EUROPEAN JOURNAL OF PURE AND APPLIED MATHEMATICS
Vol. 12, No. 4, 2019, 1455-1463
ISSN 1307-5543 - www.ejpam.com
Published by New York Business Global

Hop Dominating Sets in Graphs Under Binary Operations

Sergio R. Canoy Jr. ${ }^{1}$, Reynaldo V. Mollejon ${ }^{2}$, John Gabriel E. Canoy*
${ }^{1}$ Department of Mathematics and Statistics, College of Science and Mathematics, Center for Graph Theory, Algebra, and Analysis, Premier Research Institute in Science and Mathematics, MSU-Iligan Institute of Technology, Tibanga, Iligan City, Philippines
${ }^{2}$ Department of Teacher Education, Visayas State University-Villaba, Villaba, Leyte, Philippines

Abstract

Let G be a (simple) connected graph with vertex and edge sets $V(G)$ and $E(G)$, respectively. A set $S \subseteq V(G)$ is a hop dominating set of G if for each $v \in V(G) \backslash S$, there exists $w \in S$ such that $d_{G}(v, w)=2$. The minimum cardinality of a hop dominating set of G, denoted by $\gamma_{h}(G)$, is called the hop domination number of G. In this paper we revisit the concept of hop domination, relate it with other domination concepts, and investigate it in graphs resulting from some binary operations.

2010 Mathematics Subject Classifications: 05C69
Key Words and Phrases: Domination, hop domination, join, corona, and lexicographic product

1. Introduction

Domination in graph and several variations of the concept have been widely studied by many researchers. The two books by Haynes et al. [3, 4] give an excellent treatment of the standard domination concept and some of its variants.

Recently, Natarajan and Ayyaswamy [6] introduced and studied the concept of hop domination in a graph. In another study, Ayyaswamy et al. [2] investigated the same concept and gave bounds of the hop domination number of some graphs. Henning and Rad [5] also studied the concept and answered a question posed by Ayyaswamy and Natarajan in [6]. They presented probabilistic upper bounds for the hop domination number and showed that the decision problems for the 2 -step dominating set and hop dominating set problems are NP-complete for planar bipartite graphs and planar chordal graphs. Pabilona and Rara [7] considered the variant called connected hop domination and studied it in graphs under some binary operations.

[^0]Let $G=(V(G), E(G))$ be a simple graph. The open neighbourhood of a vertex v of G is the set $N_{G}(v)=\{u \in V(G): u v \in E(G)\}$ and its closed neighbourhood is the set $N_{G}[v]=N_{G}(v) \cup\{v\}$. The degree of v, denoted by $\operatorname{deg}_{G}(v)$, is equal to $\left|N_{G}(v)\right|$ and the maximum degree of G, denoted by $\Delta(G)$, is equal to $\max \left\{d e g_{G}(v): v \in V(G)\right\}$. The open hop neighbourhood of vertex v is the set $N_{G}(v, 2)=\left\{w \in V(G): d_{G}(v, w)=2\right\}$, where $d_{G}(v, w)$ denotes the distance between v and w (the length of a shortest path joining v and $w)$. The open neighbourhood of a subset S of $V(G)$ is the set $N_{G}(S)=\cup_{v \in S} N_{G}(v)$ and its closed neighbourhood is the set $N_{G}[S]=N_{G}(S) \cup S$.

A set $S \subseteq V(G)$ is a dominating set (resp. total dominating set) of G if $N_{G}[S]=V(G)$ (resp. $N_{G}(S)=V(G)$). The smallest cardinality of a dominating (resp. total dominating) set of G, denoted by $\gamma(G)$ (resp. $\gamma_{t}(G)$), is called the domination number (resp. total domination number) of G. A dominating (resp. total dominating) set S of G with $|S|=$ $\gamma(G)$ (resp. $|S|=\gamma_{t}(G)$), is called a γ-set (resp. γ_{t}-set) of G. It should be noted that only graphs without isolated vertices admit total dominating sets.

A set $S \subseteq V(G)$ is a hop dominating set (total hop dominating set) of G if for each $x \in V(G) \backslash S$ (resp. $x \in V(G)$), there exists $z \in S$ such that $d_{G}(x, z)=2$. The smallest cardinality of a hop dominating (total hop dominating) set of G, denoted by $\gamma_{h}(G)$ (resp. $\gamma_{t h}(G)$), is called the hop domination number (total hop domination number) of G. A hop dominating (total hop dominating) set S of G with $|S|=\gamma_{h}(G)\left(\right.$ resp. $\left.|S|=\gamma_{t h}(G)\right)$ is called a γ_{h}-set (resp. $\gamma_{t h}$-set) of G.

A set $S \subseteq V(G)$ is a $(1,2)^{*}$-dominating set (resp. (1,2)*-total dominating set) of G if it is a dominating (resp. total dominating) set of G and for each $x \in V(G) \backslash S$, there exists $z \in S$ such that $d_{G}(x, z)=2$. The smallest cardinality of a $(1,2)^{*}$-dominating (resp. $(1,2)^{*}$-total dominating) set of G, denoted by $\gamma_{1,2}^{*}(G)\left(\right.$ resp. $\left.\gamma_{1,2}^{* t}(G)\right)$, is called the $(1,2)^{*}$ domination number (resp. $(1,2)^{*}$-total domination number) of G. A $(1,2)^{*}$-dominating (resp. $(1,2)^{*}$ - total dominating) set S with $|S|=\gamma_{1,2}^{*}(G)$ (resp. $|S|=\gamma_{1,2}^{* t}(G)$) is called a $\gamma_{1,2}^{*}$-set (resp. $\gamma_{1,2}^{* t}$-set) of G. Clearly, $S \subseteq V(G)$ is a $(1,2)^{*}$-dominating (resp. (1, 2) ${ }^{*}$-total dominating) set if and only if it is both a dominating (resp. total dominating) and a hop dominating set. The concept of $(1,2)^{*}$-domination (a variation of (1,2)-domination) is introduced and investigated in [1].

A set $D \subseteq V(G)$ is a point-wise non-dominating set of G if for each $v \in V(G) \backslash S$, there exists $u \in S$ such that $v \notin N_{G}(u)$. The smallest cardinality of a point-wise nondominating set of G, denoted by pnd (G), is called the point-wise non-domination number of G. A dominating set S which is also a point-wise non-dominating set of G is called a dominating point-wise non-dominating set of G. The smallest cardinality of a dominating point-wise non-dominating set of G will be denoted by $\gamma_{p n d}(G)$. Any point-wise nondominating (resp. dominating point-wise non-dominating) set S of G with $|S|=\operatorname{pnd}(G)$ (resp. $|S|=\gamma_{p n d}(G)$), is called a $p n d$-set (resp. $\gamma_{p n d}-$ set) of G.

2. Results

The first result, which will be needed later, is found in [1].

Proposition 1. [1] Let G be a graph. Then $1 \leq \operatorname{pnd}(G) \leq|V(G)|$. Moreover,
(i) $\operatorname{pnd}(G)=|V(G)|$ if and only if G is a complete graph;
(ii) $\operatorname{pnd}(G)=1$ if and only if G has an isolated vertex; and
(iii) $\operatorname{pnd}(G)=2$ if and only if G has no isolated vertex and there exist distinct vertices a and b of G such that $N_{G}(a) \cap N_{G}(b)=\varnothing$.

The join of graphs G and H is the graph $G+H$ with vertex set $V(G+H)=V(G) \cup$ $V(H)$ and edge set $E(G+H)=E(G) \cup E(H) \cup\{u v: u \in V(G)$ and $v \in V(H)\}$.

Theorem 1. Let G and H be any two graphs. A set $S \subseteq V(G+H)$ is hop dominating set of $G+H$ if and only if $S=S_{G} \cup S_{H}$, where S_{G} and S_{H} are point-wise non-dominating sets of G and H, respectively.

Proof. Suppose that S is a hop dominating set of $G+H$. Let $S_{G}=S \cap V(G)$ and $S_{H}=S \cap V(H)$. If S_{G} were empty, then $S=S_{H}$. Since $V(G) \subseteq N_{G}(S)$, it follows that S is not a hop dominating set, a contradiction. Thus, $S_{G} \neq \varnothing$. Similarly, $S_{H} \neq \varnothing$. Now let $v \in V(G) \backslash S_{G}$. Since S is hop dominating set, there exists $z \in S$ such that $d_{G+H}(v, z)=2$. Hence, $z \in S_{G}$ and $v \notin N_{G}(z)$. This shows that S_{G} is a point-wise non-dominating set of G. Similarly, S_{H} is a point-wise non-dominating set of H.

For the converse, suppose that $S=S_{G} \cup S_{H}$, where S_{G} and S_{H} are point-wise nondominating sets of G and H, respectively. Let $v \in V(G+H) \backslash S$. If $v \in V(G)$, then $v \in N_{G+H}\left(S_{H}\right)$. Since S_{G} is a point-wise non-dominating set of G, there is a vertex $y \in S_{G} \backslash N_{G}(v)$. It follows that $d_{G+H}(v, y)=2$. The same argument can be used if $v \in V(H)$. Therefore S is a hop dominating set of $G+H$.

The next result is a consequence of Theorem 1 and Proposition 1
Corollary 1. Let G and H be any two graphs of orders m and n, respectively. Then

$$
\gamma_{h}(G+H)=\operatorname{pnd}(G)+\operatorname{pnd}(H) .
$$

In particular,
(i) $\gamma_{h}(G+H)=m+n$ if G and H are complete;
(ii) $\gamma_{h}(G+H)=2$ if G and H have isolated vertices;
(iii) $\gamma_{h}(G+H)=1+\operatorname{pnd}(H)$ if $G=K_{1}$;
(iv) $\gamma_{h}(G+H)=4$ if $G=P_{m}$ and $H=P_{n}(m, n \geq 2)$; and
(v) $\gamma_{h}(G+H)=4$ if $G=C_{m}$ and $H=C_{n}(m, n \geq 4)$.

The corona of graphs G and H, denoted by $G \circ H$, is the graph obtained from G by taking a copy H^{v} of H and forming the join $\langle v\rangle+H^{v}=v+H^{v}$ for each $v \in V(G)$.

Theorem 2. Let G and H be any two graphs. A set $C \subseteq V(G \circ H)$ is a hop dominating set of $G \circ H$ if and only if

$$
C=A \cup\left(\cup_{v \in V(G) \cap N_{G}(A)} S_{v}\right) \cup\left(\cup_{w \in V(G) \backslash N_{G}(A)} E_{w}\right),
$$

where
(i) $A \subseteq V(G)$ such that for each $w \in V(G) \backslash A$, there exists $x \in A$ with $d_{G}(w, x)=2$ or there exists $y \in V(G) \cap N_{G}(w)$ with $V\left(H^{y}\right) \cap C \neq \varnothing$,
(ii) $S_{v} \subseteq V\left(H^{v}\right)$ for each $v \in V(G) \cap N_{G}(A)$, and
(iii) $E_{w} \subseteq V\left(H^{w}\right)$ is a point-wise non-dominating set of H^{w} for each $w \in V(G) \backslash N_{G}(A)$.

Proof. Suppose C is a hop dominating set of $G \circ H$ and set $A=C \cap V(G)$. Let $w \in V(G) \backslash A$. Then there exists $x \in C$ such that $d_{G \circ H}(w, x)=2$. If $x \in A$, then $d_{G}(w, x)=2$. Suppose that $x \notin A$. Then there exists $y \in V(G)$ such that $x \in V\left(H^{y}\right)$. Since $d_{G \circ H}(w, x)=2$, it follows that $y \in N_{G}(w)$. Thus, (i) holds. Let $v \in V(G)$. Set $S_{v}=C \cap V\left(H^{v}\right)$ if $v \in V(G) \cap N_{G}(A)$ and $E_{w}=C \cap V\left(H^{w}\right)$ if $v \in V(G) \backslash N_{G}(A)$. Then, clearly, $S_{v} \subseteq V\left(H^{v}\right)$ and $E_{w} \subseteq V\left(H^{w}\right)$. Suppose that $w \in V(G) \backslash N_{G}(A)$ and let $q \in V\left(H^{w}\right) \backslash E_{w}$. Since C is a hop dominating set of $G \circ H$, there exists $u \in C$ such that $d_{G \circ H}(q, u)=2$. By assumption, $u \notin A$. Thus, $u \in E_{w}$ and $q u \notin E\left(H^{w}\right)$. Therefore E_{w} is a point-wise non-dominating set of H^{w}, showing that (iii) holds.

For the converse, suppose that C has the given form and satisfies properties (i), (ii), and (iii). Let $z \in V(G \circ H) \backslash C$ and let $v \in V(G)$ such that $z \in V\left(v+H^{v}\right)$. Consider the following cases:

Case 1. $z=v$
Then $z \notin A$. From the assumption that (i) holds, it follows that there exists $y \in C$ such that $d_{G \circ H}(z, y)=2$.

Case 2. $z \neq v$
Then $z \in V\left(H^{v}\right)$. If $v \in N_{G}(A)$, say $v w \in E(G)$ for some $w \in A$, then $d_{G \circ H}(z, w)=2$. Suppose that $v \notin N_{G}(A)$. Then $z \in V\left(H^{v}\right) \backslash E_{v}$ where E_{v} is a point-wise non-dominating set of H^{v} by property (iii). Thus, there exists $p \in E_{v} \subset C$ such that $d_{G \circ H}(x, p)=2$.

Accordingly, C is a hop dominating set of $G \circ H$.
Corollary 2. Let G be a connected non-trivial graph and let H be any graph. Then:
(i) $\quad \gamma_{h}(G \circ H) \leq \min \left\{\gamma_{1,2}^{* t}(G),[1+\operatorname{pnd}(H)] \gamma(G)\right\}$.
(ii) $\quad \gamma_{h}(G \circ H)=2$ if $\gamma_{1,2}^{* t}(G)=2$.
(iii) $\gamma_{h}(G \circ H)=2$ if $\gamma(G)=1$ and H has an isolated vertex.

Let A be a $\gamma_{1,2}^{* t}$-set of G. Since A is a total dominating set of $G, V(G) \backslash N_{G}(A)=\varnothing$. Let $w \in V(G) \backslash A$. Since A is a hop dominating set of G, there exists $x \in A$ such that $d_{G}(x, w)=2$. Setting $S_{v}=\varnothing$ for each $v \in A \cap N_{G}(A)=A$, we find that $C=A$ satisfies
conditions (i), (ii), and (iii) of Theorem 2. Thus, $C=A$ is a hop dominating set of $G \circ H$ and $\gamma_{h}(G \circ H) \leq|C|=|A|=\gamma_{1,2}^{* t}(G)$.

Next, let A_{0} be a γ-set of G and let D_{0} be a $p n d$-set of H. Set $S_{v}=D_{v}$, where $D_{v} \subseteq V\left(H^{v}\right)$ and $\left\langle D_{v}\right\rangle \cong\langle D\rangle$, for each $v \in A_{0}$. Since A_{0} is a dominating set of G, $w \in N_{G}\left(A_{0}\right)$ for each $w \in V(G) \backslash A_{0}$ (hence, $\left[V(G) \backslash A_{0}\right] \backslash N_{G}\left(A_{0}\right)=\varnothing$). Thus, by Theorem 2, $C_{0}=A_{0} \cup\left(\cup_{u \in A_{0}} S_{v}\right)$ is a hop dominating set of $G \circ H$, and $\gamma_{h}(G \circ H) \leq$ $\left|C_{0}\right|=\left|A_{0}\right|+\left|A_{0}\right| \cdot p n d(H)=[1+p n d(H)] \gamma(G)$. Therefore,

$$
\gamma_{h}(G \circ H) \leq \min \left\{\gamma_{1,2}^{* t}(G),[1+\operatorname{pnd}(H)] \gamma(G)\right\},
$$

showing that (i) holds. Statements (ii) and (iii) are immediate from (i) and the fact that $\gamma_{h}(G \circ H) \geq 2$.

Observation: The bound given in Corollary $2(i)$ is attainable (as given in (ii) and (iii)). It can also be verified easily that $\gamma_{h}\left(C_{5} \circ P_{3}\right)=\gamma_{1,2}^{* t}\left(C_{5}\right)=3<6=\left[1+\operatorname{pnd}\left(P_{3}\right)\right] \gamma\left(C_{5}\right)$ and $\gamma_{h}\left(K_{4} \circ P_{3}\right)=\left[1+\operatorname{pnd}\left(P_{3}\right)\right] \gamma\left(K_{4}\right)=3<4=\gamma_{1,2}^{* t}\left(K_{4}\right)$. It is worth noting that the inequality is also attainable. As a matter of fact, it can be shown that $\gamma_{h}\left(K_{5} \circ K_{4}\right)=3<$ $5=\min \left\{\left[1+\operatorname{pnd}\left(K_{4}\right)\right] \gamma\left(K_{5}\right), \gamma_{1,2}^{* t}\left(K_{5}\right)\right\}$.

The lexicographic product of graphs G and H, denoted by $G[H]$, is the graph with vertex set $V(G[H])=V(G) \times V(H)$ such that $(v, a)(u, b) \in E(G[H])$ if and only if either $u v \in E(G)$ or $u=v$ and $a b \in E(H)$. Note that every non-empty subset C of $V(G) \times V(H)$ can be expressed as $C=\cup_{x \in S}\left[\{x\} \times T_{x}\right]$, where $S \subseteq V(G)$ and $T_{x} \subseteq V(H)$ for each $x \in S$.

Theorem 3. Let G and H be connected non-trivial graphs. A subset $C=\cup_{x \in S}\left[\{x\} \times T_{x}\right]$ of $V(G[H])$ is a hop dominating set of $G[H]$ if and only if the following conditions hold:
(i) S is a hop dominating set of G;
(ii) T_{x} is a point-wise non-dominating set of H for each $x \in S$ with $\left|N_{G}(x, 2) \cap S\right|=0$.

Proof. Suppose C is a hop dominating set of $G[H]$. Let $u \in V(G) \backslash S$ and pick any $a \in V(H)$. Since C is a hop dominating set and $(u, a) \notin C$, there exists $(y, b) \in C$ such that $d_{G[H]}((u, a)(y, b))=2$. This implies that $y \in S$ and $d_{G}(u, y)=2$. Since u was arbitrarily chosen, it follows that S is a hop dominating set of G. Thus, (i) holds.

Now let $x \in S^{*}$ and let $p \in V(H) \backslash T_{x}$. Then $(x, p) \notin C$. Again, noting that C is a hop dominating set of $G[H]$, there exists $(z, q) \in C$ such that $d_{G[H]}((x, p)(z, q))=2$. By the assumption that $x \in S^{*}$, we find that $x=z$. Hence, $q \in T_{x}$ and $q \notin N_{H}(p)$. Thus, T_{x} is a point-wise non-dominating set of H, showing that (ii) holds.

For the converse, suppose that C satisfies properties (i) and $(i i)$. Let $(v, t) \in V(G[H]) \backslash$ C and consider the following cases:

Case 1. $v \notin S$
Since S is a hop dominating set of G, there exists $w \in S$ such that $d_{G}(v, w)=2$. Pick any $d \in T_{w}$. Then $(w, d) \in C$ and $d_{G[H]}((v, t)(w, d))=2$.

Case 2. $v \in S$

If $v \notin S^{*}$, then there exists $z \in S$ such that $d_{G}(v, z)=2$. It follows that $d_{G[H]}((v, t)(z, a))=$ 2 for any $a \in T_{z}$. Suppose that $v \in S^{*}$. Then, by property (ii), there exists $c \in T_{v}$ such that $t c \notin E(H)$. Since G is non-trivial and connected, $d_{G[H]}((v, t)(v, c))=2$.

Accordingly, C is a hop dominating set of $G[H]$.
Lemma 1. A non-trivial graph G admits a total hop dominating set if and only if $\gamma(C) \neq 1$ for every component C of G.

Proof. Suppose G admits a total hop dominating set, say S. Suppose further that there exists a component C of G such that $\gamma(C)=1$. Let $v \in V(C)$ be such that $\{v\}$ is a dominating set of C. Since S is a hop dominating set of $G, v \in S$. This, however, contradicts the fact that S is a total hop dominating set. Thus, $\gamma(C) \neq 1$ for every component C of G.

For the converse, suppose that $\gamma(C) \neq 1$ for every component C of G. Clearly, $S=$ $V(G)$ is a hop dominating set of G. Let $w \in V(G)$ and C_{w} be the component of G with $w \in V\left(C_{w}\right)$. Since $\{w\}$ is not a dominating set of C_{w}, there exists $u \in V(C) \backslash\{w\}$ such that $d_{C}(u, w)=d_{G}(u, w)=2$. This shows that $S=V(G)$ is a total hop dominating set of G.

Theorem 4. Let G be a connected graph with $\gamma(G) \neq 1$. If S is a hop dominating set of G, then $\gamma_{t h}(G) \leq\left|S \cap N_{G}(S, 2)\right|+2\left|S \backslash N_{G}(S, 2)\right|$. Moreover, $\gamma_{t h}(G) \leq 2 \gamma_{h}(G)$.

Proof. Let S be a hop dominating set of G. If S is a total hop dominating set of G (possible by Lemma 1), then $S \cap N_{G}(S, 2)=S$ and $S \backslash N_{G}(S, 2)=\varnothing$. Hence, the inequality holds. Suppose now that S is not a total hop dominating set. Then $S \backslash N_{G}(S, 2) \neq \varnothing$. Let $x \in S \backslash N_{G}(S, 2)$. Then, since $\gamma(G) \neq 1$, there exists $v_{x} \in V(G) \backslash S$ such that $d_{G}\left(x, v_{x}\right)=2$. Let $D_{S}=\left\{v_{x}: x \in S \backslash N_{G}(S, 2)\right\}$. Then, clearly, $\left|D_{S}\right| \leq\left|S \backslash N_{G}(S, 2)\right|$ and $S^{*}=S \cup D_{S}$ is a total hop dominating set of G. Thus,

$$
\gamma_{t h}(G) \leq\left|S^{*}\right| \leq\left|S \cap N_{G}(S, 2)\right|+2\left|S \backslash N_{G}(S, 2)\right| .
$$

In particular, $\gamma_{t h}(G) \leq 2 \gamma_{h}(G)$.
In what follows, $\rho_{H}(G)=\min \left\{\left|S \cap N_{G}(S, 2)\right|+\operatorname{pnd}(H)\left|S \backslash N_{G}(S, 2)\right|: S\right.$ is a hop dominating set of $\left.G\right\}$.
Corollary 3. Let G and H be non-trivial connected graphs of orders m and n, respectively. Then
(i) $\gamma_{h}(G[H])=\rho_{H}(G)$ if $\gamma(G)=1$;
(ii) $\gamma_{h}(G[H])=\gamma_{\text {th }}(G)$ if $\gamma(G) \neq 1$; and
(iii) $\gamma_{h}(G[H])=m[p n d(H)]$ if $G=K_{m}$.

Proof. (i) Suppose first that $\gamma(G)=1$. Then, by Lemma 1, G does not admit a total hop dominating set (hence, $\gamma_{h}(G[H]) \neq \gamma_{t h}(G)$). Now let S^{\prime} be a hop dominating set of G such that $\rho_{H}(G)=\left|S^{\prime} \cap N_{G}\left(S^{\prime}, 2\right)\right|+p n d(H)\left|S^{\prime} \backslash N_{G}\left(S^{\prime}, 2\right)\right|$, and let D^{\prime} be a
pnd-set of H. Set $Q_{x}=D^{\prime}$ for each $x \in S^{\prime} \backslash N_{G}\left(S^{\prime}, 2\right)$ and $Q_{y}=\{q\}$, where $q \in V(H)$, for each $y \in S^{\prime} \cap N_{G}\left(S^{\prime}, 2\right)$. Then $C^{\prime}=\cup_{x \in S^{\prime}}\left\{\{x\} \times Q_{x}\right]$ is a hop dominating set of $G[H]$ by Theorem 3. Hence,

$$
\gamma_{h}(G[H]) \leq\left|C^{\prime}\right|=\sum_{x \in S^{\prime} \cap N_{G}\left(S^{\prime}, 2\right)}\left|Q_{x}\right|+\sum_{x \in S^{\prime} \backslash N_{G}\left(S^{\prime}, 2\right)}\left|Q_{x}\right|=\rho_{H}(G) .
$$

Next, suppose that $C_{0}=\cup_{x \in S_{0}}\left[\{x\} \times T_{x}\right]$ is a γ_{h}-set of $G[H]$. By Theorem $3, S_{0}$ is a hop dominating set of G and T_{x} is a pnd-set of H for each $x \in S_{0} \backslash N_{G}\left(S_{0}, 2\right)$. Clearly, $\left|T_{x}\right|=1$ for all $x \in S_{0} \cap N_{G}\left(S_{0}, 2\right)$. Hence,

$$
\gamma_{h}(G[H])=\left|C_{0}\right|=\left|S_{0} \cap N_{G}\left(S_{0}, 2\right)\right|+\operatorname{pnd}(H)\left|S_{0} \backslash N_{G}\left(S_{0}, 2\right)\right| \geq \rho_{H}(G),
$$

showing that equality in (i) holds.
(ii) Suppose that $\gamma(G) \neq 1$. Then G admits a total hop dominating set by Lemma 1 . Let S be a $\gamma_{t h}$-set of G and let $D=\{a\}$, where $a \in V(H)$. Set $T_{x}=D$ for each $x \in S$. Then $C=\cup_{x \in S}\left[\{x\} \times T_{x}\right]=S \times D$ is a hop dominating set of $G[H]$ by Theorem 3. Hence,

$$
\gamma_{h}(G[H]) \leq|S||D|=\gamma_{t h}(G) .
$$

Next, suppose that $C^{*}=\cup_{x \in S^{*}}\left[\{x\} \times R_{x}\right]$ is a γ_{h}-set of $G[H]$. By Theorem 3, S^{*} is a hop dominating set of G and R_{x} is a $p n d$-set of H for each $x \in S^{*} \backslash N_{G}\left(S^{*}, 2\right)$. Since C^{*} is a γ_{h}-set, $\left|R_{x}\right|=1$ for all $x \in S^{*} \cap N_{G}\left(S^{*}, 2\right)$. Moreover, since H is a non-trivial connected graph, $\left|R_{x}\right|=\operatorname{pnd}(H) \geq 2$ for each $x \in S^{*} \backslash N_{G}\left(S^{*}, 2\right)$ by Proposition 1(ii). Thus, by Theorem 4,

$$
\gamma_{h}(G[H])=\left|C^{*}\right| \geq\left|S^{*} \cap N_{G}\left(S^{*}, 2\right)\right|+2\left|S^{*} \backslash N_{G}\left(S^{*}, 2\right)\right| \geq \gamma_{t h}(G) .
$$

This establishes the desired equality in (ii).
(iii) Suppose that $G=K_{m}$. Since $\gamma(G)=1, \gamma_{h}(G[H])=\rho_{H}(G)$. Now, since $S=$ $V\left(K_{m}\right)$ is the only hop dominating set of G, it follows that

$$
\gamma_{h}(G[H])=\rho_{H}(G)=m[\operatorname{pnd}(H)] .
$$

This proves the assertion in (iii).
Corollary 4. Let G be a non-trivial connected graph and let H be any non-trivial graph. If H has an isolated vertex, then $\gamma_{h}(G[H])=\gamma_{h}(G)$.

Proof. Since H has an isolated vertex, $\operatorname{pnd}(H)=1$ by Proposition 1(ii). Let $C=$ $\cup_{x \in S}\left[\{x\} \times T_{x}\right]$ be a γ_{h}-set of $G[H]$. By Theorem 3, S is a hop dominating set of G and T_{x} is a $p n d$-set of H for each $x \in S \backslash N_{G}(S, 2)$. Further, since C is γ_{h}-set, $\left|T_{x}\right|=1$ for all $x \in S \cap N_{G}(S, 2)$. Hence,

$$
\gamma_{h}(G[H])=|C|=\left|S \cap N_{G}(S, 2)\right|+\left|S \backslash N_{G}(S, 2)\right|=|S| \geq \gamma_{h}(G) .
$$

Now if S_{0} is a γ_{h}-set of G and D_{0} is a $p n d$-set of H, then $C_{0}=S_{0} \times D_{0}$ is a γ_{h}-set of $G[H]$ by Theorem 3. Thus, $\gamma_{h}(G[H]) \leq\left|C_{0}\right|=\left|S_{0}\right|\left|D_{0}\right|=\left|S_{0}\right|=\gamma_{h}(G)$. This establishes the desired equality.

The Cartesian product of graphs G and H, denoted by $G \square H$, is the graph with vertex set $V(G \square H)=V(G) \times V(H)$ such that $(v, p)(u, q) \in E(G \square H)$ if and only if $u v \in E(G)$ and $p=q \in E(H)]$ or $u=v$ and $p q \in E(H)$.

Theorem 5. Let G and H be connected non-trivial graphs. A subset $C=\cup_{x \in S}\left[\{x\} \times T_{x}\right]$ of $V(G \square H)$ is a hop dominating set of $G \square H$ if and only if the following conditions hold:
(i) For each $x \in V(G) \backslash S$ and for each $p \in V(H)$, at least one of the following statements is satisfied:
(a) There exists $y \in S \cap N_{G}(x)$ such that $T_{y} \cap N_{H}(p) \neq \varnothing$.
(b) There exists $z \in S \cap N_{G}(x, 2)$ such that $p \in T_{z}$.
(ii) For each $v \in S$ and for each $p \in V(H) \backslash T_{v}$, at least one of the following statements is satisfied:
(c) $N_{H}(p, 2) \cap T_{v} \neq \varnothing$.
(d) There exists $y \in S \cap N_{G}(v)$ such that $T_{y} \cap N_{H}(p) \neq \varnothing$.
(e) There exists $z \in S \cap N_{G}(v, 2)$ such that $p \in T_{z}$.

Proof. Suppose C is a hop dominating set of $G \square H$. Let $x \in V(G) \backslash S$ and let $p \in V(H)$. Since C is a hop dominating set and $(x, p) \notin C$, there exists $(y, q) \in C$ such that $d_{G \square H}((x, p)(y, q))=2$. Since $y \in S, x \neq y$. If $x y \in E(G)$, then $p q \in E(H)$. Hence, $q \in T_{y} \cap N_{H}(p)$, showing that (a) holds. So suppose that $y \notin N_{G}(x)$. Since $d_{G \square H}((x, p)(y, q))=2$, it follows that $y \in N_{G}(x, 2)$ and $p=q$. Hence, $p \in T_{y}$, showing that (b) holds.

Next, let $v \in S$ and let $p \in V(H) \backslash T_{v}$. Since C is a hop dominating set and $(v, p) \notin C$, there exists $(w, q) \in C$ such that $d_{G \square H}((v, p)(w, q))=2$. Suppose that (d) and (e) do not hold. Then, since $d_{G \square H}((v, p)(w, q))=2, v=w$ and $d_{H}(p, q)=2$. Thus, $q \in T_{v} \cap N_{H}(p, 2)$, showing that (c) holds.

For the converse, suppose that C satisfies properties (i) and $(i i)$. Let $(v, t) \in V(G[H]) \backslash$ C and consider the following cases:

Case 1. $v \notin S$
If (a) of (i) holds, then there exist $y \in S \cap N_{G}(v)$ and $h \in T_{y} \cap N_{H}(p)$. Hence, $(y, h) \in C \cap N_{G \square H}((v, t), 2)$. If (b) of (i) holds, then there exists $z \in S \cap N_{G}(v, 2)$ such that $t \in T_{z}$. It follows that $(z, t) \in C \cap N_{G \square H}((v, t), 2)$.

Case 2. $v \in S$
Then $t \notin T_{v}$. If (c) of (ii) holds, then we may take any $q \in N_{H}(t, 2) \cap T_{v}$. Clearly, $(v, q) \in C \cap N_{G \square H}((v, t), 2)$. As in the first case, if (d) or (e) of (ii) holds, then there exists $(w, h) \in C \cap N_{G \square H}((v, t), 2)$.

Accordingly, C is a hop dominating set of $G \square H$.

Corollary 5. Let G and H be non-trivial connected graphs. Then

$$
\gamma_{h}(G \square H) \leq \min \left\{\gamma(G) \gamma_{1,2}^{* t}(H), \gamma(H) \gamma_{1,2}^{* t}(G)\right\} .
$$

Proof. Let S be a γ-set of G and let D be a $\gamma_{1,2}^{* t}$-set of H. Set $T_{x}=D$ for each $x \in S$ and let $C=\cup_{x \in S}\left[\{x\} \times T_{x}\right]=S \times D$. Let $x \in V(G) \backslash S$ and let $p \in V(H)$. Since S is a dominating set of G, there exists $y \in S \cap N_{G}(x)$. Now, since $T_{y}=D$ is a total dominating set of H, there exists $q \in T_{y} \cap N_{H}(p)$. Thus, (a) of property (i) of Theorem 5 holds. Next, let $v \in S$ and let $t \in V(H) \backslash T_{v}$. Since $T_{v}=D$ is a hop dominating set of $H, T_{v} \cap N_{H}(t, 2) \neq \varnothing$. Hence, (c) of property (ii) of Theorem 5 holds. Therefore, by Theorem 5, C is a hop dominating set of $G \square H$. Thus, $\gamma_{h}(G \square H) \leq|C|=\gamma(G) \gamma_{1,2}^{* t}(H)$. This proves the assertion.

Remark 1. The bound given in Corollary 5 is tight. Moreover, the inequality is also attainable.

To see this, consider $P_{3} \square P_{4}$ and $P_{4} \square P_{4}$. It can easily be verified that $\gamma_{h}\left(P_{3} \square P_{4}\right)=$ $2=\gamma\left(P_{3}\right) \gamma_{1,2}^{* t}\left(P_{4}\right)$ and $\gamma_{h}\left(P_{4} \square P_{4}\right)=4=\gamma\left(P_{4}\right) \gamma_{1,2}^{* t}\left(P_{4}\right)$. The inequality is attainable since $\gamma_{h}\left(K_{4} \square K_{4}\right)=3<4=\gamma\left(K_{4}\right) \gamma_{1,2}^{* t}\left(K_{4}\right)$.

References

[1] S. Arriola, and S. Canoy, Jr., $(1,2)^{*}$-domination in graphs, Advances and Applications in Discrete Mathematics, 2017,18, 2, 179 - 190.
[2] S. Ayyaswamy, B. Krishnakumari, B. Natarjan, and Y. Venkatakrishnan, Bounds on the hop domination number of a tree, Proceedings -Mathematical Sciences, 2015, 125, 4, 449-455.
[3] T.W. Haynes, S.T. Hedetniemi, and P.J. Slater, Fundamentals of Domination in Graphs, Marcell Dekker, 1998, New York.
[4] T.W. Haynes, S.T. Hedetniemi, and P.J. Slater, Domination in Graphs, Advanced Topics, Marcell Dekker, 1998, New York.
[5] M. Henning, and N. Rad, On 2-step and hop dominating sets in graphs, Graphs and Combinatorics, 2017, 33, 4, 913-927.
[6] C. Natarajan and S. Ayyaswamy, Hop domination in graphs II, Versita, 2015, 23, 2, 187-199.
[7] Y. Pabilona and H. Rara, Connected hop domination in graphs under some binary operations, Asian-European Journal of Mathematics, 11(2018), 11, 5, 1850075-1-1850075-11.

[^0]: *Corresponding author.
 DOI: https://doi.org/10.29020/nybg.ejpam.v12i4.3550
 Email addresses: serge_canoy@yahoo.com (S. Canoy Jr.), reynaldo.mollejon@g.msuiit.edu.ph (R. Mollejon),jgcanoy@mail.com (JG. Canoy)
 http://www.ejpam.com 1455 © 2019 EJPAM All rights reserved.

