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Abstract. The numerical solution of one and two dimensional shallow water magnetohydro-
dynamics model is obtained using the 4th-order conservation element solution element method
(CESE). The method is based on unified treatment of spatial and temporal dimensions contrary to
the finite difference and finite volume methods. The higher-order CESE scheme is constructed us-
ing same definitions of conservation and solution elements that are used for 2nd-order CESE scheme
formulation. Hence it is more convenient to increase accuracy of CESE methods as compared to
the finite difference and finite volume methods. Moreover the scheme is developed using the con-
servative formulation and does not require change in the source term for treating the degenerate
hyperbolic nature of shallow water magnetohydrodynamics system due to divergence constraint.
The spatial and temporal derivatives have been obtained by incorporating 3rd-order Taylor expan-
sion and the projection method is used to handle the divergence constraint. The accuracy and
robustness of the extended method is tested by performing benchmark numerical tests taken from
the literature. Numerical experiments revealed the accuracy and computational efficiency of the
scheme.
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1. Introduction

Gilman was the pioneer to introduce the shallow water magnetohydrodynamics (here-
after referred as SWMHD) system to mathematically model the physical phenomena in
the solar tachocline [9]. The solar tachocline is a thin region inside a star where heat radi-
ates from the interior zone to the outer turbulent zone predominantly. Its thickness ranges
between 2 to 5 percentage of the solar radius. Because of predominantly radiative heat
transfer and its thin vertical thickness the tachocline can be described similarly to ocean
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and atmosphere. This urges the introduction of MHD analogue of shallow water system
(SW) to study physical processes in solar tachocline. Although the SWMHD system has
been derived with one layer assumption, it is possible to add little changes to link more
than one layer as in hydrodynamics case. This indeed allows to study several kind of solar
dynamics within solar tachocline reference their in [5–7, 9].

Following the derivations by [9] and Rossmanith [16], the SWMHD system is written
below for incompressible flow under magnetohydrodtatic equilibrium in the z-direction.

ρ ≡ constant , (1)

∂

∂z

(
p+
‖B‖2

2

)
= ρg. (2)

The reader is referred to [10] for complete derivation of the model. The one dimensional
SWMHD equations in the conservative formulation is given as below:

∂q

∂t
+
∂f

∂x
+
∂g

∂y
= 0, (3)

q =


h
hu1

hu2

hB1

hB2


t

, f =


hu1

hu2
1 + 1

2gh
2 − hB2

1

hu1u2 − hB1B2

0
hu1B2 − hu2B1

 , g =


hu2

hu1u2 − hB1B2

hu2
2 + 1

2gh
2 − hB2

2

hu2B1 − hu1B2

0

 , (4)

where g is the gravitational constant, the variables v1, v2, B1, B2 are the velocity and
magnetic field components respectively and h is the layer depth. This system is degenerate
hyperbolic due to the last equation ∇ · (hB) = 0. Hence in order to develop a Riemann
solver for numerical solution of SWMHD model one must needs to relax the equation
∇ · (hB) = 0. This will need an addition of extra source term as can be seen in [22]. This
is one of the reasons to present my work based on developing a numerical scheme without
change in source term.

The one and two dimensional SWMHD system has been solved numerically with dif-
ferent schemes [12, 15–17]. Due to the eigenvalue structure of MHD analogue of shallow
water system, it is obvious to design a robust and accurate numerical method particularly
for one dimensional case to obtain a higher order extension that captures all waves region.
This is the second reason to carry out the present work. The aim of this paper is to build
a novel method for one dimensional SWMHD model with the following features:
a. The method should be accurate for one dimensional case
b. It is easy to extend the method to higher dimensions
c. There is no need of Riemann solvers
d. There is no need to change the source term

The present work follows [23], in which authors have presented a fourth order CESE
method for MHD system. CESE method is widely applied to solve Riemann problems
associated to hyperbolic conservation laws. It was first proposed by Chang et al. [3].
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Now a large number of studies are available in the literature that demonstrate the CESE
method’s robustness, easy implementation process and accuracy [4, 11–15, 23]. The ap-
plications of CESE method for MHD problems can be found in [18, 19, 24, 26].

This paper is organized in four sections. Section 1 gives an introduction of SWMHD
model and the numerical schemes that have been applied to this system. I have tried
to emphasize on the causes that urges to develop a higher order CESE scheme for this
model. Section 2 comprises of detailed formulation of fourth order CESE scheme for
one dimensional SWMHD equations. Section 3 includes the numerical test cases that
demonstrate the reliability of present work. In Section 5, concluding remarks are given
about this work and some future extensions.

2. Fourth-Order CESE Scheme

The fourth-order CESE scheme is based on the same basic concept of the second-
order CESE scheme in [25]. Let us consider the space-time Cartesian coordinates system
E3(x, y, t), where x and y are the spatial coordinates combined with the time coordinate
t. Eq.3 can be rewritten as

∇ · hm = 0, (5)

where hm = (fm, gm, qm), (m = 1, · · ·, 5) is the spacetime flux vector and ∇ =
( ∂
∂x ,

∂
∂y ,

∂
∂t). Integrating equation refe:3 over the arbitrary control volume v and applying

the Gausss divergence theorem in the 3D spacetime domain E3(x, y, t), allows to write the
following form: ∮

A(v)
hm · ds = 0, (6)

where A(v) denotes the closed boundary surface of any spacetime region v in E3(x, y, t),
da = (dδ)n, with the area dδ and the unit outward normal vector n. Moreover hm · ds
denotes the total spacetime flux leaving the surface element da.

Figure 1 shows the projection of conservation element on 2D Cartesian coordinates
grid in (x, y) plane at time level n− 1

2 as the polygon V1V5V7V9. Each vertex Vi is marked
as a filled circle. The centroid Ci, i = 1, 2, 3, 4, associated to each polygon is marked
as hollow circle. The 3D space-time region is divided into non-overlapping quadrilaterals
called conservation elements hereafter referred as CE. Each CE is divided into four basic
CEs. The associated BCEs are V1V2V3V4, V3V4V5V6, V6V7V8V3 and V8V3V2V9. The cen-
troid of each BCE is marked as Ci and the centroid of CE is marked as G. Due to uniform
grid, the points G and V3 coincide.
The staggered CESE scheme is designed in a way that the solution at BCE cell centers
Ci are obtained during the first half time step and the solution at the vertices (in our
case G) is updated in the second half time step. For each solution point G there is an
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Figure 1: Projection of CE onto (x, y) plane

associated solution element (SE). The role of solution element is to get Taylor approxima-

tion of flux variables qm, fm and gm. Consider for example the solution point C
/
i . The

corresponding CE is the polygon V1V2V3V4V
/

1 V
/

2 V
/

3 V
/

4 while the SE is the union of three

planes V
/

1 V
/

2 V
/

3 V
/

4 , A1A3A
//
1 A

//
3 and A2A4A

//
2 A

//
4 . This space-time discretization implies

that the boundaries of CEs are parallel to the coordinate planes and also their outward
unit normal vectors are along the coordinate axis. It results only one component of total
space-time flux vector (f, g, q) passing through boundary planes of CEs and BCEs.
The conservation law form of shallow water MHD equations holds for an arbitrary closed
spacetime domain and the defined CE is also closed space-time region so the conservation

law can be transformed to discrete form. Continuing the example of solution point C
/
i and

impose the conservation law 6 on its CE. Contrary to the finite difference schemes, the
CESE method is extended to higher order schemes based on same grid and associated CEs
and SEs which is one of the reason for convenient extension of CESE scheme to higher
order as compared to other numerical methods.
Equation 6 implies that

∮
S(CE(C1))

hm · ds =

∮
S(V1V2V3V4V ′1V ′2V ′3V ′4)

hm · ds. (7)

The solution at C ′i is updated by carrying out integration over the bottom surface V1V2V3V4,
side surfaces V1V

′
1V2V

′
2 , V2V

′
2V3V

′
3 , V3V

′
3V4V

′
4 and V4V

′
4V1V

′
1 and the top surface V ′1V

′
2V
′

3V
′

4 .
The unit outward normal to the bottom surface is (0, 0,−1). Hence only space-time flux
q passes through this surface. As seen in Figure 2, the bottom surface is divided into
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Figure 2: Schematic diagram of CE and SE

four parts. On each part qm is approximated by third-order Taylor expansion at points
V1, V2, V3, V4. The integration over V1A2C1A1 is carried out using the third-order Taylor
expansion of qm at the point V1. It gives following result:∫ i∆x

(i− 1
2)∆x(j− 1

2)∆y

{
(qm)V1 + (qmx)V1

[
x−

(
i− 1

2

)
∆x

]
+ (qmy)V1

[
y −

(
j − 1

2

)
∆y

]
+

1

2
(qmxχ)V1

[
x−

(
i− 1

2

)
∆x

]2

+
1

2
(qmyy)V1

[
y −

(
j − 1

2

)
∆y

]2

+
1

2

[
(qmxy)V1 + (qmyx)V1

] [
x−

(
i− 1

2

)
∆x

] [
y −

(
j − 1

2

)
∆y

]
+

1

6
(qmxxx)V1

[
x−

(
i− 1

2

)
∆x

]3

+
1

6
(qmyyy)V1

[
y −

(
j − 1

2

)
∆y

]3

+
1

6

[
(qmyyx)V1 + (qmyxy)V1 + (qmxyy)V1

] [
y −

(
j − 1

2

)
∆y

]2 [
x−

(
i− 1

2

)
∆x

]
+

1

6

[
(qmxxy)V1 + (umxyx)V1 + (qmyxx)V1

] [
x−

(
i− 1

2

)
∆x

]2 [
y −

(
j − 1

2

)
∆y

]
}dxdy

=
∆x∆y

4

{
(qm)V1 + (qmx)V1

∆x

4
+ (qmy)V1

∆y

4
+ (qmxx)V1

∆x2

24
+ (qmyy)V1

∆y2

24

+
[
(umxy)V1 + (qmyx)V1

] ∆x∆y

32
+ (qmxxx)V1

∆x3

192
+ (qmyyy)V1

∆y3

192

+
[
(qmyyx)V1 + (qmyxy)V1 + (qmxyy)V1

] ∆y2∆x

288

+
[
(qmxxy)V1 + (qmxyx)V1 + (qmyxx)V1

] ∆x2∆y

288
}. (8)
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The integration over the surface V2A2C1A3 results as follows:∫ (i+ 1
2)∆x

i∆x

∫ j∆y

(j− 1
2)∆y

{
(qm)V2 + (qmx)V2

[
x−

(
i+

1

2

)
∆x

]
+ (qmy)V2

[
y −

(
j − 1

2

)
∆y

]
+

1

2
(qmxχ)V2

[
x−

(
i+

1

2

)
∆x

]2

+
1

2
(qmyy)V2

[
y −

(
j − 1

2

)
∆y

]2

+
1

2

[
(qmxy)V2 + (qmyx)V2

] [
x−

(
i+

1

2

)
∆x

] [
y −

(
j − 1

2

)
∆y

]
+

1

6
(qmxχX)V2

[
x−

(
i+

1

2

)
∆x

]3

+
1

6
(qmyyy)V2

[
y −

(
j − 1

2

)
∆y

]3

+
1

6

[
(qmyyx)V2 + (qmyxy)V2 + (qmxyy)V2

] [
x−

(
i+

1

2

)
∆x

] [
y −

(
j − 1

2

)
∆y

]2

+
1

6

[
(qmxxy)V2 + (qmxyx)V2 + (qmy×x)V2

] [
x−

(
i+

1

2

)
∆x

]2 [
y −

(
j − 1

2

)
∆y

]
}dxdy

=
∆x∆y

4

{
(qm)V2 − (qmx)V2

∆x

4
+ (qmy)V2

∆y

4
+ (qmxx)V2

∆x2

24
+ (qmyy)V2

∆y2

24

−
[
(qmxy)V2 + (qmyx)V2

] ∆x∆y

32
− (qmxxx)V2

∆x3

192
+ (qmyyy)V2

∆y3

192

−
[
(qmyyx)V2 + (qmyxy)V2 + (qmxyy)V2

] ∆y2∆x

288

+
[
(qmxxy)V2 + (qmxyx)V2 + (qmyxx)V2

] ∆x2∆y

288
}. (9)

The integration over polygon V3A3C1A4 gives:∫ (i+ 1
2)∆x(j+ 1

2)∆y

i∆x

{
(qm)V3 + (qmx)V3

[
x−

(
i+

1

2

)
∆x

]
+ (qmy)V3

[
y −

(
j +

1

2

)
∆y

]
+

1

2
(qmxχ)V3

[
x−

(
i+

1

2

)
∆x

]2

+
1

2
(qmyy)V3

[
y −

(
j +

1

2

)
∆y

]2

+
1

2

[
(qmxy)V3 + (qmyx)V3

] [
x−

(
i+

1

2

)
∆x

] [
y −

(
j +

1

2

)
∆y

]
+

1

6
(qmxxx)V3

[
x−

(
i+

1

2

)
∆x

]3

+
1

6
(qmyyy)V3

[
y −

(
j +

1

2

)
∆y

]3

+
1

6
(qmxxx)V3

[
x−

(
i+

1

2

)
∆x

]3

+
1

6
(qmyyy)V3

[
y −

(
j +

1

2

)
∆y

]3

+
1

6

[
(qmyyx)V3 + (qmyxy)V3 + (qmxyy)V3

] [
x−

(
i+

1

2

)
∆x

] [
y −

(
j +

1

2

)
∆y

]2

+
1

6

[
(qmxxy)V3 + (qmxyx)V3 + (qmyxx)V3

] [
x−

(
i+

1

2

)
∆x

]2 [
y −

(
j +

1

2

)
∆y

]
}dxdy
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=
∆x∆y

4

{
(qm)V3 − (qmx)V3

∆x

4
− (qmy)V3

∆y

4
+ (qmxx)V3

1

24
∆x2 + (qmyy)V3

1

24
∆y2

+
[
(qmxy)V3 + (qmyx)V3

] ∆x∆y

32
− (qmxxx)V3

∆x3

192
− (qmyyy)V3

∆y3

192

−
[
(qmyyx)V3 + (qmyxy)V3 + (qmxyy)V3

] ∆y2∆x

288

−
[
(qmxxy)V3 + (qmxyx)V3 + (qmyxx)V3

] ∆x2∆y

288
}. (10)

Finally, integration on the part V4A1C1A4 gives:∫ i∆x

(i− 1
2)∆x

∫ (j+ 1
2)∆y

j∆y

{
(qm)V4 + (qmx)V4

[
x−

(
i− 1

2

)
∆x

]
+ (qmy)V4

[
y −

(
j +

1

2

)
∆y

]
+

1

2
(qmxx)V4

[
χ−

(
i− 1

2

)
∆x

]2

+
1

2
(qmyy)V4

[
y −

(
j +

1

2

)
∆y

]2

+
1

2

[
(qmxy)V4 + (qmyx)V4

] [
x−

(
i− 1

2

)
∆x

] [
y −

(
j +

1

2

)
∆y

]
+

1

6
(qmxxx)V4

[
x−

(
i− 1

2

)
∆x

]3

+
1

6
(qmyyy)V4

[
y −

(
j +

1

2

)
∆y

]3

+
1

6

[
(qmyyx)V4 + (qmyxy)V4 + (qmxyy)V4

] [
x−

(
i− 1

2

)
∆x

] [
y −

(
j +

1

2

)
∆y

]2

+
1

6

[
(qmxxy)V4 + (qmxyx)V4 + (qmyxx)V4

] [
x−

(
i− 1

2

)
∆x

]2 [
y −

(
j +

1

2

)
∆y

]
}dxdy

=
∆x∆y

4

{
(qm)V4 + (qmx)V4

∆x

4
− (qmy)V4

∆y

4
+ (qmxx)V4

∆x2

24
+ (qmyy)V4

∆y2

24

−
[
(qmxy)V4 + (qmyx)V4

] ∆x∆y

32
+ (qmxxx)V4

∆x3

192
− (qmyyy)V4

∆y3

192

+
[
(qmyyx)V4 + (qmyxy)V4 + (qmxyy)V4

] ∆y2∆x

288

−
[
(qmxxy)V4 + (qmxyx)V4 + (qmyxχ)V4

] ∆x2∆y

288
}. (11)

The unit outward normal to the side surfaces V1V
′

1V
′

2V2 and V3V
′

3V
′

4V4 are (1, 0, 0) and
(−1, 0, 0) respectively. Hence only space-time flux f passes through these planes. Each
side surface is divided into two parts and the integration over each part is carried out
using the third-order Taylor expansion of fluxes at the near solution point.
Consider V1V

′
1V4V

′
4 as an example. It is the union of two polygons V1V

′
1A1A

′
1 andA1A

′
1V4V

′
4 .

The integration over V1V
′

1A1A
′
1 uses the Taylor expansion of fm at V1 and the integration

over A1A
′
1V4V

′
4 uses the Taylor expansion of fm at V4.

The integration over the surface V1V
′

1A1A
′
1 implies following results:∫ j∆y

(j− 1
2)∆y(k− 1

2)∆t

{
(fm)V1 + (fmy)V1

[
y −

(
j − 1

2

)
∆y

]
+ (fmt)V1

[
t−

(
k − 1

2

)
∆t

]
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+
1

2
(fmyy)V1

[
y −

(
j − 1

2

)
∆y

]2

+
1

2
(fmtt)V1

[
t−
(
k − 1

2

)
∆t

]2

+ (fmyt)V1

[
y −

(
j − 1

2

)
∆y

] [
t−

(
k − 1

2

)
∆t

]
+

1

6
(fmyyy)V1

[
y −

(
j − 1

2

)
∆y

]3

+
1

6
(fmttt)V1

[
t−
(
k − 1

2

)
∆t

]3

+
1

2
(fmyyt)V1

[
y −

(
j − 1

2

)
∆y

]2 [
t−
(
k − 1

2

)
∆t

]
+

1

2
(fmytt)V1

[
y −

(
j − 1

2

)
∆y

] [
t−
(
k − 1

2

)
∆t

]2

}dydt

=
∆y∆t

4

{
(fm)V1 + (fmy)V1

∆y

4
+ (fmt)V1

∆t

4
+ (fmyy)V1

∆y2

24
+ (fmtt)V1

∆t2

24

+ (fmyt)V1
∆y∆t

16
+ (fmyyy)V1

∆y3

192
+ (fmttt)V1

∆t3

192

+ (fmyt)V1
∆y2∆t

96
+ (fmytt)V1

∆y∆t2

96
}, (12)

and on the surface A1A
′
1V4V

′
4 , gives∫ (j+ 1

2)∆y

j∆y

∫ k∆t

(k− 1
2)∆t

{
(fm)V4 + (fmy)V4

[
y −

(
j +

1

2

)
∆y

]
+ (fmt)V4

[
t−

(
k − 1

2

)
∆t

]
+

1

2
(fmyy)V4

[
y −

(
j +

1

2

)
∆y

]2

+
1

2
(fmtt)V4

[
t−

(
k − 1

2

)
∆t

]2

+ (fmyt)V4

[
y −

(
j +

1

2

)
∆y

] [
t−
(
k − 1

2

)
∆t

]
(13)

+
1

6
(fmyyy)V4

[
y −

(
j +

1

2

)
∆y

]3

+
1

6
(fmttt)V4

[
t−

(
k − 1

2

)
∆t

]3

+
1

2
(fmyyt)V4

[
y −

(
j +

1

2

)
∆y

]2 [
t−

(
k − 1

2

)
∆t

]
+

1

2
(fmytt)V4

[
y −

(
j +

1

2

)
∆y

] [
t−

(
k − 1

2

)
∆t

]2

}dydt

=
∆y∆t

4

{
(fm)V4

∆y

4
+ (fmt)V4

∆t

4
+ (fmyy)V4

∆y2

24
+ (fmtt)V4

∆t2

24

− (fmyt)V4
∆y∆t

16
− (fmyyy)V4

∆y3

192
+ (fmttt)V4

∆t3

192

+ (fmyyt)V4
∆y2∆t

96
− (fmytt)V4

∆y∆t2

96
}. (14)

The integration on the surface V2V
′

2A
′
3A3 and A3A

′
3V
′

3V3 is similar to that on V1V
′

1A
′
1A1

and A1A
′
1V
′

1V1 with the only difference that the outward normal vector is on opposite
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direction and fm is approximated at points V2 and V4 respectively.
The outward unit normal to surface V1V

′
1V
′

2V2 and V3V
′

3V
′

4V4 are (0, 1, 0) and (0,−1, 0)
respectively. Hence only space-time flux g passes through these surfaces. Therefore the
integration over these surfaces is similar to the surfaces V2V

′
2A
′
3A3, A3A

′
3V
′

3V3, V1V
′

1A
′
1A1

and A1A
′
1V
′

1V1 with fm replaced by gm and y replaced by x.
The outward unite vector to the top surface is (0, 0, 1) but the flux qm is approximated
by Taylor expansion at the solution point C ′1. Hence the integration over the top surface
results as follows:∫ (i+ 1

2)∆x(j+ 1
2)∆y

(i− 1
2)∆x(j− 1

2)∆y

{
(qm)C′1

+
(
qmx)C′1

[x− i∆x] + (qmy)C′1
[y − j∆y]

+
1

2
(qmxχ)C′1

[x− i∆x]2 +
1

2
(qmyy)C′1

[y − j∆y]2

+
1

6
(qmxxx)C′1

[x− i∆x]3 +
1

6
(qmyyy)C′1

[y − j∆y]3

+
1

6
(qmxxx)C′1

[x− i∆x]3 +
1

6
(qmyyy)C′1

[y − j∆y]3

+
1

6

[
(qmyyx)C′1

+ (qmyxy)C′1
+ (qmxyy)C′1

]
[x− i∆x][y − j∆y]2

+
1

6

[
(qmyxχ)C′1

+ (qmxyx)C′1
+ (qmxxy)C′1

]
[x− i∆x]2[y − j∆y]}dxdy

= ∆x∆y

{
(qm)C′1

+ (qmxx)C′1
∆x2

24
+ (qmyy)C′1

∆y2

24

}
. (15)

Combining all of above integration gives the following time marching scheme:

(qm)ni,j =
1

∆x∆y

4∑
l=1

〈
∆x∆y

4

{
(qm)

n−1/2
l + (qmx)

n−1/2
l

(
kx

∆x

4

)
+ (qmy)

n−1/2
l

(
ky

∆y

4

)
+

1

24

[
(qmxx)

n−1/2
l (kx∆x)2 + (qmyy)

n−1/2
l (ky∆y)2

]
+

1

32

[
(qmxy)

n−1/2
l + (qmyx)

n−1/2
l

]
(kx∆x) (ky∆y)

+
1

192

[
(qmxxx)

n−1/2
l (kx∆x)3 + (qmyyy)

n−1/2
l (ky∆y)3

]
+

(kx∆x)2 (ky∆y)

288

[
(qmxxy)

n−1/2
l + (qmxyx)

n−1/2
l + (qmyxx)

n−1/2
l

]
+

(ky∆y)2 (kx∆x)

288

[
(qmyyx)

n−1/2
l + (qmyxy)

n−1/2
l + (qmxyy)

n−1/2
l

]
}

+ kx
∆y∆t

4

{
(fm)

n−1/2
l + (fmy)

n−1/2
l

(
ky

∆y

4

)
+ (fmt)

n−1/2
l

(
∆t

4

)
+

1

24

[
(fmtt)

n−1/2
l (∆t)2 + (fmyy)

n−1/2
l (ky∆y)2

]
+

1

16
(fmyt)

n−1/2
l (ky∆y) ∆t



A. Sidrah, Z. Saqib / Eur. J. Pure Appl. Math, 12 (4) (2019), 1464-1482 1473

+
1

192

[
(fmyyy)

n−1/2
l (ky∆y)3 + (fmttt)

n−1/2
l (∆t)3

]
+

1

96

[
(fmyyt)

n−1/2
l (ky∆y)2 ∆t+ (fmytt)

n−1/2
l (ky∆y) (∆t)2

]
}

+ ky
∆x∆t

4

{
(gm)

n−1/2
l + (gmx)

n−1/2
l

(
kx

∆x

4

)
+ (gmt)

n−1/2
l

(
∆t

4

)
+

1

24

[
(gmtt)

n−1/2
l (∆t)2 + (gmxχ)

n−1/2
l (kx∆x)2

]
+

1

16
(gmxt)

n−1/2
l (kx∆x) ∆t

+
1

192

[
(gmxxx)

n−1/2
l (kx∆x)3 + (gmttt)

n−1/2
l (∆t)3

]
+

1

96

[
(gmxxt)

n−1/2
l (kx∆x)2 ∆t+ (gmxtt)

n−1/2
l (kx∆x) (∆t)2

]
})

− 1

24

[
(qmxx)nC1

(∆x)2 + (qmyy)
n
C1

(∆y)2
]
. (16)

where m = 1, 2, · · · , 5 is the number of equations, l = 1, 2, 3, 4 represents the four nodes
V1, V2, V3, V4 and kx, ky are 1 or -1 depending upon the position of solution point C1

relatives four nodes V1, V2, V3, V4.

2.1. Higher order derivatives of flux function fm and gm

The space and time derivatives (fmξ, fmξξ, fmξξξ, gmξ, gmξξ, gmξξξ, ξ = x, y, t; ) etc are
obtained according to the chain rule. The detail of these derivatives is presented below
only for the flux function fm. The higher order derivatives for gm are obtained in the same
manner and hence the details are omitted.

∂fm
∂ξ

=

5∑
r=1

∂fm
∂qr

∂qr
∂ξ

, (17)

Differentiating again and applying the chain rule gives the following second order flux
component’s derivatives:

∂2fm
∂ξ∂φ

=
5∑
r=1

∂fm
∂qr

∂2qr
∂ξ∂φ

+
5∑
r=1

5∑
s=1

∂2fm
∂qr∂qs

∂qr
∂ξ

∂qs
∂φ

, ξ = x, y, t;φ = x, y, t, (18)

and Similarly the third-order derivatives can be calculated using the chain rule. The third
order derivatives are given below.

fmxxx =
5∑
p=1

∂fm
∂qp

.qpξφχ +

5∑
r=1

5∑
s=1

∂2fm
∂qr∂qs

(qrξφ.qsχ + qrξχ.qsφ + qrφχqsξ) (19)

+
5∑
r=1

5∑
s=1

5∑
t=1

∂3fm
∂qr∂qs∂qt

qrξ.qsφ.qtχ, ξ = x, y, t;φ = x, y, t;χ = x, y, t, (20)
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The partial derivatives of flux components ∂fm
∂qr

, ∂2fm
∂qr∂qs

and ∂3fm
∂qr∂qs∂qt

are the entries of the
Jacobian matrices. For shallow water MHD equations, these derivatives are obtained by
Matlab symbolic computations specially for the third order case. The computation of time
derivatives of flux variables are obtained by using the conservation law.

qmt = −fmx − gmy. (21)

Taking derivative with respect to space variable x on both sides and treating the mixed
space and time derivatives same allows to write down

qmxt = −fmxx − gmyx. (22)

Similarly, for time variable t
qmtt = −fmxt − gmyt. (23)

Using the values of partial derivatives of fm and gm provides the values of qmtt which
gives the values for fmtt according to above equations. Again taking the time and space
derivatives on both sides of equation 23 follows

qmxtt = −fmxxt − gmyxt, (24)

and
qmttt = −fmxtt − gmytt. (25)

Using the values of partial derivatives of fm and gm provides the values of qmtt which gives
the values for fmttt according to above equations. Similarly we can find the higher order
time derivatives for gm only be changing the differentiation with respect to y in place of
x.

2.2. Spatial Derivatives of Conserved variables

At this point, all the time derivatives of conservative variables are available through the
derivatives of flux fm and the flux derivatives. Now at the end it is only left to get the space
derivative variables of qm such as qmξ, qmξφ, and qmξφχ ξ = x, y; φ = x, y; χ = x, y.
The first derivative qmξ is updated at the ith node using the updated values of qm obtained
from Equation 21. In general each higher order space derivatives of conserved variables
is updated using the updated values of next higher order derivative. Now, for the fourth-
order scheme, the values of two more derivatives qmξφ and qmξφχ are required to update.
Proceeding in following steps allows to get the updated values of all the derivatives:
1: updating qmξφχ at Ci;
2: updating qmξφ at Ci;
3: updating qm at Ci;
4: updating qmξ at Ci.
. The details are omitted and the reader is referred to the work of Yang Yun et al [23] for
details.



A. Sidrah, Z. Saqib / Eur. J. Pure Appl. Math, 12 (4) (2019), 1464-1482 1475

2.3. Divergence Constraint

The SWMHD system is augmented by the divergence constraint ∇ · (hB). The nu-
merical solution obtained from the CESE method must satisfy this equation. Hence a
divergence cleaning procedure is required to embed in the CESE method. The projection
method has been adopted for this purpose as seen in the work [2],[16] and [20]. Con-
sider the updated values (hn+1, (hu1)n+1, (hu2)n+1, (hB1)n+1, (hB2)n+1). It readily gives

B∗1 = (hB1)n+1

h(n+1) and B∗2 = (hB2)n+1

h(n+1) . Define B∗ = (B∗1 , B
∗
2) as the vector of magnetic field

components. This is decomposed into curl of magnetic potential A and divergence of
potential function φ as

B∗ = 5×A+5φ. (26)

Taking the divergence on both sides of above equation gives

52φ = 5 ·B∗. (27)

Solving equation 27 for φ gives the divergence free magnetic field at time level t = tn+1

by Bn+1 = B∗ −5φ.

3. Numerical Test caes

This section presents one and two dimensional test problems taken from literature.
Both 2nd-order and 4th-order CESE schemes have been applied to these problem.

3.1. One Dimensional Riemann Problem

A numerical test is performed to demonstrate the robustness and the accuracy of 4th-
order CESE scheme over 2nd-order CESE schem. A strong Riemann problem has been
solved here. This problem is taken from [22]. The initial conditions are given as:

h
v1

v2

B1

B2

 =

{
[1, 0, 0, 1, 0]T , if x ≤ 0
[2, 0, 0, 0.5, 1]T , if x > 0

(28)

The problem is solved with periodic boundary conditions and domain Ω = [−1, 1] at
t = 0.4. The results are shown in Figures 3- 8. The L2 errors and experimental order
of convergence for 4th-order CESE scheme have been listed in table have been listed in
table 1. As expected, it is clear seen that the 4th-order CESE scheme with 500 grid points
shows remarkable details in the solution compared to the 2nd-order CESE scheme at grid
of 1000 nodes. The zoomed plot reveals better performance of 4th order CESE scheme
near discontinuities as compared to the second order CESE scheme. The execution time
for both schemes is observed on intel core i7 8th Generation machine. It comes out that
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the second order CESE scheme takes 8 seconds and the 4th order CESE scheme takes 12
seconds to produce these results. Hence the 4th order CESE scheme is computationally
more efficient with higher order accuracy.

Table 1: Error Analysis of 4th-order CESE Scheme

Number of Grid points L2-Error Experimental Order of Convergence

50 0.00435 -
100 0.000220 4.3
200 0.000011932 4.23
400 0.000001015 4.19

Hence it concludes that the 4th-order CESE scheme advantages over the 2nd-order
CESE scheme by showing much better results. It follows that the 4th-order scheme is
computationally more efficient and accurate.

4. Two Dimensional Riemann Problem Simulation

The numerical test has been performed to demonstrate the robustness and the accuracy
of 4th-order CESE scheme over 2nd-order CESE schem.
Problem 1: Multidimensional Steady-State Shock This problem is taken from
[22] in which authors have applied the 2nd-order CESE method to this problem. The
computational domain (x, y) ∈ [−1, 1] × [−1, 1] is divided into 200 × 200 grid with g = 1
and the initial data is given as:

h
u1

u2

B1

B2

 =

{
[1, 4.5, 0, 2, 0]T , if y ≤ 0
[2, 5.5, 0, 0.5, 0]T , if y > 0

(29)

The problem is solved with outflow boundary conditions at the top, bottom and right
boundaries whereas inflow boundary condition at the left boundary specified with above
mentioned initial data. The results at time t = 0.25 are shown in Figures 9 - 11. As
expected, it is clear seen that the fourth-order scheme shows remarkable details in the
solution compared to the second -order scheme at same grid. The results from higher
order scheme are much more dense as compared to the 2nd-order scheme.

5. Conclusions

The fourth-order CESE method is presented in detail for SWMHD equations and tested
for a problem taken from literature. The benchmark test revealed excellent characteristics
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Figure 4: Zoomed Plot for Height at t = 0.4

of the method. The scheme is based on unified treatment of space and time variables that
allows a systematic and easy extension to higher dimensions as well as to arbitrary higher
order scheme. The scheme is computationally efficient and accurate and outperforms the
second-order CESE method even with less grid.
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Figure 9: Height h computed at t = 0.25
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Figure 7: B1 at time t = 0.4.
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Figure 10: ux computed at t = 0.25
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Figure 11: bx computed at t = 0.25
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