickart.

Proof.

 $(1) \Rightarrow (2)$ This is clear.

 $(2) \Rightarrow (3)$ Follows from Proposition 2.2.1 in [13].

 $(3) \Rightarrow (1)$ Let N be a submodule of M. Since S is right Rickart, it is also right nonsingular. Thus, $L_S(N)$ is a complement right ideal in S. Because S is c-co-pri, it follows from Proposition 2 that S is right extending. Therefore, $L_S(N) = S(1-e)$ for some $e = e^2 \in S$,

and hence M is Baer.

Recall that an R-module N is said to subgenerated by M if N is isomorphic to a submodule of an M-generated module, i.e N is a kernel of a morphism between M-generated modules.

We denote by $\sigma[M]$, the full subcategory of mod-*R* whose objects are all *R*-modules subgenerated by *M*.

Recall that an *R*-module *M* is self-hereditary if every submodule of *M* is projective in $\sigma[M]$.

Theorem 1. Let R be a right self-injective ring and M be a self-hereditary R-module. Then the following conditions are equivalent:

(1) M is c-co-epi-retractable.

(2) M is extending.

(3) M is continuous.

(4) M is finitely generated semi-simple injective.

Proof.

 $(1) \Rightarrow (2)$ Suppose M is c-co-epi-retractable. Thus for any complement submodule C of M, there exists a submodule N of M such that $M/C \cong N$. Consequently, the property of self-hereditary implies that C is a direct summand of M. Hence M is extending.

 $(2) \Rightarrow (3)$ Suppose M is extending. Thus, according to Theorem 10.5 in [7], M is nonsingular and has finite uniform dimension. Hence, there exists uniform independent submodules U_1, \ldots, U_n of M such that $V = U_1 \oplus U_2 \oplus \ldots \oplus U_n$ is an essential submodule of M. Set $0 \neq u_i \in U_i, 1 \leq i \leq n$. Then, $U_i = u_i R$. It is easy to see that M = V. Therefore, M is finitely generated semi-simple injective. This means that M is continuous. (3) \Rightarrow (4) Follows from an argument similar to the one in (2) \Rightarrow (3).

 $(4) \Leftrightarrow (1)$ It is easy to see.

Corollary 4. A right self-injective right hereditary ring is semi-simple artinian.

Recall that a module M is said to be retractable if for any $0 \neq N \leq M$, there exists a nonzero homomorphism form M to N. A module M has finite uniform dimension n(written Udim(M) = n) if there is an essential submodule $V \leq_e M$ that is a direct sum of n uniform submodules.

Remark 2. A c-co-epi-retractable module with finite uniform dimension need not be retractable. In fact, the \mathbb{Z} -module \mathbb{Q} is c-co-epi-retractable with finite uniform dimension but it is not retractable. Clearly, a c-co-epi-retractable need not to have a finite uniform dimension. For example extending modules are c-co-epi-retractable which need not have finite uniform dimension.

Proposition 6. If M is a c-co-epi-retractable R-module with $Udim(M) = n \ge 2$, then the following assertions are verified:

(1) M is retractable.

(2) For every $0 \neq C \subseteq_c M$, M/C is uniform.

A. D. Diallo, P. C. Diop , M. Barry / Eur. J. Pure Appl. Math, **12** (3) (2019), 1187-1198

Proof.

(1) Let $0 \neq N \leq M$. Since $Udim(N) < \infty$, N contains a uniform submodule, say U. After replacing U by an essential closure, we may assume that U is a complement submodule of M. By the c-co-epi-retractable condition on M, there exists a monomorphism f : $M/U \longrightarrow M$. Consider the inclusion map $i : U \longrightarrow M$. Thus, f = ij is a monomorphism where $j : M/U \longrightarrow U$. Consequently, j is a monomorphism. Now, consider the inclusion map $i_1 : U \longrightarrow N$. So, $i_1j\pi : M \longrightarrow N$ is a nonzero homomorphism where $\pi : M \longrightarrow M/U$ is the natural surjection. Therefore, M is retractable.

(2) Since $Udim(M) = n \ge 2$, there exist complements submodules $C_i \subseteq_c M(1 \le i \le n)$ such that each M/C_i is uniform and $C_1 \cap ... \cap C_n = 0$. Thus, there exists a monomorphism $f: M \longrightarrow \bigoplus_i^n M/C_i$. Let $0 \ne C \subseteq_c M$. Since M is c-co-epi-retractable, there exists a monomorphism $g: M/C \longrightarrow M$. Hence, $h = fg: M/C \longrightarrow \bigoplus_i^n M/C_i$ is a monomorphism. Consider the inclusion map $i: M/C_i \longrightarrow \bigoplus_i^n M/C_i$. Thus, $h = ii_1$ is a monomorphism where $i_1: M/C \longrightarrow M/C_i$. Therefore, i_1 is a monomorphism. It follows that M/C is uniform.

Corollary 5. An R-module M is simple if and only if M is Artinian c-co-epi-retractable and every endomorphisme of M is a monomorphism.

Let N and M be R-modules and $S = End_R(M)$. We denote by \mathcal{N} the set of Rsubmodules of N and by \mathcal{H} the set of S-submodules of $Hom_R(N, M)_S$. For $X \in \mathcal{H}$ we put: $Ker(X) = \cap \{Kerg | g \in X\} \in \mathcal{N}.$

In the next result, we investigate when c-co-epi-retractable R-modules have finite uniform dimension.

Proposition 7. Let M be a c-co-epi-retractable R-module such that S satisfies DCC for cyclic right ideals. If for any finitely generated right ideal $I \subseteq S$, r(KerI) = I, then has finite uniform dimension.

Proof.

In view of Proposition 6.30 in [12], we need to show that the complements in M satisfy ACC. Now, let $C_1 \subseteq C_2 \subseteq \ldots$ be an ascending chain of complement submodules of M. By the c-co-epi-retractable condition on M, there is $f_i \in S$ such that each C_i is of the form $Kerf_i = Kerf_iS$. With applying r(-) to this chain, we see that $f_1S \supseteq f_2S \supseteq \ldots$. By our assumption, there is some n such that $f_iS = f_nS$ for all $i \ge n$. Hence, $C_i = C_n$ for all $i \ge n$. Therefore, M has finite uniform dimension.

Recall that an *R*-module M is said to be have the summand sum property (*SSP*, for short) if, the sum of any two direct summands of M is again a direct summand of M.

Corollary 6. Let M be a quasi-injective R-module such that $R \oplus M$ has the SSP. Assume that S satisfies DCC for cyclic right ideals. Then M is finitely generated semi-simple.

A. D. Diallo, P. C. Diop , M. Barry / Eur. J. Pure Appl. Math, **12** (3) (2019), 1187-1198

Proof.

Since $R \oplus M$ has the SSP, we infer from Proposition 3.4 in [9] that every cyclic submodule of M is a direct summand of M. Since M is quasi-injective, r(KerI) = I for any finitely generated right ideal $I \subseteq S$ by ([19], 28.1). But M is c-co-epi-retractable. Then, according to Proposition 7, M has finite uniform dimension. Therefore, M is finitely generated semisimple.

1193

Corollary 7. If M is a quasi-injective R-module such that S satisfies DCC for cyclic right ideals, then M is a finite direct sum of uniform submodules.

Proof.

Suppose M is quasi-injective such that S satisfies DCC for cyclic right ideals. Thus by ([19], 28.1), r(KerI) = I for any finitely generated right ideal $I \subseteq S$. Therefore, according to Proposition 7, M is a finite direct sum of uniform submodules.

Corollary 8. Let R be a right self-injective ring and M a nonsingular R-module such that S satisfies DCC for cyclic right ideals. Then the following conditions are equivalent. (1) M is quasi-injective.

(2) M is semi-simple injective.

Recall that an *R*-module *M* is called compressible if for every nonzero submodule *N* of *M* there is a monomorphism $f: M \longrightarrow N$.

Proposition 8. An *R*-module is simple if and only if it is compressible *c*-co-epi-retractable and contains a maximal complement submodule.

Proof.

The necessity is clear. Conversely, assume that M is compressible c-co-epi-retractable and contains a maximal complement submodule C. Then there is a submodule N of M such that $M/C \cong N$. Hence, N is simple. By the compressible condition on M, there is a monomorphism $f: M \longrightarrow N$. Thus, M is isomorphic to a submodule of M. As $f \neq 0$, M = N, and so M is simple.

Corollary 9. An *R*-module is simple if and only if it is compressible finitely generayed *c*-co-epi-retractable.

Recall that an R-module M is cohereditary if every factor module of M is injective. Now, let us introduce the following notion.

Definition 4. An R-module module is called c-cohereditary if M/C is injective for each nonzero proper complement submodule C of M. The ring R is called c-cohereditary if R_R is c-cohereditary.

Proposition 9. A c-cohereditary c-co-epi-retractable R-module M is injective. Moreover, M is a direct sum of a nonsingular module and an injective module.

A. D. Diallo, P. C. Diop , M. Barry / Eur. J. Pure Appl. Math, **12** (3) (2019), 1187-1198

Proof.

Suppose M is c-co-epi-retractable. It is well known that $Z_2(M)$ is a complement submodule of M. By the c-co-epi-retractable condition on M, there exists a nonzero endomorphism f of M such that $Kerf = Z_2(M)$. Hence, $M/Kerf \cong Imf$. By our assumption, Imf is injective, and so a direct summand of M. Thus, there exists a submodule K of M such that $M = Imf \oplus K$. By hypthesis again, $M/Imf \cong K$ is injective. Therefore, M is injective. The last part is clear since Imf is nonsingular.

Corollary 10. A c-co-pri right c-cohereditary ring is right self-injective.

Corollary 11. A right extending right c-cohereditary ring is right self-injective.

Corollary 12. Any extending c-cohereditary R-module is injective

We end this section with some applications of c-co-epi-retractable modules regarding the characterization of right SI, semi-simple artinian and quasi-Frobenius rings. Recall that a ring R is said to be right SI if every singular R-module is injective.

Lemma 3. (([17], Lemma 3.1) and ([11], Theorem 3))If R is a right SI-ring, then R is right nonsingular right hereditary and every singular R-module is semi-simple.

Lemma 4. ([4], Corollary 3.2) Let M be an R-module having C_3 -condition. If $M = M_1 \oplus M_2$ and $f : M_1 \longrightarrow M_2$ is a monomorphism, then $Imf \leq^{\oplus} M_2$.

Theorem 2. The following conditions are equivalent for a ring R.

- (1) R is a right SI-ring.
- (2) Every Z_2 -torsion c-co-epi-retractable R-module is injective.
- (3) Every Goldie-torsion R-module has C_3 -condition.

Proof.

 $(1) \Leftrightarrow (2)$ Follows from Theorem 3 in [11].

The implication $(1) \Rightarrow (3)$ is clear.

 $(3) \Rightarrow (1)$ Let M be a cyclic Z_2 -torsion R-module. It is clear that $M \oplus E(M)$ is Goldietorsion and has the C_3 -condition by (4). Consider the inclusion map $i: M \longrightarrow E(M)$. Hence, $i(M) = M \leq^{\oplus} E(M)$ by Lemma 4. It follows that M is injective. This means that every cyclic singular R-module is injective. Therefore, according to ([7], 17.4), R is a right SI-ring.

The following lemmas are crucial in the establishment of the next theorem.

Lemma 5. ([7], Corollary 11.4) Let R be ring such that $R_R^{(A)}$ is extending, then the following statements hold true: (1) Every nonsingular R-module is extending.

(2) Every nonsingular R-module is projective.

Lemma 6. ([7], 7.11)

An R-module M is extending if and only if $M = Z_2(M) \oplus M'$, for some submodule M' of M, such that M' and $Z_2(M)$ are both extending and $Z_2(M)$ is M'-injective.

Now, we are able to prove the following result.

Theorem 3. For a right SI-ring R, the following conditions are equivalent:

- (1) $R_R^{(\mathbb{N})}$ is extending. (2) $R_R^{(\mathbb{N})}$ is c-co-epi-retractable.
- (3) Every R-module is extending.
- (4) Every *R*-module is *c*-co-epi-retractable.

Proof.

 $(1) \Rightarrow (2)$ It is easy to see.

 $(2) \Rightarrow (3)$ Suppose $R_R^{(\mathbb{N})}$ is c-co-epi-retracatble. Hence, for every complement right ideal I of $R^{(\mathbb{N})}$, there exists a right ideal J of $R^{(\mathbb{N})}$ such that $R^{(\mathbb{N})}/I \cong J$. Then it follows from Lemma 3 that $R^{(\mathbb{N})}$ is an extending *R*-module. Thus, by ([17], Propositions 3.4 and 3.9), R is right Noetherian. So, according to Corollary 11.12 in [7], $R_R^{(A)}$ is extending for any index set A. Now, let M be any R-module. Thus, by Lemma 5, $M = Z_2(M) \oplus N$ for some submodule N of M and clearly N is nonsingular. In view of Lemma 5 again, N is an extending module. Moreover, since R is right nonsingular, $Z_2(M) = Z(M)$ is singular. Hence, $Z_2(M)$ is injective. Therefore, according to Lemma 6, M is extending, as desired. $(3) \Rightarrow (4)$ is clear.

 $(4) \Rightarrow (1)$ By (4), $R_R^{(\mathbb{N})}$ is c-co-epi-retracatble. But R is right hereditary. Thus, by the proof of $(2) \Rightarrow (3)$, $R_R^{(\mathbb{N})}$ is extending.

Corollary 13. The the following conditions are equivalent for a ring R:

- (1) R is semi-simple artinian.
- (2) R is a regular right SI-ring and R_R^(N) is c-co-epi-retractable.
 (3) R is a regular right SI-ring and R_R^(N) is extending.
 (4) R is right SI-ring and R_R^(N) is continuous.
 (5) R is right SI-ring and R_R^(N) is quasi-continuous.

Proof.

 $(1) \Rightarrow (2) \Rightarrow (3) \Rightarrow (4) \Rightarrow (5)$ are clear.

 $(5) \Rightarrow (1)$ Assume that R is a right SI-ring such that $R_R^{(\mathbb{N})}$ is quasi-continuous. In particular, $R_R^{(\mathbb{N})}$ is extending. Then, by Theorem 3 every *R*-module is extending. So by ([7], 13.5), R is an Artinian serial ring. Thus, by ([6], Proposition 6.1 (4)), $R_R^{(\mathbb{N})}$ is quasi-injective, and hence R_R is quasi-injective. Consequently, R is right self-injective by ([12], Remark 6.71(2B)). Since R is right Artinian, R_R has finite uniform dimension. Because R is right SI, it is right nonsingular by Lemma 3. Now, R_R is nonsingular extending and has finite uniform dimension. Thus, R_R is a finite direct sum of uniform submodules. But R is right self-injective. Then as in the proof of $(2) \Rightarrow (3)$ in theorem 1, R_R is semi-simple. Therefore, R is semi-simple arinian.

Corollary 14. If R is a right SI-ring such that $R_R^{(\mathbb{N})}$ is c-co-epi-retractable, then all R-modules with a regular endomorphism ring are quasi-injective.

Proof.

Let M be an R-module with a regular endomorphism ring. Thus, by Theorem 3, M is extending. It follows that M is quasi-continuous. On the other hand, R is Artinian serial by ([7], 13.5). Hence by ([6], Proposition 6.1 (4)), M is quasi-injective.

Note that along the lines of the proof of the above Theorem we have shown that if R is a right SI-ring such that $R^{(\mathbb{N})}$ is right extending, then $R^{(A)}$ is right extending for any index set A.

Theorem 4. The following conditions are equivalent for a ring R with $\overline{R} = R/Z_2(R_R)$. (1) \overline{R} is semi-simple.

(2) Every c-co-epi-retractable R-module is \overline{R} -injective.

(3) Every nonsingular R-module is quasi-injective.

(4) Every nonsingular R-module is quasi-continuous.

(5) Every nonsingular R-module has C_3 -condition.

(6) Every submodule of a nonsingular R-module is a C_3 -module.

(7) Every submodule of $\overline{R} \oplus \overline{R}$ is a C_3 -module.

Proof.

The implication $(1) \Leftrightarrow (2)$ follows from a similar proof to ([1], Theorem 4.5).

The implication $(1) \Rightarrow (3)$ is clear by ([3], Theorem 3.2).

Implications $(3) \Rightarrow (4) \Rightarrow (5) \Rightarrow (6) \Rightarrow (7)$ are easy to see.

 $(7) \Rightarrow (1)$ By ([3], Theorem 3.2), we need to show that \overline{R} is semi-simple. Let I be a right ideal of \overline{R} . Thus $I \oplus \overline{R}$, being a submodule of $\overline{R} \oplus \overline{R}$ is a C_3 -module by (7). Now, let $i: I \longrightarrow \overline{R}$ be the inclusion map. By Lemma 4, I is a direct summand of \overline{R} . Therfore, \overline{R} is semi-simple.

Corollary 15. The following conditions are equivalent for a ring R with

 $R/Z_2(R) = \overline{R}.$

(1) R is quasi-Frobenius.

(2) Every c-co-epi-retractable R-module is \overline{R} -injective and $Z_2(R_R)$ is an Artinian injective R-module.

(3) Every c-co-epi-retractable R-module is \overline{R} -injective and $Z_2(R_R)$ is a Noetherian injective R-module.

Proof.

 $(1) \Rightarrow (2)$ Since R is quasi-Frobenius, it is right continuous. Hence, R is a continuous R-module. Thus, $R_R = Z_2(R_R) \oplus R'$ for a continuous R-module R'. It follows that \overline{R} is right nonsingular right continuous. Consequently, \overline{R} is regular. Since R is right Noetherian, \overline{R} , also, is right Noetherian. Thus, the property of regular implies that \overline{R} is semi-simple. Thus, in view of Theorem 4, every c-co-epi-retractable R-module is \overline{R} -injective. The last part is clear since R_R is injective and Artinian.

REFERENCES

(2) \Rightarrow (1) Assume that every c-co-epi-retractable *R*-module is \overline{R} -injective and $Z_2(R_R)$ is an Artinian injective ring. Since every c-co-epi-retractable *R*-module is \overline{R} -injective, we infer from theorem 4 that \overline{R} is a semi-simple ring. Thus, \overline{R} is semi-simple as an *R*-module. Since \overline{R} is a nonsingular *R*-module, \overline{R} is a projective *R*-module. So, $Z_2(R_R) \leq^{\oplus} R$, say $R = Z_2(R_R) \oplus R'$ where R' is semi-simple ring. By our assumption, R is right Artinian right self-injective. Consequently, R is quasi-Frobenius.

Similarly, (3) is equivalent to (1).

Proposition 10. The following statements are equivalent for a ring R.

- (1) R is an Artinian serial ring with $J^2(R) = 0$.
- (2) Every submodule of a co-c-epi-retractable R-module is extending.
- (3) Every submodule of an extending R-module is extending.

Proof.

 $(1) \Rightarrow (2)$ follows from ([7], 13.5).

 $(2) \Rightarrow (1)$ Let M be any R-module. Then $M \oplus E(M)$, being a submodule of $E(M) \oplus E(M)$ is extending by (2). In view of Proposition 2.7 in [14], M is CS. Therefore, R is a Artinian serial ring with $J^2 = 0$ by ([7], 13.5).

Similarly, (1) and (3) are equivalent.

Proposition 11. The following conditions are equivalent for a ring R.

(1) R is semi-simple artinian.

(2) Every c-co-epi-retractable R-module is semi-simple.

(3) Every c-co-epi-retractable R-module is injective.

(4) Every submodule of a c-co-epi-retractable R-module is quasi-continuous.

Proof.

 $(1) \Rightarrow (2)$ This is clear.

 $(2) \Rightarrow (1)$ Let M be any R-module. By (2), E(M) is semi-simple, and hence M = E(M). Therefore, R is semi-simple artinian.

 $(1) \Rightarrow (4)$ is clear.

 $(4) \Rightarrow (1)$ Let M be any R-module. Then $M \oplus E(M)$, being a submodule of $E(M) \oplus E(M)$ is quasi-continuous by (2). Consequently, $M \oplus E(M)$ has C_3 -condition. By Lemma 4, M injective and so R is semi-simple artinian.

 $(1) \Leftrightarrow (3)$ follows from Corollary 2 in [11].

References

- [1] Sh. Asgari, *T*-continuous modules, Comm. Algebra, (2017), (45) 1941-1952.
- [2] Sh. Asgari and A. Haghany, *T*-extending modules and *T*-baer modules, Comm. Algebra, (2011), (39) 1605-1023.
- [3] Sh. Asgari, A. Haghany and Y. Tolooei *T-semi-simple modules and T-semi-simple rings*, Comm. Algebra, (2013), (41) 1882-1902.

- [4] S. E. Atani, M. Khoramdel and S. D. P. Hesari, C₃-modules, Demostratio Mathematica, 49(2016), no. 3, 282-292.
- [5] K. A. Byrd, Rings whose quasi-injective modules are injective, Proc. Amer. Math. Soc. 33(1972), no. 2 :235-240.
- [6] N. Ding, Y. Ibrahim, M. Yousif and Y. Zhou, *D4-Modules*, J. Algebra Appl. 16(9), 1750166 (25 pages), 2017.
- [7] N. V. Dung, D. V. Huynh, P. F. Smith and R. Wisbauer (1994), *Extending modules*, Pitman Research Notes in Mathematics 313. Harlow: Longman.
- [8] A. Ghorbani, Co-epi-retractable modules and co-pri rings, Comm. Algebra 38(2010), no. 10, 3589-3596.
- [9] A. Hamdouni, A. C. Ozcan and A. Harmanci, Charcterizations of modules and rings by the summand intersection property and the summand sum property, JP J. Algebra Number Theory Appl. 5(2005), no. 3, 469-490.
- [10] D.V Huynh, Some remarks on CS modules and SI rings, Aust. Math. Soc. 65(2002), 461-466.
- [11] D. V. Huynh and S. T. Rizvi, An approche to Boyle's conjecture, Proceeding of the Edinburg. Math. Society 40(1997), 267-273.
- [12] T. Y. Lam, Lectures on modules and rings, G.T.M.(189), Springer-Verlag, Berlin-Heidelber, New York, 1999.
- [13] G. Lee, Theory of Rickart modules, Ph. D. Thesis, M.S., Graduate, School of the Ohio State University (2010).
- [14] S. H. Mohamed and B. J. Muller, *Continuous and Discrete Modules*, LMS Lecture Note Series, 147. Cambridge University Press, Cambridge, 1990.
- [15] H. Mostafanasab, Applications of Epi-retractable and Co-epi-retractable modules, Bull. Iranian Math. Soc. 38 (2013), no. 5, 903-917.
- [16] S. T. Rizvi and C. S. Roman, Baer and quasi-Baer modules. Comm. Algebra, 32 (2004): 103-123.
- [17] S. T. Rizvi and M. F. Yousif, On continuous and singular modules, Non commutative Ring Theory, S. K. Jain and S. R. López-Permouth, eds, Lecture Notes in Math. 1448, Springer-Verlag, Berlin (1990), pp:116-124.
- [18] P. Smith, Modules with many homomorphisms, J. Pure and Appl. Algebra 197(2005) 305-321.
- [19] R. Wisbauer, Foundations of Module and Ring Theory, Gordon and Breach Sciences Publishers, Philadelphia, 1991.