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Abstract. In this paper, we prove that the Feynman-Kac It6 formula of the Schrédinger operator
with electromagnetic ¥(t, ) in equation (1) in [8] which defined as

vit.a) = [ diiales (~i [ b)) — - / b (s)ds — / t V(ls)ds ) ol(t)

is differentiable of the variable ¢, and so establish that the infinitely differentiable in a region,
therefore, investigate smoothness of this function.
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1. Introduction

The problem of the self-adjoint operator is central in the quantum machine (the
Diracvon Neumann formulation of quantum mechanics, in which physical observables such
as position, momentum, angular momentum).

Kato [5] who showed on the basis of his elegant inequality that, if V(z) > 0 and
Ve LZQOC, then the Schrédinger operator is essentially self-adjoint on the set of infinitely
differentiable finite functions. Nextly, Gaysinsky, Goldstein [4] they proved smoothness
of the Schrodinger operator which is one important step to prove self-adjointness must
be smoothness. After that, Adam Ward [1] investigated the essential self-adjointness of
Schrédinger operator.

Many researchers studied self-adjoint operator were done, for example [2], [6], [7], [9].
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We consider the Schrodinger operator with electromagnetic potentials
"1
. 2
H = Z; 5 (i0) + b (1)) + V(2),
‘]:

in L?(R") where, b;(X),j = 1,2,...,n and V(z) are real-valued functions on R", V €
L (R™),be C*(R"), 0; = % and i = v/—1.

We proved in [8] the Feynman-Kac It6 formula of the electromagnetic Schrodinger
operator ¥ (t,x) which define as the equation (1) in [8]

U(t,z) = / dpt (w)exp (—i /0 t b(w(s))dw — % /O t divbw(s)ds — /0 tV(w(s)ds) o(w(t))

converges and is an analytic function of the variable t.

In this work, we prove that the Feynman-Kac It6 formula of the Schrodinger operator
with electromagnetic potentials ¥ (¢, ) in equation (1) in [8] is differentiable of the variable
t, and we have %Q/(t, r) = — < e ™ Hh > . Then, we discuss the infinite differentiability
of the function ¥(¢,z) in R™\ A where the potential V' = 400 on a set A. Finally, we
investigate the smoothness of this function ¥ (¢, z).

2. Statement of the problem and the main result

In [8] we proved that ¥(¢,x) converges and has an analytic extension for a variable t.
Now, we prove that the smoothness to achieve this goal, we will follow the steps below.

Proposition 2.1. If H =377, $(i0;+bj(2))>+ V() is the Schridinger operator defined

on the interval [o, 5] with zero boundary conditions (V (x) is a continuous function defined
on [o, B]"), ¢, h € C§°, then < e *H ¢ h > is a differentiable.

0
a<6_tH<p,h>:—<e_tH4p,Hh>. (2.1)
Proof. Let F(t,V) be the analytic extension defined in [8] as

F(t,V) = / W(t, 2)h(x)dr, (2.2)
and let
Foslt,V) = /R gt () (2.3)

be the same as in [8] , where

Vo s(t,x) = /dy exp(—tHqg) < z,y >, (2.4)
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we define the operator H on the interval [a, 5]™ which denoted by H, 3 we have

lim_{|Fa, 5, (8 V) = F(t, V)| =0,
Qp——00
ﬁn**FOO

uniformly by ¢ € G, where G is compact subdomain of {t =7+ 0,7 > 79 > 0} . By the
Weierstrass theorem

N R
G L2(R".dV)
Let H, g as above then by equations (2.3), (2.4), we have
(e7Mabp h)y = F,4(t, V).
Therefore,
W = —/Wa75(t,x)Ha75h(x)dm, (2.5)

provided suppp, supph C (a, 5)", h(xz) = 0 in the neighborhood of the center x = 0. Since
H,gh = Hh, then the right side of (2.5) represents a value of form F, g(¢,V’), but only
for function

Hh=Y %(iaj +b;(2))%h + V(@)h.

According to the estimates for such functions, we may pass to the limit as a = —o0, 8 —
+00.

We observe that we can determine the functions ¥ (¢, z) if the potentials V, b are equal
to +00 on a set A that might have a positive measure

pis = V(w(s)) = +00,b(w(s)) = +o0} >0,

we set

exp (- /0 t V(w(s))ds) — 0, exp (— /0 t —ib(w(s))ds) — 0, exp <— /0 t jdivb(w(s))ds) ~0.

Then the function ¥ (t, x) satisfies the equation

%!7(75, x)p = Z %(iaj +bi(2)) 2 (t,z)p + V(z)(t, ).
j=1

Since ¥ (t,z) is analytical with respect to tha variable ¢, we prove that ¥(¢,x) is a
smooth function for almost every V,b where = € R™\ A.
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Proposition 2.2. Let V € L?(R™\A), ¢, h € C§° where A is closed set, V(x) = 400, b;(z) =
+o00,x € A such that suppp N A = 0. Then ¥(t,x) is an infinitely differentiable function
of the variable x for almost every V,b for Ret > 19 > 0.

Proof. From equation (2.5) and definition of F'(¢,V') in equation (2.1)
8 n
at/E(W(t,:v /E (t,z) { (18 + b)) h(z) + V(z)h(z) | dz.  (2.6)

Let (V) € L?(R", dv), we put

ft) = - E (@(t,x)0(V)) h(x)dx = E(F(t,V)0(V)).

depending on above that f(t) is an analytic function and

of _ . <8F(t,x)9(v)>

ot ot
_‘/n { {Znil i0; + ;)" h(z )+V(w>h(a¢)} Q(V)}dx
7j=1
"1
= _/n ( Zi (10; + b;) ) h(x)dx—/nE(W(t, z)V (2)0(V)) h(z)dz.
7=1
On the other hand, f(¢) fRn (x)dx, where f(t,z) = E(¥(t,x)0(V)).
We have

|f(t,2)* < E@(t,2)*)E@O(V)?)
= 1101 72(rn ary ¥ EW(t,2)%).

Therefore,

o f(t,x)%dz < const ||9H%2(d\/)

ie. f(t,r) € L3(R",dV). Further,

EW(t, :p)V(z)H(V))2dx) i
R'n

E(L[,(t,x)v(x)e(v))’h(x)dx < </nh(az)2dx)é (

Rn

< Il [ B0V EE V(@) )

1
2
< Il 192 ([ BP0V
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< const HhHLZ(R",dr) HGHLQ(Rn,dV) )

where we have used the estimates

EW(t,z)*|V|™)dx < const, (2.7)
R

where m = 1,2, ... and the constant depends on m. We estimate the value %{With the
help Cauchy Schwartz inequality for drivatives of analytic function:

of
— | < . .
‘ 5| < const glif'(\f(z)]

Further,
[f(2)| = |E(F(2,V)0(V))|
1
<161l 2 avy E(F (2, V)?)2
< const ||9||L2(Rn,dV) ||h”L2(R”,dx) :
Thus,

"1
f (t,x 25 (i0; + bj(x))* h(w)dx| < const 10]| L2 (gn vy 12l L2 (rn ey -
7=1

One may check in just same way that if hq(z), ..., hy(x),01(V),...,0,(V) and constats
Cri.k,l=1,...,p are given, then

p
E / (t,x) Z CMZ (i0; + bj(2))? b ()0, (V)da || < const || Y Chihy(z)0y(V) :
k=1 j=1 k=1 L2(R" dz,dV)

the left side equal to

D n

E / (t,x Z Cr, Z ; 2 +i0;b;(x) + ib;(x)0; + b?(x)) hi(z)0,(V)dzx ||,

k=1 j=1

we pass at the left side to Fourier transformation by the variable z.
We get the following expression:-

([ o S Y L (08 0yt (o) + i (010 +5°@) el (V)dg ||

k,l=1 7=1
which equal to

n n

[t 3 o |5 P +Z Lo+ 30 2@ ail + 30 56 (@) | RV

k=1 j=1 j=1 j=1
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= <¢/(t, q),
k,l

= <@<t, 2 D Cia (2” Y 505 + 3 o)l + 3 ;@2@)) h;<q>ez<V>>
j=1 j

M=

Ch (Zq +Z SOl + > 5 <q>qz‘+zib}2<q>> h“k<q>el<V>>

1 j=1 j=1 7j=1

L2(R",dg,dV)

k=1 Jj=1 J=1 L2(R™,dq,dV)
) G L -
= < (tq) | = Iq! +Z Lojbi( 25 (@lal+D_ 50 @) | D] Ck,zhk(Q)Gz(V)>
= = mi=t L2(R dq,dV)
The right side after the passage to the Fourier transform gains the form
p ~
> Crali(@)0(V)
k=1

L2(R™,dq,dV)

From this we get

|l( || +Z Loy Z:: Lbi(a IQI+Z::*

U(t,q) < const.

L2(R",dq,dV)

[\3 —
\/
>

(2.8)
In particular

2
/ (q +Z L.t Z% yq|+z =5, ) ‘Wtq)‘ dg < +o0, (2.9)

for almost every V and b, i.e. ¥(t,x) € W for almost every V and b. Besides, H&PH%/Vl is
an integrable function of V.
Further, in just the same way as it was as done while deducing (2.6) one can show that

2
z / Bt 2))h(x)ds / B, 7)) K;;(z’aj+bj(x))2+1/(m)) h(:p)] da.

2
8t2/E (t,x)) da:—/E (t,x)) (Z; 10; + bj( ) —i—Z (i0j + bj(x))* V (z)h(x)
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Let us multiply the above equation by (V') and integrate over dV, extract the ex-

2
pression containing (Z] L 5 (i0; + bj()) ) h(z) and estimate the other terms in this

equation.
The term

8t2/E (t,z)) V)dzx

is estimated in just the same way as in the case of the first derivative, i.e. with the help

of the Cauchy integral formula.
/ B¢, 2)h(z)V2(z))dx

The term
admits application of the estimates see equation (2.7). Let us write

n n

S04 85 + by(@)* Vi@)h(e) + V() D 3 (105 + b)) hia)

j=1 j=1

£ 05 @)V (@)D b ()05 (V () hla)+3 by eV )y (b)) + D B ) (V () ().

j=1 j=1 j=1 j=1
According to the definition of the potential V'(x),

1
Z* 18 +b 5] lmz Za +b V]*l,m (x_(ajfl,mlyajfl,m%---aajfl,mn))

[\3
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n

1
+&m Y 5 (105 + bj(2))? Vim (& = (@1, Gjm2, s Gjmn))
j=1

for x € I}, [} md> @j—1,ma) hence the term

/E (t,2)0(V)h(z )Z;(iaj+bj(x))2V(x))dx

7j=1

also admits application of the estimates see equation (2.7). Let us pass in the expression

/E (t,2)V G(V)Z1(i3j+bj(x))2h(x))daz

7=1

n n

B ()Y 55 (V@)B(V) Y~ d5(he))dr

Jj=1 Jj=1
to the Fourier transform over the variable z. Consider, for example, the second one. It
will have the following form:-

n

e U (e QLR
B [ dtob@Vie) | X 5P+ 5 > o) + 5 o] -l + 5 > B0 | dao(v)
J=1 Jj=1 7=1 j=1
and its absolute value is less or equal to the expression
2
X " -1 I, s 1
const | B ([ 100) x| 30 FHa 4 5 D@ + 5> ibal —ial + Zb? dg
8 j=1 j=1 j=1
@) g, 1O 2
Now we get from the above estimate,
2
n 1 )
B w(tz) | > 5 (105 +b;(2)) h(z)0(V) | dz < const [|h]| 2 (gn gz 101l L2(gn avy -

j=1
We apply also calculations to a random variable of the form Zi 11 Chihi ()01 (V).
We get the estimate of the form (2.7) where 3 7, 3 L (i0j + bj(x ))? hi,(x) is replaced by
2
<Z?:1 5 (i0; + bj(:c))2> hi(x). From this, we get the estimates (2.8) and (2.9) where ¢ is

replaced by ¢?. Thus ¥(t,z) € Wy for almost every V,b. Besides, HQ/HI%VQ is an integrable
function of V.
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We can continue this arguments. As a result, we get that ¥(¢,z) € W, for all m =
1,2, ..., and for almost every V and HWH%/Vm is an integrable function of V. Therefore, ¥ (¢, z)
is an infinitely differentiable function of the variable = for almost every V. In addition, the
function ¥ satisfies, in the classical sense, the following differential equation

n

= 3 0 4+, (@) Ult2) — V@) )

J=1

o
ot

for almost every V.
Let us consider an initial condition which is satisfied by the function ¥. Since ¥ (¢, z)
is defined for t > 0, we have to find lim;—0¥(t,x). We record

vt = | dy</ e exp(—z / blao(s))deo — 2 / divb(w(s))ds — / V<w<s>>ds)>so<y>,

where the integral converges for almost every V)b, x.

Bt o) dr= [ aen([ [ di)enii [ ooy [ diols)ds-

R 0

| viwts)dsno®) - [ pe.s0p@in?
0

[ [ [ vt [ [t riut o B [ bt [ dinsioo)as-

t t i t ' t
| v Daet—pes(=i [ i) /0 divh(n(s))ds— [ V(n()ds)o()—p(a).

exp (—i /0 t b((s))dv — % / divb(y(s))ds — / v )
:1—/01<—i/0tb(7(8))d7—;/d“’b ds_/v )

expa <—i /0 by () — % /0 " divb((s))ds — /O t V(v(s))ds) do (2.10)

We get from (2.10) and from the estimates in (proposition 2.1 in [8]).

B[ [ ant ) [exp (=4 [ stwtsndo— 3 [ diobtsnyas = [ Viat9)ds) tota) = o)
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1 e [atote [exo (=1 [ swtondo =2 [ divbtotsnds - [ Viwtspas) (o) - ot
< (/p(aﬁ,y,t)so(y)dy—sO(x))(/p(%Z,t)w(Z)dz—cp(w))Jrconst /p(w,y,t)w(y)dy—w(w)lt

—l—const!(/p(x, 2, t)(2)dz — @(z))|t + const.t?

since ¢(z) € C§°, we have

EW(t,z) — ¢(x))%dz — 0.
R’VL

Thus ¥(t,x) satisfies the equation W =213 L (i0; + bj(x N2W(t,z) — V(z)¥(t, )
with the initial condition ¥(t,x) — ¢(x) in L*(R" dz,dV) as t — 0. Repeating the
same estimates, we can show that W (t,z) — He(z) in L*(R",dz,dV) as t — 0 where
¥ corresponds Ho(z), and also Wy, (t, ) — H™o(x) in L2(R", dx,dV) as t — 0 where ¥
corresponds H™p(z).

First, we note that since the function ¥ (¢, x) satisfies the estimates equation (2.7) and,
by lemma (3.1) in [8], may be analytically extended into the mentioned band, then we can
repeat literally all the arguments of this section for x € R™\ A and show that the function
U (t,z) is infinitely differentiable if z € R™\ A.

We now consider the case x € A. We assume, that the function V(x) in a neighborhood
of z € A satisfies the following requirements considered in the work of M.D. Gaysinsky
(see[3],p.23):

(I) There exists ¢ > 0,6 > 0,k, N are some constant such that 0 < V(z) — d(x, A)727¢ <
kd(x, A)~N,if 0 < d(x, A) < §; where © € R™\ A, d(z, A) is the distance between x
and closed set A.

(II) For each a = (a1, a2, , o) there exists §, > 0 such that
Bac"‘ V(z)| = O(d(x, A)~ke if 0 < d(x, A) < §, where k, are some constants.

We will show now that, in this case, ¥(t, z) is infinitely differentiable at zero for almost
every V,b, and also estimate the derivations of ¥ (¢, z) in a neighborhood of x € A if the
support of the function ¢(z) is disjoint with the closed set A. First, we show that ¥ (¢, z)
fast decreases as x approach to the set A.

Proposition 2.3. Let V € L*(R™\A), p, h € C§° where A is closed set, V(z) = +00,bj(x) =
+o0, ifr € A, 0 < V(z)—d(z,A)2¢ < Kd(x, A)™N, if 0 < d(x, A) < &; where x € R™\ A,
d(x, A) is the distance between x and closed set A, € > 0,5 > 0,k, N are some constant,and
let for each o = (a1, 2, , ay) there ezists o > 0 such that

8:1:‘3“ V(z)| = O(d(z, A, if 0 < d(z,A) < 64 where ko are some constants. Let
© € C§° such that suppp N A = 0. Then ¥(t,x) is an infinitely differentable function.
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_ Proof. Following the works of M.D. Gaysinsky [3], we will say that a random variable
V(x) has A—property if

o

El ox™

V()| < O(d(z, A)Fmr,
for d(x, A) < dpr where Oy, r, ki r > 0 are constant, m = 1,2, ...

E|a—mf/(x)]T < exp(Cp r?)
Oz _ m,r )
where Cp, ,» > 0 is some constant, m =0,1,2, ... .

It is evident that the derivations of a function (V(z)), having the A—property, also
have the A—property; the product of functions, having the A—property, also has the
A—property. We prove, by induction, that for any random function V with A—property
of the function V@(t, x) belongs to the Sobolev space W,,,,m =0, 1,2, ..., for almost every
V,b. Consider a sequence of smooth function A, (x) such that

(a) \(z)=0ifd(z,A) <L or d(z, A) > v
(b) A(z)=1if 2 <d(z,A) <v—1
(c) maxy<o ‘%)\V(:U)‘ < Mv#®, where M, s are constant.

Let M = 0. We record

Ew(t,2)V (@) < (B((t,2)") (B(V(2))")

< fo (2.11)

~
8
=

where f3 is some constant.
Now, it follows from (2.11) and corollary(2.2)in [8] that

E (/ |LZ/(t,x)I~/(x)|2> dz < Bo,

where fy is a constant. We can write for any h(x),0(V)

n

E / V(2)W(t, ) Z%(iﬁj—i—bj)z h@)o(vV) | da

Jj=1

= lim (/ V(x)¥(t,x) Z%(mj +0;)% | (VA h(2)) + VVAR(x)| — VVE(t, 2)\h(x)
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1, 5\ - LN 1
~W(t, )\, h(z) (le 5 (0; +bj) ) V=20 (t, x) (le 2@»(&/)) (jzl Qaj(xyh)) )0(V ) dz.

Since the support of the functions h(x) = V(Nac))\,,h(x) is disjoint with the neighborhood
of the point z € A, we can repeat literally for h(x)8(V') all the arguments which we have
stated in the case when V() has no singular points. We have then

E ( / W(t,x)Hﬁ(m)O(V)) de =E ( / gp<1>(t,x)h(x)9(V)> dr,

where W(t, z) corresponds to the function ¢V (z) = Hy(x). Thus, we have

Tim B ( / (t, ) [(i %(iaj + bj)2) (VAA(2)) + VI A A () G(V)) do

Jj=1

— lim B < / oW, x)(f//\l,h(x))H(V)> da.

vV—00

In addition,

]E(/ VV(t, 2)h(z)0(V))dx| < const/E(V(a:)QW(t, x)\)%E(f/(x)z\J/(t,x)])%dx,

-1
B(V(@)*[¥(t,2)]) < E(V(2)")} B@(t,2))%)? < constexp (— S (gt — tk><bk>2> exp (—
k=0

7(‘9Vor

where ¢ > 0 is constants. The similar estimate is true if we replace V by ZJ 15

<Zj:1 5(1(9]- +b;) ) (V) (we use the A—property).
Since A, (z) is bounded and A, (z) # 1 whenever d(z, A) < 2 or d(z,A) > v — 1, we
have

E(/—VVW(t,:U))\Vh( ) =W (t, 2)\h(x (f: (i0; + b;)

[\D —
v
<
|
[\~
S
~
S
/
(]
|
N | —
S
=
N——

3

(Z ;amyh)) )0(V)da — B( / VVE(t2)h(z) = U (t 2)h(x) (

Jj=1

Jj=1

ot z) (Z ;aj(m) (Z ;ajh) V0(V)da
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where ¢ > 0 is constants.
Therefore,

=1

+E( / [V (2)V (2)¥(t, z)h(z)—¥(t, z)h(z) (Z %(mj + bj(x))2> V(z)—-20(t, z) (Z;aj(f/))

(Z ;ajh) 0(V)])dz.

j=1
Now, we act in just the same way as in the case of the potential without singularities.

Namely, we make the fourier transform by the variable x at the left side. We get the
following expression:

n

E(/ (V(@)0 (1, 2)) (k) (Z %ﬂk\? 4 ;Ziﬁjb % Z k)| — kil + ; Zib?(k:)) R(k)O(V)dk.

Jj=1 j=1

Since V(x)V () and (ZJ L 5(i0; + bj(2)) ) have the A—property, we have

B (V@) (@)t 2)h(@)0(V)) de| < const [11(2)0(V) | 2((rn tn.av (2.13)
(/ (Z; (10; + bj( ) V(x)h(m)@(V)) dz| < const ||h(x)0(V) L2((rn, v -
J=1

(2.14)

In the last term we also make the Fourier transform by x. We get the following
expression:

%E ( / (Lfl(t,x) (Z ;aj((f/)))> (k)h(k)(;‘k)e(x/)) dk. (2.15)

J=1

Now, it follows from (2.12)-(2.15) that

\E(/(f/ DU Sy T 8 ST 0t (k) + 5 S Bi(R)| — Kl + 5 Y B2 (R) -

(@)@ (t,z)) (k) e h(k)O(V)dk|
2
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< const|[h(2)0(V)|| 2 s g (2.16)

Further the estimate (2.16) is literally transferred onto functions of the form } - Cy ihg ()0, (V).
Therefore, V(z)¥(t,x) € Wi for almost every V,b

IV (@)@ (t, 2%, <Bi(V),

where E(B1(V)) < +oo. Continuting these arguments of induction, we get V(z)¥(t,z) €
W, for almost every V,b

IV (@)@ (t, ), < Bm(V), (2.17)

where E(3,(V)) < +0o0.

Thus, we have proved that the function ¥ (t,z) for almost every Vb is infinitely dif-
ferentiable for all x, in particular, at the point x € A. Besides, for any function with the
A-property, the estimates of the form (2.17) take place.
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