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Abstract. In this paper, our aim is to use the SBA numerical method (combination of Adomian
method and Picard successive approximations) and Fourier method or method of separation of
variables to construct the solution of some wave equations. We compare the two methods and
apply them to some wave equations.
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1. Introduction

Many problems are governed by partial differential equations, or by systems of partial
differential equations. It is difficult to find their exact solutions. In this work, the SBA
numerical method, [3, 9] and Fourier method permitted us to find the exact solution of
some wave equations.

2. Description of the methods
2.1. Description of the SBA numerical method
Let’s consider the following functional equation

Au=f (1)
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Where A : H — H is an operator not necessarily linear and H is a Hilbert space
adequately chosen given the operator A.
Let :
A=L—-R-N (2)

Where L is an invertible operator in the Adomian sense, R the linear remainder and
N a nonlinear operator.
Equation (2) therefore becomes:

Lu—Ru—Nu=f<=u=0+L""f)+ L' (Ru) + L7 (Nu) (3)

Where 6 is such that L8 =0
Equation (3) is the Adomian canonical form [2, 6-§]
Using the successive approximations [1, 4], we get:

uF = 05+ L) + LTRGS) + LN R @)

This yields the following Adomian algorithm [5]

ug =08 + L7H(fF) + LY N (WFY); k> 1 5
{ uf = LY R(uF_,)); n> 1 (5)

The Picard principle is then applied to equation (5) : let u® be such that N(u®) =0
for k=1, we get :

{ ug = 0' + L7Y(fY) + L7H(N(u?))
up =LY (R(uy,_4)); n > 1

n

If the series (Zn>0 u#) converges, then u! =" . ul

For k = 2,we get:

ug =02+ L~ (f?) + L7 (N (u'))
{ u? =L Y (R(u?_); n>1

n n

If the series (ano u%) converges, then u? = > >0 u?. This process is repeated to k.

If the series (Zn>0 ﬁ) converges, then u¥ = D ons0 U uk.

Therefore uw = lim " is the solution of the problem.
k——+o0

Thus, given the problem
(p) : Au = f,

we combine ideas from the classical techniques to derive the following appropriate approx-
imate scheme.
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uk = 0F + L71(fF) + LY (N (WF1)); k>1
{ uf = L VR(uE ) n> 1 ©)

n n—1

called SBA algorithm.

2.2. Description of the Fourier method or method of separation of vari-
ables

The Method of separation of variable (also known as Fourier method) is one of several
methods for solving ordinary and partial differential equations.

This method cannot always be used, even when it can be used it will not always be
possible to get the solution of the problem. However, it can be used to easily in the (1— D)
heat equation with no sources, in the (1 — D) wave equation and in the (2 — D) heat and
wave equations.

Let’s consider the following general functional equation

Au=f (7)

The method of separation of variables relies upon the assumption that a function of
the form:

u(z,t) = X(x)T(t) (8)

if we are in the case of one -dimension x of space(1 — D)

and

u(z,y,t) = Ulz,y)T(t) = X ()Y (y)T(?) (9)

if we are in the case of two dimension x and y of space (2 — D) will be a solution to
linear homogeneous partial differential equation in x and t when when we are in (1 — D)
and x,y and ¢ when when we are in (2. — D).

This is called a product solution and provided the boundary conditions are also linear
and homogeneous this will also satisfy the boundary conditions.

However , as noted above this will only rarely satisfy the initial condition, but that is
something for us to worry about in the next section.
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3. Applications

3.1. Problem 1

Let’s consider the following Wave’s model of one-dimension of space:

2
8@(;(;,15) =c? Au(z,t),e>0

u(z,0) = p(x) = sin (E)
uy(x,0) = ¢(x) = 7sin <L7TI:T)

u(0,t) =0
u(L,t)=0,L >0

1263

(10)

Solving yhe wave equation involves identifyinf the functions u(z,t) that solve the par-
tial differential equation that represent the amplitude of the wave at any position x at any

time t.
e Solving by SBA method

By Integrating (10) we get the Adomian canonical form [2, 9] of the problem (10) :

ou(0, )
ot

u(z,t) = u(0,2) + ¢t + AL (Au(x,t))

Applying successive approximations method to (11), we get :

du* (0
uF(x,t) = uF(0,2) + 2T (0,2)
ot

where N(u*(2,t)) =0V keN
Applying the SBA algorithm to (12), we get :
ouk (0, )
(P4 ub(z,t) = uk(x,0) + tT, E>1
up(2,1) = ALy (A (w,1), n > 1

For k =1, We have:

(Pl ) utl)(a:,t) = ul(:c,())
SBA ul(z,t) = cht_tl(Auﬁ_l(x,t)), n>1

+ AL AU (x, 1) + N(uF L (2,1), k> 1

(11)

(12)

(13)
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We obtain :
ug(, t) = () +te(z)
1 2 2t 2 b
ui(z,t) = (p™(2) 5 +07(2)5)
4 5
ub(a,1) = (@) + 6 (@) )
6 7
ub(a,1) = (@) + () )
t) = 2n( 2n t2n 2n t2n+1
|t = ) o+ ) )
We have
p(r) = sin (T) = *"(x) = (—1)" (—)2n sin (%)
T 2n X
¢(z) = 7sin (—) = ¢*(z) = 7(—1)" (Z) sin (f)
Then
et 21 ot 20t
el )
un(e,t) =sin () | (-1 A Ty
m—1
m(z,t) = Z Uy, (2, t)
n=0

Let’s put
Then the approached solution at the the first step is:

ul(e,t) = lim g (z,t)

m——+00
L (71'56) crt n L . crt
= gin 7 cos i3 p sin 7

such us N (u¥(x,t)) = 0, Vk > 0 at the step k ,we have :

Ak (0, )
(Phga)q W08 =u'(@ 0) + 75—, k21 (15)

uﬁ(m,t) = CQLﬁl(Auﬁ_l(x,t)), n>1
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By unfolding :

u(z,t) = ¢(z) + té(w)

2 3
u]f(:n,t) — 62(802('17)% +¢2($)%)
4 5
ub(e,) = A ) T + 0 0))
6 7
(e, 1) = F(P0) g +6°(2) )
m (ZL' t):CZTL(SOQn( ) t2n _‘_(;52”(1')&)
o (2n)! (2n +1)!
Then
T cmt\2n crt\2n+1
m—1
(,Dm(.ilf,t) = Z Un(.ili',t)
n=0

Then the approached solution at the the first step is:

uiz,t) = lim (1)
t L t
= sin(%)(cos(%) +- sin(%)

Therefore, we obtain the exact solution of the problem (P;) :

u(z,t) = kll)rfoo uF(x,t)

= (eos(T) + Zsin( ) sin( %0

e Solving by Fourier method

We find all solutions of the wave equation (P;) with the general form:

u(x,t) =T(t) X (x)

1265

(16)

for some function X (x) that depends on x but not ¢ and some function 7'(¢) that

depends only on ¢ but not =x.
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Substitute equation (16) into the one-dimensional equation (10), we get

X(@)T"(t) = AT X () <= CZT((?) B XX((;;)

//( ) X// ({L’) .
Such 2T(1) depends on t and ) 0 depends on z, we can put:
T X'
2T(t) X(t)
Then
T"(t) = —(ck)?T(t) T"(t) + (ck)*T(t) = 0
and = and
X"(z) = —k2X (2) X" (2) + B2 X(z) =0
Then

T(t) = Acos(ckt) + Bsin(ckt)
and
X(x) = Ccos(kx) + Dsin(kx)

where A, B, C' and D are arbibrairy constantes.
We have

u(z,t) = (Acos(ckt) + Bsin(ckt)) (C cos(kx) + D sin(kx))

Let’s calculate the constantes

u(t,0) =0 _
{ and — { ¢=0

w(t.I) =0 Dsin(kL) =0
Dsin(kL) = 0 = { sjnggzé)oz 0

sin(kL) =0 <=k = n%(n €Z)

Then
Vn > 1, we have

1266

(18)

(20)

(21)
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t
un(z,t) = (Ay COS(T) + B, sin(chﬂ)) sin

Then

u(z,t) = Z(An cos( 7

We can noticed that if we choose k? instead of —k? the solution of the equation

which is

+o0

n=1

cnrt

cnmt . cenmt

) + By, sin(

X" (z) + k*X(z) =0

X(x) = Aeh® + Be~k®

don’t verify the initial condition:

So choosing k? is impossible.

We have

ou(x,t)
ot

For t = 0, we have

We have

+
8

L

3
Il
—

>

n=1

u(t,0) =u(t,L) =0

enm
<— —A,, cos

oo
cnm

(

cnmt cnm cnm

) + —— By, sin(

L L

nnx

TB" Sin(T) = ¢(x)

nnmx

)

t

nmwx

))sin("E)

))sin"

u0,) = ola) = p(z) = 3+ Ansin (P22)
n=1

2

Bp=—

cnT

E/L ©(z) sin (%) dz
0

and
L

; ¢(z) sin (?) dz

nmwxT

—)

1267

(22)

(24)

(25)
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3.2. Problem 2

Let’s consider the following wave’s model :

2
t
UL YY) _ 2 (e, 1), > 0

ot?
U(LL‘, Y, 0) = f1 (.ZL‘, y)
ug(x,y,0) = fo(x,
() won By = oot )
u(L.y.t)) = ho(Lyy. 1
u(z,0,t)) = g1(z,0,1)
u(z,l,t)) = golz,1,t)
Where
“u(x 2u(x
Au(z,y,t) = 0 ég;Qy,t) L0 (ay,Qy,t)
fi(z,t) = sin (%) sin (WTy)
fa(z,t) =0 0
hl(x,t) =0
ha(x,t) =0
gl(xvt) =0
go(z,t) =

Solving yhe wave equation involves identifyinf the functions u(x,y,t) that solve the
partial differential equation that represent the amplitude of the wave at any position x

and y at any time t.
e Solving by SBA method

By Integrating (29) we get the Adomian canonical form [2, 9] of the problem (29) :

ou(z,y,0)

5+ La (Dulz,y.1) (31)

Applying successive approximations method to (31), we get :

ou(z,y,0)
ot

where N~ (uF(x,y,t)) =0 Vk € N

uf(z,y, 1) = u*(2,,0) +t +e Lyt (Dt (2, y, )+ N (@ (2, y,8)) k> 1 (32)

Applying the SBA algorithm to (32), we get :



R. Yaro, Y. Paré , B. Abbo / Eur. J. Pure Appl. Math, 12 (3) (2019), 1260-1276 1269

k ~
(Pky ) uk(z,y,t) = uF(z,y,0) + tw + N,y t),k>1, k>1 (33)
uk (v,t) = AL, (AuF_(z,y,1)), n>1
For k =1, We have:
ou'(z,y,0)
! t) = ul 0) 4 t—22 2
(PéBA) uo(x,y, ) u ($77y7 )+ ot (34)

up(z,t) = AL (Auk_ (2,y,1)), n>1

We obtain:
ug(z,t) = sin(%F) sin(F)
ul@y.1) =~ + ) sin(%E) sin(W)
ug(z,y,t) = 04(”—2 + 7;—2)2 sin(7F) sm(%)%
ué(az,y,t} = —c6(2—2 + 7;—2)3 sin(7F) sm(?)ij
2 2
(o) = (1" + B sin() sin()
Let’s put
m—1
(@, y,t) = Y up(,y,t)
n=0

Let’s put
Then the approached solution at the the first step is:

u'(z,y,t) = lm ¢l (z,,1)

m——+00

= sin (%) sin <%) cos (CLW; L2+ l2>
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such us N~ (u*(z,y,t)) = 0 Yk > 0 at the step k ,we have :

ou*(z,y,0)
k _ k b b
(Phpa)  Uol@y:t) = ui(@,,y,0) + 15— (35)

u%(m,y,t) = chgl(Auﬁfl(as,y,t))7 n>1

By unfolding :

42
ey t) == (5 + 5 ) () (F)
2 2\ 2 4

t
u’g(m,y,t) = <7T2 * 7lL sin <%) sin <7rly> 4!

k 6 A 3. TN . (TY '
ug(z,y,t) = —¢ 2T Sm(L>Sm(T>E

2 2\ " "2n
t
uk (2,y,t) = (—1)"c20 (W + ) sin (Lx> sin (Ly)

12 L [/ (2n)!
Then
Let’s put
m—1
(2,9,0) = > up(w,y,1)
n=0
m—1 t /T2 2\2n
(Cﬂ' L l )
o (z,y,t) = sin(—) sin( Z @n)]
Then the approached solution at the the first step is:
k —
= sin(?)sm(ﬂly) cos(cgl L2 +1?)

Therefore, we obtain the exact solution of the problem (F») :

u(,y,t) = lim uF(z,y,1) (36)

+0o0
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= sin (@) sin (L?J) cos (m\/ L? + 12>

L l Ll

e Solving by Fourier method or separation of variables Method

We find all solutions of the wave equation (P) with the general form:

u(z,y,t) = T()U(z,y) (37)

where U depends on = and y :

Ulz,y) = X(2)Y (y) (38)

for some function X (x) that depends on z, some function (y) that depends on y and
some function 7T'(¢) that depends only on ¢ but not z and y.

Substitute equation (37) and (38) into the two-dimensional equation (31) we get:

2
TUE VD) _ 37 (102, )
Pu(z,y,t) ... 0%°U(z,y)
o 1O ga
Pu(z,y,t) T(t)fﬁU(x,y)
Oy? - Oy?
and
7 82U T,y 82U T,y
T (00 G.) = (0G5 + ZE,

Then

9*U(z,y) N 9?U(z,y)

()  0a? o> o
2T Ulz.y) = (39)
Then we have
T" () + (Ae)*T(t) = 0 = T(t) = a cos(Act) + Bsin(Act) (40)

where « and 3 are arbibrairy constantes.
And we get
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u(z,y,t) = (acos(Act) + Ssin(Act))U(z, y) (41)

Then we have

9?U(x,y) N 9?U(z,y)
Ox? Oy?

_ )2 — _)2
Uew) 0 X@rW) Yoo
Then
X"V (y) + X (@)Y (y) + N X (2)Y (y) = 0 (43)
Let’s put
X'(@) Y+ o,
X@ — vy ()
We obtain
{ X" (z) + p?X(z) =0
and (45)
Y'(y) +PX(y) =0; =N+ 407
Then

and (46)
Y (y) = Ccos(sy) + Dsin(sy)

where A, B, C' and D are arbibrairy constantes.
We have

{ X(z) = Acos(uzx) + Bsin(ux)

u(z,y,t) = ((acos(Act) + Bsin(Act)) X (2)Y (y) (47)

Let’s calculate the constantes

With the initial condition
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we get
( — gin (T sin (™Y — sin () gin (™Y
aX(z)Y (y) = sin ( T ) sm( l ) aX(x)Y (y) = sin ( T ) sin ( 7 )
X(0)=0 X(0)=0
X(L)=0 — X(L)=0
Y (0) =0 Y (0) =0
Y()=0 Y()=0
Beh =10 BeA =0
we obtain by unfoilding
A=0 A=0
sin(puL) =0 p="7;¥n>1
C=0 = C=0
sin(sl) =0 ¢="NVn>1
p=0 g
Then we get
X(x) = sin("7*)
and
Y(y) = sin(*)
Then
Vn > 1, we have
n (2, 93) = ((an cos(Anct) + Bp sin(Anct)) sin(”%‘””) sin(@);vn > 1
and
22 = (R 4+
2= (TP )
Let’s put
Tn(t) = ((on cos(Anct) + B sin(Anet)); Vn > 1
We obtain

nmy
)

u(x,y,t ZT sin( H(T

Such

(48)

(49)

(50)

(51)
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u(z;y,0) = fi(z,y) =sin (?) sin (@)

and
ut(x,y,()) = fZ(xvy) =0
We have

filz,y) = ijan sin (nfzx) sin (@)
"~ and (53)

Q= /OL /Ol fi(z,y)sin <%> sin (@) dxdy

Then by unfolding ,we get

Q) = /O.Lsin2 (%) d:v/olsin2 (?) dy=1

and
(@) dxdy = 0;V¥n # 0

L gl
nwx
= fi(z,y)sin ( —— ) sin
/0. /0 (7)o (5

Therefore, we obtain the exact solution of the problem (P2) :

+oo
u(x, Y, t) = Z un(x7 Y, t)
n=1

= cos(Ajct)sin (%) sin (%)

where
X = (@ + 1) (54)
Ll
VL2 +1?
A = nmv LT+ " (55)
Ll
Therefore, we obtain the exact solution of the problem (P2) :
L (TTN . (TY etV L? 4 12
u(z,y,t) = sin ( 7 ) sin ( ;i > cos <Ll (56)

We can noticed that if we choose A? and p? instead of —A\? and —pu? the solution of
the equation

don’t verify the initial condition:
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u(0,y,t) = u(L,y,0) = u(x,0,t) = u(x,,0) =0

So choosing A? and p? is impossible.

Where

Alzi/Lsin2 (%Z)dzzl
0

9 L
An:L/O cp(z)sin(%)dz:Oifn#l

and

We obtain

A =1
A, =0V n#1
and

L

B ==~
c
B,=0Vn#1

Therefore, we obtain the exact solution of the problem (P;) :

u(x,t)

(

n=1

t t
Ay cos( DT +anm<"g>>

(Cos(czt) + L sin(CL”)> sin (22)

Cc

i (mrx)
in | ——
L

3.3. Comparison of the solution

Method

SBA method

Problem 1

w(z, t) = <cos <ch

)

L .
+ —sin
c

et
L

N

)

Problem 2

u(zx,y,t) = sin (%) sin (%) co

Ll

crmtv/ L2 + (2
S —

)

1275
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Method Fourier method
crt L . [ermt . (Tx
Problem 1 | u(z,t) = <cos <L> + ~ sin < T >> sin <f)
tV L2+ 12
Problem 2 | u(z,y,t) = sin (%x) sin (ﬂTy) cos %

4. Conclusion

The numerical method SBA and Fourier method or method of separation of variable

permitted us to resolve some partial differential equations in this paper.

In this paper, we showed that using the both methods, we get the same solution.
There are then some very powerful numerical tools of analysis for the resolution of

partial differential equations.
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