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Abstract. This paper derives three forms of explicit formula for r-Dowling numbers. One of
these is expressed in terms of exponential polynomial. The other two formulas are derived using
an inverse relation and Faa di Bruno’s formula together with certain identity of Bell polynomials
of the second kind. These two formulas are expressed in terms of the r-Whitney numbers of the
second kind, r-Whitney-Lah numbers, and the ordinary Lah numbers. As a consequence, a relation
between r-Dowling numbers and the sums of row entries of the product of matrices containing the
r-Whitney numbers of the second kind, r-Whitney-Lah numbers, and the ordinary Lah numbers
is established. Moreover, a q-analogue of the explicit formula is obtained.
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1. Introduction

The Bell numbers, denoted by Bn, were defined in [5] as the sum of Stirling numbers
of the second kind

Bn :=
n∑
k=0

S(n, k). (1)

Since the numbers S(n, k) are interpreted as the number of ways to partition an n-set into
k nonempty subsets, Bn can then be interpreted as the total number of ways to partition
an n-set. Several properties and application were obtained for these numbers including
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generating functions, recursive formulas, explicit formula, and expression in terms of a
moment of the Poisson random variable [19, 20].

By adding one parameter r, A.Z. Broder [3] defined combinatorially a generalization

of S(n, k), the r-Stirling numbers of the second kind, denoted by

{
n

k

}
r

, as follows:{
n

k

}
r

:= the number of partitions of an n-set into k nonempty subsets such that the

numbers 1, 2, . . . , r are in distinct subsets.

These numbers possessed several properties parallel to those of the classical Stirling num-
bers of the second kind, which can be found in [3]. In the same paper [3] , Broder was

able to derive a relation expressing

{
n

k

}
r

in terms of the classical Stirling numbers of the

second kind: {
n

k

}
r

=
n∑
j=k

(
n

j

)
S(j, k)rn−j . (2)

Letting r = 0, equation (2) gives

{
n

k

}
0

= S(n, k) with 00 defined to be 1. Parallel to the

definition of Bell numbers in (1), Mezo [17] defined the r-Bell numbers as

Bn,r =

n∑
k=0

{
n+ r

k + r

}
r

. (3)

Mezo [17] obtained several interesting properties for these numbers analogous to those of
the classical Bell numbers. It is worth mentioning that r-Bell numbers were first introduced
by C.B. Corcino in [6].

Furthermore, by adding one more parameter m, Mező [16] defined the r-Whitney
numbers of the first and second kind, denoted by wm,r(n, k) and Wm,r(n, k), as coefficients
of the following expansions

mn(x)n =
n∑
k=0

(−1)n−kwm,r(n, k)(mx+ r)k, (4)

and (mx+ r)n =

n∑
k=0

W (n, k)mk(x)k, (5)

where (x)k = x(x− 1) . . . (x− k + 1) if k ≥ 1, with (x)0 = 1. Below are the few values of
wm,r(n, k) and Wm,r(n, k) with m = r = 2:

n/k 0 1 2 3 4 n/k 0 1 2 3 4
0 1 0 1
1 2 1 1 2 1
2 8 6 1 2 4 6 1
3 48 44 12 1 3 8 28 12 1
4 384 400 140 20 1 4 16 120 100 20 1
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Table 1: Few values of w2,2(n, k) Table 2: Few values of W2,2(n, k)

It would be interesting to note that the numbers Wm,r(n, k) are equivalent to the (r, β)-
Stirling numbers [7] and the numbers wm,r(n, k) are equivalent to the numbers that ap-
peared in [10]. One can easily verify that these numbers satisfy the following inverse
relation

fn =

n∑
j=0

(−1)n−jwβ,r(n, j)gj ⇐⇒ gn =

n∑
j=0

Wβ,r(n, j)fj . (6)

Analogous to (2), Cheon and Jung [4] expressed the r-Whitney numbers of the second
kind Wm,r(n, k) in terms of the classical Stirling numbers of the second kind S(n, k) as

Wm,r(n, k) =

n∑
i=k

(
n

i

)
mi−krn−iS(i, k). (7)

Replacing m by β, k by j and r by −r in equation (7), yield

Wβ,−r(n, j) =

n∑
k=j

(
n

k

)
βk−j(−r)n−kS(k, j). (8)

Moreover, Cheon and Jung [4] defined the r-Dowling polynomials, denoted by Dm,r(n, x),
as follows

Dm,r(n, x) =
n∑
k=0

Wm,r(n, k)xk. (9)

Taking x = 1, equation (9) reduces to

Dm,r(n, 1) =
n∑
k=0

Wm,r(n, k),

the r-Dowling numbers. These numbers are equivalent to the (r, β)-Bell numbers in [8],
denoted by Gn,β,r, and have also been considered in the paper [12] using the same notation
Gn,β,r. Throughout this paper, we use Gn,β,r to denote the r-Dowling numbers. It is worth
mentioning that Gn,β,r satisfy the following generating function∑

n≥0
Gn,β,r

tn

n!
= erte

1
β
(eβt−1)

. (10)

The Lah numbers, denoted by L(n, k), were defined in [5], combinatorially, as the
number of ways to partition an n-set into k nonempty linearly ordered subsets. These
numbers have been shown to satisfy the following relations

L(n, k) =

(
n− 1

k − 1

)
n!

k!
(11)
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L(n, k) =

n∑
j=k

s(n, j)S(j, k). (12)

On the other hand, the r-Whitney-Lah numbers, denoted by Lm,r(n, k), were defined by
Cheon and Jung [4] parallel to (12) as follows

Lm,r(n, k) =
n∑
j=k

wm,r(n, j)Wm,r(j, k). (13)

Several properties of Lm,r(n, k) have been derived through factorization of the r-Whitney-
Lah matrix [Lm,r(n, k)]n,k≥0 (see [4]) including the triangular relation

Lm,r(n, k) = Lm,r(n− 1, k − 1) + (2r + (n+ k − 1)m)Lm,r(n− 1, k)

Below is a triangular array of values for Lm,r(n, k) with m = r = 2:

n/k 0 1 2 3 4

0 1
1 4 1
2 24 12 1
3 192 144 24 1
4 1920 1920 480 40 1

Table 3: Few values of L2,2(n, k).

In this paper, two explicit formulas for Gn,β,r are derived using the two methods applied
by Feng Qi [21] in expressing the Bell numbers in terms of Stirling numbers of the second
kind and Lah numbers. The two methods yield exactly the same explicit formula when
they are applied by Feng Qi to Bell numbers. However, when these methods are applied
here to Gn,β,r, they give two equivalent formulas of different forms. These formulas imply
two matrix relations involving r-Dowling numbers, r-Whitney numbers of the second,
r-Whitney-Lah numbers and Lah numbers.

2. Expression in Terms of Exponential Polynomials

The exponential polynomial [2], denoted by Φn(x), appeared in the resulting expression
in applying Mellin derivative

(
x d
dx

)n
to the function ex. The notation for Mellin derivative

would mean that the differential operator x d
dx is applied n times to ex. The first two

applications of the operator give

x
d

dx
ex = xex(

x
d

dx

)2

ex =

(
x
d

dx

)(
x
d

dx
ex
)
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= x
d

dx
(xex) =

(
x2 + x

)
ex.

Continuing in this manner yields(
x
d

dx

)n
ex = Φn(x)ex.

The exponential polynomial satisfies the following generating function

ex(e
t−1) =

∞∑
n=0

Φn(x)
tn

n!
, (14)

which can be expressed in polynomial form as

Φn(x) =

n∑
k=0

S(n, k)xk, (15)

whose coefficients are the Stirling numbers of the second kind. Note that, when x = 1/β
and t = βt, (16) reduces to

e
1
β
(et−1)

=
∞∑
n=0

Φn (1/β)
(βt)n

n!
, β 6= 0. (16)

Hence, the exponential generating function in (10) can be written as

∑
n≥0

Gn,β,r
tn

n!
=

∑
n≥0

(rt)n

n!

∑
n≥0

Φn (1/β)
(βt)n

n!


=
∑
n≥0

{
n∑
k=0

Φk (1/β)
(βt)k

k!

(rt)n−k

(n− k)!

}

=
∑
n≥0

{
n∑
k=0

(
n

k

)
Φk (1/β)βkrn−k

}
tn

n!
.

Comparing the coefficients of tn

n! yields the following explicit formula.

Theorem 2.1. The r-Dowling numbers can be expressed as

Gn,β,r =

n∑
k=0

(
n

k

)
Φk (1/β)βkrn−k, (17)

which is a kind of binomial combination of Φk(1/β).
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Using (15), the explicit formula in (17) can further be written as

Gn,β,r =

n∑
k=0


k∑
j=0

S(k, j)(1/β)j


(
n

k

)
βkrn−k. (18)

This gives the following matrix relation.

Theorem 2.2. For n ∈ N, the r-Dowling numbers Gi,β,r equal to the sum of the entries
of the ith row of the product of two matrices[(

i

j

)
βjri−j

]
(n+1)×(n+1)

[
S(i, j)(1/β)j

]
(n+1)×(n+1)

. (19)

3. r-Whitney Numbers of the Second Kind and r-Whitney-Lah
Numbers

In this section, a new explicit formula for r-Dowling numbers expressed in terms of
r-Whitney Lah numbers and r-Whitney numbers of the second kind is established. As
a consequence, a relation in terms of matrices involving the r-Dowling numbers, the r-
Whitney-Lah numbers and the r-Whitney numbers of the second kind is obtained.

Note that equation (13) can be rewritten as follows

(−1)nLβ,r(n, k) =
n∑
j=0

wβ,r(n, j)Wβ,r(j, k). (20)

Using the inverse relation of r-Whitney numbers in (6) with

fn = (−1)nLβ,r(n, k) and gj = (−1)jWβ,r(j, k),

equation (20) yields

(−1)nWβ,r(n, k) =

n∑
j=0

Wβ,r(n, j)(−1)jLβ,r(j, k); that is,

S(n, k;β, r) = Wβ,r(n, k) =

n∑
j=0

(−1)n−jWβ,r(n, j)Lβ,r(j, k).

Summing up both sides over k from 0 to n, gives the following theorem.

Theorem 3.1. The explicit formula for r-Dowling numbers is given by

Gn,β,r =

n∑
j=0

(−1)n−j
{ j∑
k=0

Lβ,r(j, k)

}
Wβ,r(n, j). (21)
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For instance, when β = r = 2 and n = 4, we get

G4,2,2 =
4∑
j=0

(−1)4−j
{ j∑
k=0

L2,2(j, k)

}
W2,2(4, j)

= (1)(16)− (5)(120) + (37)(100)− (361)(20) + (461)(1)

= 257.

Now, we can rewrite the sum in (21) as

Gn,β,r = S0 + S1 + S2 + . . .+ Sn

where Sj =
n∑
k=0

(−1)n−kWβ,r(n, k)Lβ,r(k, j). As a consequence, we have the following

theorem.

Theorem 3.2. For n ∈ N, the r-Dowling numbers Gi,β,r equal to the sum of the entries
of the ith row of the product of two matrices[

(−1)i−jWβ,r(i, j)
]
(n+1)×(n+1)

[Lβ,r(i, j)](n+1)×(n+1) , (22)

whose entries are respectively the r-Whitney numbers of the second kind and the r-Whitney
Lah numbers.

For instance, when β = r = 2 and n = 3, we get[
(−1)i−jW2,2(i, j)

]
4×4 [Lβ,r(i, j)]4×4

=


1 0 0 0
−2 1 0 0
4 −6 1 0
−8 28 −12 1




1 0 0 0
4 1 0 0
24 12 1 0
192 144 24 1



=


1 0 0 0
2 1 0 0
4 6 1 0
8 28 12 1


Summing up the entries of each row of the above matrix product, we obtain the column
vector whose entries are the r-Dowling numbers

1
2 + 1

4 + 6 + 1
8 + 28 + 12 + 1

 =


1
3
11
49

 =


G0,2,2

G1,2,2

G2,2,2

G3,2,2

 .
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Corollary 3.3. For 0 ≤ i, l ≤ n, the r-Whitney numbers of the second kind satisfy the
following explicit formula

Wβ,r(i, l) =
i∑

j=0

(−1)i−jWβ,r(i, j)Lβ,r(j, l);

that is,

[Wβ,r(i, j)]n+1×n+1 =
[
(−1)i−jWβ,r(i, j)

]
n+1×n+1

[Lβ,r(i, j)]n+1×n+1 .

It can easily be shown that

n∑
j=i

(−1)n−jwβ,r(n, j)Wβ,r(j, i) =
n∑
j=i

Wβ,r(n, j)(−1)j−iwβ,r(j, i) = δni, (23)

where δni is the Kronecker delta. This relation implies that

[Wβ,r(i, j)]
−1
n+1×n+1 =

[
(−1)i−jwβ,r(i, j)

]
n+1×n+1

. (24)

Thus, we have[
(−1)i−jwβ,r(i, j)

]
n+1×n+1

[
(−1)i−jWβ,r(i, j)

]
n+1×n+1

[Lβ,r(i, j)]n+1×n+1

= In+1.

4. r-Whitney Numbers of the Second Kind and Lah Numbers

In this section, we will find a new explicit formula for computing r-Dowling numbers
Gn,β,r in terms of r-Whitney numbers of the second kind and the ordinary Lah numbers
using the Faa di Bruno’s formula and certain identity of Bell polynomials of the second
kind. The following theorem contains the desired formula.

Theorem 4.1. For n ∈ N, the r-Dowling numbers Gn,r,β equal

Gn,r,β =
n∑
j=0

(−1)n−jWβ,−r(n, j)

j∑
i=0

βj−iL(j, i). (25)

Proof. Let us recall the following identity from [1, 13] on the nth derivative of the

exponential function e±
1
t expressed in terms of the Lah numbers(
e±

1
t

)(n)
= (−1)ne±

1
t

n∑
k=1

(±1)kL(n, k)
1

tn+k
, (26)

the identity from [5] on Bell polynomials of the second kind

Bn,k(abx1, ab
2x2, . . . , ab

n−k+1xn−k+1) = akbnBn,k(x1, x2, . . . , xn−k+1), (27)
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and the famous identity from [5] on Faá di Bruno formula described in terms of the Bell
polynomials of the second kind

dn

dtn
f ◦ h(t) =

n∑
k=0

f (k)(h(t))Bn,k(h
′(t), h′′(t), . . . , h(n−k+1)(t)). (28)

Replacing t by −t in the generating function for the r-Dowling numbers Gn,β,r in equation
(10), yields ∑

n≥0
Gn,β,r

(−t)n

n!
=
e−rt · e

1

βeβt

e
1
β

;

equivalently,

e
1
β

∑
n≥0

(−1)nGn,β,r
tn

n!
= e

1

βeβt · e−rt. (29)

Then taking kth derivative both sides of (29) with respect to t yields

e
1
β

∞∑
n=k

(−1)kGn,β,r
tn−k

(n− k)!
=

dk

dtk
(
e

1

βeβt · e−rt
)
. (30)

Taking f(u) = e
1
u and h(t) = βeβt in (28) and making use of (26) give

dk
(
e

1

βeβt

)
dtk

=
dk
(
f ◦ h(t)

)
dtk

=

k∑
j=1

dj(e1/u)

duj
Bk,j(β(βeβt), β2(βeβt), . . . , βk−j+1(βeβt))

=
k∑
j=1

(−1)je1/u
j∑
i=1

L(j, i) · 1

uj+i
Bk,j(β(βeβt), β2(βeβt), . . . , βk−j+1(βeβt))

= e
1

βeβt

k∑
j=1

(−1)j
j∑
i=1

L(j, i) · 1

(βeβt)j+i
Bk,j(β(βeβt), β2(βeβt), . . . , βk−j+1(βeβt)),

where u(t) = βeβt. Further by virtue of

Bk,j(abx1, ab
2x2, . . . , ab

k−j+1xk−j+1) = ajbkBk,j(x1, x2, . . . , xk−j+1)

and

Bk,j(

k−j+1︷ ︸︸ ︷
1, 1, . . . , 1) = S(k, j)
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listed in [5], [p.135], where a and b are complex numbers, we obtain

dk
(
e

1

βeβt

)
dtk

= e
1

βeβt

k∑
j=1

(−1)j
j∑
i=1

L(j, i) · 1

(βeβt)j+i
· (βeβt)jβkBk,j(

k−j+1︷ ︸︸ ︷
1, 1, . . . , 1)

= e
1

βeβt

k∑
j=1

(−1)j
j∑
i=1

L(j, i) · β
k−i

(eβt)i
S(k, j).

Hence, using Leibniz formula,

dn

dzn
(
e

1

βeβt · e−rt
)

=
n∑
k=0

(
n

k

)
dk

dtk
e

1

βeβt
dn−k

dtn−k
e−rt

=
n∑
k=0

(
n

k

)e 1

βeβt

k∑
j=1

(−1)j
j∑
i=1

L(j, i) · β
k−i

(eβt)i
S(k, j)

 · (−r)n−ke−rt.
Thus, replacing k by n and evaluating at t = 0 in equation (30) give

e
1
β (−1)nGn,β,r =

n∑
k=0

(
n

k

) k∑
j=1

(−1)je
1
β

j∑
i=1

L(j, i) · βk−iS(k, j) · (−r)n−k;

Rearranging the above sum and using the fact that L(0, i) = 0 for all positive integers i,
we get

Gn,β,r =
n∑
i=0

(−1)n−j
i∑

j=0

{ n∑
k=j

(
n

k

)
βk−j(−r)n−kS(k, j)

}
βj−iL(j, i).

Applying the property of r-Whitney numbers of the second kind in equation (8) yields

Gn,β,r =

n∑
i=0

(−1)n−j
i∑

j=0

Wβ,−r(n, j)β
j−iL(j, i).

This is exactly the formula in (25).

The following corollary is a direct consequence of Theorem 4.1.

Corollary 4.2. For n ∈ N, the r-Dowling numbers Gi,β,r equal to the sum of the entries
of the ith row of the product of two matrices[

(−1)i−jWβ,−r(i, j)
]
n×n

[
βj−iL(i, j)

]
n×n , (31)

whose entries are respectively r-Whitney numbers of the second kind and the Lah numbers.
Proof. We can rewrite the formula in Theorem 4.1 as

Gi,β,r =
i∑
l=0

Til, i = 0, 1, 2, . . . , n,
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where

Til =
i∑

j=0

(−1)i−jWβ,−r(i, j)β
j−lL(j, l), l = 0, 1, 2, . . . i.

Clearly, Til is the (i, l)-entry of the following product of two matrices[
(−1)i−jWβ,−r(i, j)

]
n×n

[
βj−iL(i, j)

]
n×n , (32)

containing the r-Whitney numbers of the second kind and Lah numbers, respectively.

To illustrate this corollary, let us consider the case where β = 1, r = 2, n = 6. That
is,[
(−1)i−jW1,−2(i, j)

]
6×6

[
βi−jL(i, j)

]
6×6

=


1 0 0 0 0 0
2 1 0 0 0 0
4 3 1 0 0 0
8 7 3 1 0 0
16 15 7 2 1 0
32 31 15 5 0 1




1 0 0 0 0 0
0 1 0 0 0 0
0 2 1 0 0 0
0 6 6 1 0 0
0 24 36 12 1 0
0 120 240 120 20 1



=



1 0 0 0 0 0
2 1 0 0 0 0
4 5 1 0 0 0
8 19 9 1 0 0
16 65 55 14 1 0
32 211 285 125 20 1

 . (33)

Hence, summing up the entries of each row of the matrix in (33) gives the following column
vector whose entries are the r-Dowling numbers with β = 1 and r = 2

1
2 + 1

4 + 5 + 1
8 + 19 + 9 + 1

16 + 65 + 55 + 14 + 1
32 + 211 + 285 + 125 + 20 + 1

 =



1
3
10
37
151
674

 =



G0,1,2

G1,1,2

G2,1,2

G3,1,2

G4,1,2

G5,1,2

 .

Clearly, the r-Whitney numbers of the second kind Wβ,r(i, l) can be expressed as

Wβ,r(i, l) =
i∑

j=0

(−1)i−jWβ,−r(i, j)β
j−lL(j, l).

That is,

[Wβ,r(i, j)]n+1×n+1 =
[
(−1)i−jWβ,−r(i, j)

]
n+1×n+1

[
βi−jL(i, j)

]
n+1×n+1

.

Using (24), we obtain the following matrix identity.[
(−1)i−jwβ,r(i, j)

]
n+1×n+1

[
(−1)i−jWβ,−r(i, j)

]
n+1×n+1

[
βi−jL(i, j)

]
n+1×n+1

= In+1.
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5. A q-Analogue

A q-analogue is a generalization of a known expression parameterized by a quantity q
that reduces to the known expression in the limit, as q → 1. For example, the q-analogue

of n, n!, (n)k and

(
n

k

)
are respectively given by

[n]q = 1 + q + q2 + · · ·+ qn−1 =
1− qn

1− q
;

[n]q! = [n]q[n− 1]q · · · [2]q[1]q;

[n]k,q = [n]q[n− 1]q · · · [n− k + 1]q;[
n
k

]
q

=
[n]q!

[k]q![n− k]q!
=

[n]k,q
k!

.

Recently, R. Corcino et. al [9] defined a q-analogue of r-Whitney numbers of the second
kind by means of the following recurrence relation:

Wm,r[n, k]q = qm(k−1)+rWm,r[n− 1, k − 1]q + [mk + r]qWm,r[n− 1, k]q. (34)

When q → 1, this will reduce to

Wm,r(n, k) = Wm,r(n− 1, k − 1) + (mk + r)Wm,r(n− 1, k).

One can easily verify that
Wm,r[n, 0] = [r]nq .

The q-analogue Wm,r[n, k]q possessed several properties including the following relation

n∑
k=0

Wm,r[n, k]q[t− r|m]k,q = [t]nq . (35)

For the r-Whitney numbers of the first kind, their q-analogue may be defined by

n∑
k=0

(−1)n−kwm,r[n, k]q[t]
k
q = [t− r|m]n,q. (36)

To compute the first values of wm,r[n, k]q, we need to derive the triangular recurrence
relation for wm,r[n, k]q. Using (36) and the identity

[t− n]q =
1

qn
([t]q − [n]q),

we have

n+1∑
k=0

(−1)n+1−kwm,r[n+ 1, k]q[t]
k
q = [t− r|m]n+1,q = [t− (r + nm)]q[t− r|m]n+1,q



R. B. Corcino et al. / Eur. J. Pure Appl. Math, 12 (3) (2019), 1122-1137 1134

=

(
1

qr+nm
([t]q − [r + nm]q)

) n∑
k=0

(−1)n−kwm,r[n, k]q[t]
k
q

=
n+1∑
k=0

1

qr+nm
(−1)n−k+1wm,r[n, k − 1]q[t]

k
q +

n+1∑
k=0

−[r + nm]q
qr+nm

(−1)n−kwm,r[n, k]q[t]
k
q

=

n+1∑
k=0

(−1)n−k+1

qr+nm
{wm,r[n, k − 1]q + [r + nm]qwm,r[n, k]q} [t]kq .

Thus, comparing the coefficients of [t]kq , we easily obtain the following triangular recurrence
relation

qr+nmwm,r[n+ 1, k]q = wm,r[n, k − 1]q + [r + nm]qwm,r[n, k]q. (37)

Now, to derive the orthogonality relations for wm,r[n, k]q and Wm,r[n, k]q, we first rewrite
(36) as

k∑
j=0

wm,r[k, j]q[t]
j
q = [t− r|m]k,q

and substituting to (35) yields

[t]nq =
n∑
k=0

Wm,r[n, k]q[t− r|m]k,q

=
n∑
k=0

Wm,r[n, k]q

k∑
j=0

(−1)k−jwm,r[k, j]q[t]
j
q

=
n∑
j=0


n∑
k=j

(−1)k−jWm,r[n, k]qwm,r[k, j]q

 [t]jq.

Hence, we obtain the first form of the desired orthogonality relation

n∑
k=j

(−1)k−jWm,r[n, k]qwm,r[k, j]q = δn,j , (38)

where δn,j is the well-known Kronecker delta. By applying similar argument, that is, by
substituting (35) to (36), we obtain the second form of the orthogonality relation

n∑
k=j

(−1)n−kwm,r[n, k]qWm,r[k, j]q = δn,j , (39)

Furthermore, the orthogonality relations in (38) and (39) immediately imply the following
inverse relations:

fn =
n∑
k=0

(−1)n−kwm,r[n, k]qgk ⇐⇒ gn =
n∑
k=0

Wm,r[n, k]qfk (40)
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fk =

∞∑
n=k

(−1)n−kwm,r[n, k]qgn ⇐⇒ gk =

∞∑
n=k

Wm,r[n, k]qfn. (41)

Parallel to Cheon and Jung [4], a q-analogue of r-Whitney-Lah numbers Lβ,r[n, k]q may
be defined by

Lβ,r[n, k]q =
n∑
j=0

wβ,r[n, j]qWβ,r[j, k]q. (42)

This can be written as

(−1)nLβ,r[n, k]q =

n∑
j=0

(−1)n−jwβ,r[n, j]q(−1)jWβ,r[j, k]q. (43)

Using the inverse relation in (40) with fn = (−1)nLβ,r[n, k]q and gj = (−1)jWβ,r[j, k]q,
relation (43) implies the following relation

(−1)nWβ,r[n, k]q =

n∑
j=0

Wβ,r[n, j]q(−1)jLβ,r[j, k]q

Wβ,r[n, k]q =

n∑
j=0

(−1)n−jWβ,r[n, j]qLβ,r[j, k]q (44)

Summing up both sides of (44) over k yields

n∑
k=0

Wβ,r[n, k]q =
n∑
k=0

Wβ,r[n, k]q

n∑
j=0

(−1)n−jWβ,r[n, j]qLβ,r[j, k]q

Dβ,r[n]q =
n∑
j=0

(−1)n−j

{
j∑

k=0

Lβ,r[j, k]q

}
Wβ,r[n, j]q. (45)

Remark 5.1. The explicit formula in (45) implies that the (q, r)-Dowling numbers Dβ,r[n]q
are equal to eiDLe, where D and L are matrices whose entries areWβ,r[n, j]q and Lβ,r[n, k]q,
respectively, ei is the i− th unit vector, and e is the vector with all entries equal to 1.
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[18] Gábor Nyul and Gabriella Rácz, The r-Lah numbers, Discrete Math. 338(2015) 1660–
1666.

[19] N. Privault, Generalized Bell Polynomials and the Combinatorics of Poisson Central
Moments, The Electronic Journal of Combinatorics, 18 (2011) #P54.



REFERENCES 1137

[20] S.M. Tanny, On some numbers related to Bell numbers, Canad. Math. Bull. 17(15),
1975, 733-738.

[21] F. Qi, An explicit formula for the Bell numbers in terms of Lah and Stirling numbers,
Mediterr. J. Math. 13 (2016)(5), 2795–2800.

[22] J. Riordan, Introduction to Combinatorial Analysis, John Wiley and Sons Inc., 1958.

[23] X.-J. Zhang, F. Qi, and W.-H. Li, Properties of Three Functions Relating
to the Exponential Function and the Existence of Partitions of Unity, Int. J.
Open Probl. Comput. Sci. Math. 5 (2012), no. 3, 122–127; Available online at
https://doi.org/10.12816/0006128.


