Mass Formula for Self-Dual Codes over Galois Rings
\(GR(p^3, r) \)

Trilbe Lizann E. Vasquez\(^1,\ast\), Gaudencio C. Petalcorin, Jr.\(^1\)

\(^1\) Department of Mathematics and Statistics, College of Science and Mathematics,
Mindanao State University - Iligan Institute of Technology, 9200 Iligan City, Philippines

Abstract. Let \(p \) be an odd prime and \(r \) a positive integer. Let \(GR(p^3, r) \) be the Galois ring of
characteristic \(p^3 \) and cardinality \(p^{3r} \). In this paper, we investigate the self-dual codes over \(GR(p^3, r) \)
and give a method to construct self-dual codes over this ring. We establish a mass formula for
self-dual codes over \(GR(p^3, r) \) and classify self-dual codes over \(GR(p^3, 2) \) of length 4 for \(p = 3, 5 \).

2010 Mathematics Subject Classifications: 94B05
Key Words and Phrases: Mass formula, self-dual codes, finite ring, Galois ring, classification

1. Introduction

It was shown in [6] that several well-known families of non-linear binary codes can be
viewed as linear codes over the ring \(\mathbb{Z}_4 \) of integers modulo 4. This discovery led to much
interest and attention given to codes over the ring \(\mathbb{Z}_m \) of integers modulo \(m \) and finite
rings in general.

Self-dual codes are an important class of linear codes for both theoretical and practical
reasons. It is a fundamental problem to classify self-dual codes, that is, to find a representa-
tive for each equivalence class of self-dual codes. However, determining the number
of equivalence classes is difficult. This task will be made easier by a mass formula, which
will tell us when we have a complete set of representatives from each equivalence class.

Mass formula for self-dual codes over the ring \(\mathbb{Z}_{p^e} \) for any prime \(p \) and for any positive
integer \(e \) are established by the effort of many authors [1, 5, 9–11]. A classification method
of self-dual codes over \(\mathbb{Z}_m \) for arbitrary integer \(m \) is given in [13]. In particular, self-
dual codes of length 4 over \(\mathbb{Z}_p \) were classified in [13] for all primes \(p \) in terms of their
automorphism groups.

The Galois ring \(GR(p^e, r) \), where \(p \) is prime, \(e \) and \(r \) are positive integers, is the unique
Galois extension of \(\mathbb{Z}_{p^e} \) of degree \(r \). Using a similar argument in [1], the mass formula
for self-dual codes over $\text{GR}(p^2, 2)$ for odd primes p is obtained in [3]. Moreover, self-dual codes of length 4 over $\text{GR}(p, 2)$ and $\text{GR}(p^2, 2)$ are classified in [4] for all primes p up to equivalence in terms of automorphism group.

In this paper, we build on the method in [10] to establish a mass formula for self-dual codes over $\text{GR}(p^3, r)$, where p is an odd prime and r is a positive integer. Using the mass formula, we classify self-dual codes of length 4 over $\text{GR}(p^3, 2)$ for $p = 3, 5$.

2. Preliminaries

Let p be prime and e a positive integer. The modulo p reduction mapping

$$\mu : \mathbb{Z}_{p^e} \rightarrow \mathbb{Z}_p, a \mapsto \bar{a} = a \pmod{p}$$

induces the following modulo p reduction mapping between polynomial rings

$$\mu : \mathbb{Z}_{p^e}[x] \rightarrow \mathbb{Z}_p[x], f(x) = \sum a_i x^i \mapsto \bar{f}(x) = \sum \bar{a}_i x^i.$$

An irreducible polynomial $f(x)$ in $\mathbb{Z}_{p^e}[x]$ is said to be basic if $\bar{f}(x)$ is irreducible.

Let $f(x)$ be a monic basic irreducible polynomial over $\mathbb{Z}_{p^e}[x]$ of degree r. We can choose $f(x)$ so that $\bar{\omega} = x + \langle f(x) \rangle$ is a primitive $(p^r - 1)$st root of unity. The Galois ring $\text{GR}(p^e, r)$ of characteristic p^e and cardinality p^{er} is defined as

$$\text{GR}(p^e, r) = \mathbb{Z}_{p^e}[x]/\langle f(x) \rangle = \mathbb{Z}_{p^e}[\omega].$$

Every element of $\text{GR}(p^e, r)$ can be expressed uniquely in the ω-adic representation

$$a_0 + a_1 \omega + a_2 \omega^2 + \cdots + a_{r-1} \omega^{r-1}, \text{ where } a_i \in \mathbb{Z}_{p^e}.$$

Note that $\text{GR}(p^e, 1) = \mathbb{Z}_{p^e}$ and $\text{GR}(p, r) = \mathbb{F}_{p^e}$, the Galois field of p^e elements.

The modulo p reduction can be naturally extended to

$$\mu : \text{GR}(p^e, r) = \mathbb{Z}_{p^e}[x]/\langle f(x) \rangle \rightarrow \mathbb{Z}_p[x]/\langle \bar{f}(x) \rangle = \mathbb{F}_{p^r}, a \mapsto \bar{a} = a \pmod{p}.$$

Let $T_{p^r} = \{0, 1, \omega, \ldots, \omega^{p^r-2} \}$. Observe that the function $\mu|_{T_{p^r}} : T_{p^r} \rightarrow \mathbb{F}_{p^r}$ is one-to-one and onto. Any element of $\text{GR}(p^e, r)$ can be written uniquely in the p-adic representation

$$b_0 + pb_1 + p^2b_2 + \cdots + p^{e-1}b_{e-1}, \text{ where } b_i \in T_{p^r}.$$

An element $a \in \text{GR}(p^e, r)$ is a unit if and only if $\bar{a} \neq 0$.

For the further study of Galois rings, see [8, 16].

Let n be a positive integer and let S^n denote the collection of n-tuples over a finite set S. A code of length n over a finite field \mathbb{F} or a finite ring \mathcal{R} is a subspace of \mathbb{F}^n or an \mathcal{R}-submodule of \mathcal{R}^n, respectively. Every element of the code is called a codeword. A matrix G is called a generator matrix for a code C if the rows of G generate all the elements of C and none of the rows can be written as a linear combination of the other rows.

Two codewords $x = (x_1, \ldots, x_n)$ and $y = (y_1, \ldots, y_n)$ are orthogonal if their Euclidean inner product $\sum_{i=1}^{n} x_i y_i$ is zero. The dual C^\perp of a code C of length n over S consists of
all \(x \in S^n \) which are orthogonal to every codeword in \(C \). If \(C \subseteq C^\perp \), then \(C \) is said to be self-orthogonal. If \(C = C^\perp \), then \(C \) is said to be self-dual.

A code of length \(n \) and dimension \(k \) over a finite field \(\mathbb{F} \) is called an \([n,k]\) code and contains \(|\mathbb{F}|^k \) codewords. An \([n,k]\) code is self-dual if and only if it is self-orthogonal and \(k = \frac{n}{2} \). We say that a generator matrix \(G \) for an \([n,k]\) code is in standard form if \(G = [I_k \ A] \), where \(I_k \) denotes the \(k \times k \) identity matrix and \(A \) is some \(k \times (n-k) \) matrix.

Let \(C \) be a code of length \(n \) over the Galois ring GR\((p^e, r)\). \(C \) has a generator matrix which, after a suitable permutation of coordinates, can be written as

\[
G = \begin{bmatrix}
I_{k_0} & A_{0,1} & A_{0,2} & \cdots & A_{0,e-1} & A_{0,e} \\
0 & pA_{1,1} & pA_{1,2} & \cdots & pA_{1,e-1} & pA_{1,e} \\
0 & 0 & p^2A_{2,1} & \cdots & p^2A_{2,e-1} & p^2A_{2,e} \\
\vdots & \vdots & \vdots & \ddots & \vdots & \vdots \\
0 & 0 & 0 & \cdots & p^{e-1}A_{k_{e-1}} & p^{e-1}A_{e-1,e}
\end{bmatrix} \tag{1}
\]

where \(I_{k_i} \) is the \(k_i \times k_i \) identity matrix and the \(A_{i,j} \)s are matrices of appropriate sizes over GR\((p^e, r)\). The columns are grouped into blocks of sizes \(k_0, k_1, \ldots, k_{e-1}, k_e = n - \sum_{i=0}^{e-1} k_i \).

A code \(C \) with generator matrix \(G \) as in (1) is said to be of type \(\{k_0, k_1, \ldots, k_{e-1} \} \) and has \((p^e)^{\sum_{i=0}^{e-1} (e-i)k_i} \) codewords. The dual \(C^\perp \) of \(C \) is of type \(\{k_e, k_{e-1}, \ldots, k_1 \} \). It is known that \(|C||C^\perp| = p^{ern} \). If \(C \) is a self-dual code of type \(\{k_0, k_1, \ldots, k_{e-1} \} \), then we must have \(k_i = k_{e-i} \) for all \(i \).

For \(0 \leq i \leq e-1 \), define

\[\text{Tor}_i(C) = \{ \bar{v} : p^i \bar{v} \in C \} \]

where \(\bar{v} \) is the image of \(v \) under the projection \(\mu : \text{GR}(p^e, r)^n \to \mathbb{F}_p^n \). \(\text{Tor}_i(C) \) is an \([n, k_0 + \ldots + k_i]\) code over \(\mathbb{F}_p \) and is called the \(i \)th torsion code of \(C \). In particular, \(\text{Tor}_0(C) \) is called the residue code and is denoted by \(\text{Res}(C) \). If \(C \) has generator matrix \(G \) in (1), then \(\text{Tor}_i(C) \) has a generator matrix of the form

\[
G_i = \begin{bmatrix}
I_{k_0} & \bar{A}_{0,1} & \bar{A}_{0,2} & \cdots & \bar{A}_{0,i-1} & \cdots & \bar{A}_{0,e} \\
0 & I_{k_1} & \bar{A}_{1,2} & \cdots & \bar{A}_{1,i-1} & \cdots & \bar{A}_{1,e} \\
\vdots & \vdots & \vdots & \ddots & \vdots & \ddots & \vdots \\
0 & 0 & 0 & \cdots & I_{k_i} & \cdots & \bar{A}_{i,e}
\end{bmatrix},
\]

where \(\bar{A} = (\bar{a}_{ij}) \) whenever \(A = (a_{ij}) \).

Two codes over GR\((p^e, r)\) are said to be equivalent if one can be obtained from the other by permuting the coordinates and (if necessary) changing the signs of certain coordinates. Thus two codes \(C_1 \) and \(C_2 \) of length \(n \) over GR\((p^e, r)\) are equivalent if there exists a monomial matrix \(P \) such that \(C_2 = C_1P = \{cP : c \in C_1 \} \), where \(P \) has exactly one entry \(\pm 1 \) in every row and every column and all the other entries are zero. The automorphism group Aut\((C)\) of a code \(C \) of length \(n \) over GR\((p^e, r)\) is the group of all such matrices \(P \) such that \(C = CP \).
Let E_n be the signed symmetric group of order $|E_n| = 2^n n!$. The number of codes equivalent to a code C over $GR(p^3, r)$ of length n is
\[\frac{|E_n|}{|\text{Aut}(C)|} \]
and hence the number $N_{p^3, r}(n)$ of distinct self-dual codes over $GR(p^3, r)$ of length n is
\[N_{p^3, r}(n) = \sum C \frac{|E_n|}{|\text{Aut}(C)|} \]
where the sum runs through all inequivalent self-dual codes C over $GR(p^3, r)$ of length n.

An explicit formula for $N_{p^3, r}(n)$, called the mass formula, would thus be useful for finding all inequivalent self-dual codes over $GR(p^3, r)$ of given length.

For the further study of codes over finite fields and finite rings, see [7, 12].

We will need the following lemmas, the proofs of which are known.

Lemma 1. [14] Let $\sigma_q(n, k)$ be the number of self-orthogonal codes of even length n and dimension k over \mathbb{F}_q. If $\text{char} \mathbb{F}_q \neq 2$, then
\[\sigma_q(n, k) = \frac{(q^n - k - \epsilon q^{n/2} - k) \prod_{i=1}^{k-1} (q^{n-2i} - 1)}{\prod_{i=1}^k (q^i - 1)}, \quad k \geq 2 \]
where $\epsilon = 1$ if $(-1)^{n/2}$ is a square and $\epsilon = -1$ if $(-1)^{n/2}$ is not a square.

Lemma 2. [15] Let V be an n-dimensional vector space over \mathbb{F}_q. The number $\binom{n}{k}_q$ of subspaces $U \subset V$ of dimension $k \leq n$ is given by
\[\binom{n}{k}_q = \frac{(q^n - 1)(q^n - q) \cdots (q^n - q^{k-1})}{(q^k - 1)(q^k - q) \cdots (q^k - q^{k-1})}. \]

3. Codes over $GR(p^3, r)$

Let C be a code of length n over $GR(p^3, r)$ and let G be a generator matrix for C. We can write G in the following form:
\[G = \begin{bmatrix} A \\ pB \\ p^2C \end{bmatrix} = \begin{bmatrix} I_k & A_2 & A_3 & A_4 \\ 0 & pI_l & pB_3 & pB_4 \\ 0 & 0 & p^2I_m & p^2C_4 \end{bmatrix}, \tag{2} \]
where I_r is the identity matrix of order r, and the other matrices have entries from $GR(p^3, r)$ and are described as follows. We write A_3, B_4 and A_4 in their p-adic expansions.
\[A_3 = A_{30} + pA_{31}, \quad B_4 = B_{40} + pB_{41}, \quad A_4 = A_{40} + pA_{41} + p^2 A_{42}, \]
and the matrices \(A_2, \ B_3, \ C_4, \ A_{ij} \) and \(B_{ij} \) have entries from \(\mathbb{T}_p \). The columns are grouped in blocks of sizes \(k, l, m \) and \(h = n - (k + l + m) \). The code \(C \) is said to be of type \(\{k, l, m\} \) and has \(p^{r(3k+2l+m)} \) codewords. The dual code \(C^\perp \) is of type \(\{h, m, l\} \) and has \(p^{r(3h+2m+l)} \) codewords.

If the code \(C \) has generator matrix \(G \) in (2), then the residue code \(\text{Res}(C) \) has dimension \(k \) and generator matrix

\[T_0 = A \pmod{p} = \begin{bmatrix} I_k & \bar{A}_2 & \bar{A}_{30} & \bar{A}_{40} \end{bmatrix}, \]

the first torsion code \(\text{Tor}_1(C) \) has dimension \(k + l \) and generator matrix

\[T_1 = \begin{bmatrix} A \\ B \end{bmatrix} \pmod{p} = \begin{bmatrix} I_k & \bar{A}_2 & \bar{A}_{30} & \bar{A}_{40} \\ 0 & I_l & \bar{B}_3 & \bar{B}_{40} \end{bmatrix}, \]

and the second torsion code \(\text{Tor}_2(C) \) has dimension \(k + l + m \) and generator matrix

\[T_2 = \begin{bmatrix} A \\ B \\ C \end{bmatrix} \pmod{p} = \begin{bmatrix} I_k & \bar{A}_2 & \bar{A}_{30} & \bar{A}_{40} \\ 0 & I_l & \bar{B}_3 & \bar{B}_{40} \\ 0 & 0 & I_m & \bar{C}_4 \end{bmatrix}. \]

The following proposition gives a characterization of self-duality in \(\text{GR}(p^3, r) \).

Proposition 1. Let \(C \) be a code over \(\text{GR}(p^3, r) \) with generator matrix \(G \) as in (2). Then \(C \) is self-dual if and only if \(k = h, \ l = m \) and the following hold:

\[\begin{align*}
AA^t & \equiv 0 \pmod{p^3} \quad (6) \\
AB^t & \equiv 0 \pmod{p^2} \quad (7) \\
BB^t & \equiv 0 \pmod{p} \quad (8) \\
AC^t & \equiv 0 \pmod{p}. \quad (9)
\end{align*} \]

Proof. Suppose \(C \) is a self-dual code over \(\text{GR}(p^3, r) \). We then have \(GG^t \equiv 0 \pmod{p^3} \), that is,

\[\begin{align*}
AA^t & \equiv 0 \pmod{p^3} \\
pAB^t & \equiv 0 \pmod{p^3} \\
p^2 BB^t & \equiv 0 \pmod{p^3} \\
p^2 AC^t & \equiv 0 \pmod{p^3},
\end{align*} \]

which is equivalent to the set of conditions (6)-(9). Now, \(C \) is of type \(\{k, l, m\} \) and its dual code \(C^\perp \) is of type \(\{h, m, l\} \). Since \(C \) is self-dual, we then have \(k = h \) and \(l = m \).

Conversely, let \(C \) be a code such that \(k = h, l = m \) and conditions (6)-(9) hold. Now, conditions (6)-(9) imply that \(GG^t \equiv 0 \pmod{p^3} \). So \(C \) is a self-orthogonal code, i.e. \(C \subseteq C^\perp \). Moreover, since \(k = h \) and \(l = m \), we then have \(|C| = |C^\perp| \). Therefore \(C = C^\perp \).
Corollary 1. A self-dual code C over $GR(p^3, r)$ of type $\{k, l, l\}$ is of even length $n = 2(k + l)$.

Corollary 2. Let C be a self-dual code over $GR(p^3, r)$ of length n and of type $\{k, l, l\}$. Then $Res(C)$ is self-orthogonal, $Tor_1(C)$ is self-dual, and $Tor_2(C) = Res(C) \perp$.

Proof. Suppose C has generator matrix G as in (2). Then the torsion codes $Res(C)$, $Tor_1(C)$ and $Tor_2(C)$ have generator matrices T_0, T_1 and T_2 as in (3), (4) and (5) respectively.

From conditions (6) and (7), we obtain

$$AA^t \equiv 0 \pmod{p} \tag{10}$$
$$AB^t \equiv 0 \pmod{p}. \tag{11}$$

It immediately follows from (10) that $T_0T_0^t \equiv 0 \pmod{p}$, and so $Res(C)$ is self-orthogonal.

From Conditions (9), (10) and (11) imply that $T_1T_1^t \equiv 0 \pmod{p}$, so that $Tor_1(C)$ is self-orthogonal. Since C is self-dual, then dim $Tor_1(C) = k + l = \frac{n}{2}$. Thus $Tor_1(C)$ is self-dual.

From Conditions (9)-(11), it follows that $T_2T_0^t \equiv 0 \pmod{p}$, so $Tor_2(C) \subseteq Res(C) \perp$.

From Corollary 1, dim $Tor_2(C) = k + 2l = n - k = \text{dim } Res(C) \perp$. Consequently, $|Tor_2(C)| = |Res(C) \perp|$ and so $Tor_2(C) = (Res(C) \perp)$.

\square

4. Codes over $GR(p^3, r)$ from a code over \mathbb{F}_p^r

We now use Proposition 1 to construct self-dual codes over $GR(p^3, r)$ with prescribed first torsion code. We start with a self-dual $[n, k + l]$ code C_1 over \mathbb{F}_p with generator matrix

$$G' = \begin{bmatrix} A' \\ B' \end{bmatrix} = \begin{bmatrix} I_k & A'_2 & A'_{30} \\ 0 & I_l & B'_3 & B'_{40} \end{bmatrix},$$

where the columns are grouped into blocks of sizes k, l, l and k. Note that $2(k + l) = n$.

We want to obtain the number of self-dual codes C over $GR(p^3, r)$ such that $Tor_1(C) = C_1$.

Since C_1 is self-dual, then $G'G'^t \equiv 0 \pmod{p}$ and we obtain

$$I_k + A'_2A'_2^t + A'_{30}A'_{30}^t + A'_{40}A'_{40}^t \equiv 0 \pmod{p} \tag{12}$$
$$A'_2 + A'_{30}B'_3^t + A'_{40}B'_{40}^t \equiv 0 \pmod{p} \tag{13}$$
$$I_l + B'_3B'_3^t + B'_{40}B'_{40}^t \equiv 0 \pmod{p}. \tag{14}$$

Let $H = \begin{bmatrix} A'_{30} & A'_{40} \\ B'_3 & B'_{40} \end{bmatrix}$ and $J = \begin{bmatrix} I_k & -A'_2 \\ -A'_2^t & I_l + A'_2A'_2 \end{bmatrix}$. Note that H and J are both square matrices of order $k + l$. From (12)-(14), we have

$$H(-H^tJ) \equiv I_{k+l} \pmod{p}.$$

Hence, H is invertible modulo p. By a permutation of columns of H, we can assume that the $k \times k$ matrix A'_{40} is invertible modulo p.

Let \(C_0 \) be the \(k \)-dimensional subspace of \(C_1 \) with generator matrix

\[
A' = \begin{bmatrix} I_k & A_2' & A_{30}' & A_{40}' \end{bmatrix}.
\]

From (12) and (13), \(C_0 \) is a self-orthogonal code and \(C_0 \subseteq C_1 \subseteq C_0^\perp \). Now, the dual of \(C_0^\perp \) has dimension \(n - k = k + 2l \). Hence we can write the generator matrix of \(C_0^\perp \) as

\[
\begin{bmatrix} A' \\ B' \\ C' \end{bmatrix} = \begin{bmatrix} I_k & A_2' & A_{30}' & A_{40}' \\ 0 & I_l & B_3' & B_{40}' \\ 0 & 0 & I_l & C_4' \end{bmatrix},
\]

where \(C_4' \) is an \(l \times k \) matrix over \(\mathbb{F}_{p^r} \).

We wish to find matrices \(A_2, A_3, A_4, B_3, B_4 \) and \(C_4 \) with entries from \(GR(p^e, r) \) satisfying conditions (6)-(9), which are equivalent to

\[
I_k + A_2 A_2' + A_3 A_3' + A_4 A_4' \equiv 0 \pmod{p^3} \tag{15}
\]

\[
A_2 + A_3 B_3' + A_4 B_4' \equiv 0 \pmod{p^2} \tag{16}
\]

\[
I_l + B_3 B_3' + B_4 B_4' \equiv 0 \pmod{p} \tag{17}
\]

\[
A_3 + A_4 C_4' \equiv 0 \pmod{p}. \tag{18}
\]

The matrices \(A_2, B_3 \) and \(C_4 \) are considered modulo \(p \), \(A_3 \) and \(B_4 \) are considered modulo \(p^2 \), and \(A_4 \) modulo \(p^3 \). As previously done, we write the matrices in \(p \)-adic expansion: \(A_3 = A_{30} + p A_{31}, B_4 = B_{40} + p B_{41} \) and \(A_4 = A_{40} + p A_{41} + p^2 A_{42} \), where \(A_{31}, B_{41}, A_{41} \) and \(A_{42} \) have entries from \(T_{p^r} \).

Let \(A_2, A_{30}, A_{40}, B_3 \) and \(B_{40} \) be the matrices over \(T_{p^r} \) such that \(\overline{A}_2 = A_2', \overline{A}_{30} = A_{30}', \overline{A}_{40} = A_{40}', \overline{B}_3 = B_3', \overline{B}_{40} = B_{40}' \). From (12) and (13), there exist matrices \((f_{ij})\) and \(D \) with entries from \(GR(p^3, r) \) such that

\[
A_2 + A_{30} B_3' + A_{40} B_{40}' = pD \tag{19}
\]

and

\[
I_k + A_2 A_2' + A_{30} A_{30}' + A_{40} A_{40}' = p(f_{ij}). \tag{20}
\]

As in [10], \(B_{41} \) and \(C_4 \) are uniquely determined by

\[
B_{41}' \equiv -A_{40}^{-1} (D + A_{31} B_3' + A_{41} B_{40}') \pmod{p} \tag{21}
\]

and

\[
C_4' \equiv -A_{40}^{-1} A_{30} \pmod{p}, \tag{22}
\]

which are sufficient conditions for (16) and (18). Since (14) is the same as (17), we only have to look at (15). It then follows that the code \(C \) is self-dual if and only if

\[
f_{ij} + \overline{A}_{31} A_{31}' + A_{40} A_{40}' + p(A_{31} A_{31}' + A_{41} A_{41}' + A_{40} A_{40}') \equiv 0 \pmod{p^2} \tag{23}
\]

Our goal is to count the number of matrices \(A_{31}, A_{41} \) and \(A_{42} \) satisfying (23).
For the remainder of this paper, we assume that \(p \) is an odd prime. Following the argument in Section 2.1 of [10], there are \(p^{\frac{rk(k-1)}{2}} \) possible choices for \(A_{31} \), \(p^{\frac{rk(k-1)}{2}} \) for \(A_{41} \) and \(p^{\frac{rk(k-1)}{2}} \) for \(A_{42} \). Therefore, we have \(p^{\frac{rk(k-1)}{2}} \) possible choices for the matrices \(A_{31} \), \(A_{41} \) and \(A_{42} \). We have proved the following result, which is analogous to Proposition 2.2 of [10].

Proposition 2. Let \(p \) be an odd prime. A self-dual code over \(GR(p^3, r) \) can be induced from a self-dual code \(C_1 \) over \(\mathbb{F}_{p^r} \). There are \(p^{\frac{rk(k-1)}{2}} \) self-dual codes over \(GR(p^3, r) \) of length \(n \) corresponding to each subspace of \(C_1 \) of dimension \(k \), where \(0 \leq k \leq \frac{n}{2} \).

For the sake of completeness, we describe the matrices \(A_{31} \), \(A_{41} \) and \(A_{42} \). \(A_{31} \) is an arbitrary \(k \times l \) matrix with entries from \(\mathbb{T}_{p^r} \), \(A_{41} \) is determined by

\[
 f_{ij} + \tilde{A}_{31}^t \tilde{A}_{31} + \tilde{A}_{41}^t \tilde{A}_{41} \equiv 0 \pmod{p},
\]

while \(A_{42} \) is determined by

\[
 (h_{ij}) + \tilde{A}_{42}^t \tilde{A}_{42} \equiv 0 \pmod{p},
\]

where

\[
 (f_{ij}) + \tilde{A}_{31}^t \tilde{A}_{31} + \tilde{A}_{41}^t \tilde{A}_{41} + (h_{ij}) + p(A_{31}A_{31}^t + A_{41}A_{41}^t) = p(h_{ij}).
\]

5. Mass Formula and Classification

Recall from Lemma 1 that \(\sigma_{p^r}(n, k) \) is the number of self-orthogonal codes of even length \(n \) and dimension \(k \) over \(\mathbb{F}_{p^r} \). Also, from Lemma 2, \(\binom{m}{k}_{p^r} \) is the number of \(k \)-dimensional subspaces of an \(n \)-dimensional vector space over \(\mathbb{F}_{p^r} \), where \(0 \leq k \leq n \). The following theorem gives the mass formula for self-dual codes over \(GR(p^3, r) \).

Theorem 1. Let \(p \) be an odd prime and let \(N_{p^3,r}(n) \) denote the number of distinct self-dual codes of even length \(n = 2m \) over \(GR(p^3, r) \). Then

\[
 N_{p^3,r}(n) = \sigma_{p^r} (n, m) \sum_{k=0}^{m} \binom{m}{k}_{p^r} p^{\frac{rk(n/2-1)}{2}}.
\]

Proof. From Lemma 1, there are \(\sigma_{p^r}(n, m) \) self-dual codes of length \(n \) over \(\mathbb{F}_{p^r} \). Let \(C_1 \) be one such self-dual code. Lemma 2 tells us that there are \(\binom{m}{k}_{p^r} \) subspaces \(C_0 \subseteq C_1 \) of dimension \(k \), where \(0 \leq k \leq m \). Finally, from Proposition 2, there are \(p^{\frac{rk(m-1)}{2}} \) self-dual codes over \(GR(p^3, r) \) corresponding to \(C_0 \). The result immediately follows. \(\square \)

When \(r = 1 \), Theorem 1 coincides with the result in [10] for \(Z_{p^3} \).

We now give a classification of self-dual codes over \(GR(p^3, 2) \) of length 4 for \(p = 3, 5 \). Our goal is to find a representative for each equivalence class of codes. In defining the equivalence of codes over \(GR(p^3, 2) \), we allow permutation of coordinates and (if necessary) multiplying certain coordinates by \(-1\). All computations for this paper were done with the computer algebra package MAGMA [2].
5.1. Building-up

Using the construction method discussed in Section 4, a general way to construct self-dual codes over GR($p^3, 2$) of length 4 can be described. Note that a self-dual code of length 4 over GR($p^3, 2$) has one of the following three types: \{0, 2, 2\}, \{1, 1, 1\} or \{2, 0, 0\}.

We start with a self-dual code $C_{[4]}$ over F_{p^2} of length 4 with generator matrix $[I_2 \ A]$, where A is a 2 × 2 matrix over F_{p^2} and $AA^t \equiv -I_2 \pmod{p}$. Let $C_{[4,k]}$ be a self-dual code over GR($p^3, 2$) of length 4 and type $\{k, l, l\}$ induced from $C_{[4]}$, where $k = 0, 1, 2$ and $l = 2 - k$.

For $\alpha \in F_{p^r}$, we denote by $\hat{\alpha}$ the element in T_{p^r} such that $\hat{\alpha} = \alpha$. Given a matrix $M = (\alpha_{ij})$ over F_{p^r}, we denote by \hat{M} the matrix $(\hat{\alpha}_{ij})$ over T_{p^r}.

Proposition 3. $C_{[4,0]}$ has generator matrix $m_p(\hat{A}) = \begin{bmatrix} pI_2 & p\hat{A} \\ 0 & p^2I_2 \end{bmatrix}$.

Proof. This immediately follows from the construction method discussed in Section 4, where we take $k = 0$ and $l = 2$. \hfill \Box

We now describe the generator matrix of $C_{[4,1]}$. Let $a_1 \in F_{p^2}$. By adding a_1 times the second row of the matrix $[I_2 \ A]$ to its first row, and permuting the last two columns whenever necessary so that the (1,4) entry is nonzero, we obtain a matrix over F_{p^2} of the form

$$G = \begin{bmatrix} 1 & a_1 & b_1 & c_1 \\ 0 & 1 & d_1 & e_1 \end{bmatrix},$$

where $a_1, b_1, c_1, d_1, e_1 \in F_{p^r}$ and $c_1 \neq 0$. The code $C_{[4]}$ is equivalent to the code with generator matrix G. Let

$$\hat{G} = \begin{bmatrix} 1 & a & b & c \\ 0 & 1 & d & e \end{bmatrix}.$$

Since c_1 is nonzero, then c is a nonzero element of T_{p^r}. Thus, c is a unit of GR($p^3, 2$).

Proposition 4. $C_{[4,1]}$ has generator matrix

$$m_p(\hat{G}, x) = \begin{bmatrix} 1 & a & b + px & c + py + p^2z \\ 0 & p & pd & pe + p^2q \\ 0 & 0 & p^2 & p^2r \end{bmatrix},$$

where x is an arbitrary element of T_{p^r} and $y, z, q, r \in T_{p^r}$ such that

$$y \equiv -(2c)^{-1}(F + 2bx) \pmod{p},$$
$$z \equiv -(2c)^{-1}H \pmod{p},$$
$$q \equiv -c^{-1}(D + dx + ey) \pmod{p},$$
$$r \equiv -c^{-1}b \pmod{p},$$

with

$$F = \frac{1}{p}(1 + a^2 + b^2 + c^2).$$
\[H = \frac{1}{p}(F + 2bx + 2cy + px^2 + py^2) \]
\[D = \frac{1}{p}(a + bd + ce) \]

Proof. Let \(A_2 = (a), A_{30} = (b), A_{40} = (c) \). From (20), we obtain
\[pF = (1 + a^2 + b^2 + c^2), \]
where \(F = (f_{ij}) \). The matrices \(A_{31} = (x) \) and \(A_{41} = (y) \) satisfy (24). Hence, we have
\[F + 2bx + 2cy \equiv 0 \pmod{p}, \]
\[y \equiv -(2c)^{-1}(F + 2bx) \pmod{p}. \]

Next, we obtain
\[pH = (F + 2bx + 2cy + px^2 + py^2) \]
from (26), where \(H = (h_{ij}) \). The matrix \(A_{42} = (z) \) satisfies (25), which gives us
\[H + 2cz \equiv 0 \pmod{p}, \]
\[z \equiv -(2c)^{-1}H \pmod{p}. \]

Now, let \(C_4 = (r) \). From (22), we have \(r \equiv c^{-1}b \pmod{p} \). Finally, let \(B_3 = (d), B_{40} = (e) \) and \(B_{41} = (q) \). We compute
\[pD = (a + bd + ce) \]
from (19). Then from (21), it follows that \(q \equiv -c^{-1}(D + dx + ey) \pmod{p}. \)

We now describe the generator matrix of \(C_{[4,2]} \). We permute the columns of the matrix \([I_2, A]\) whenever necessary, so that the (1,1) entry of \(A \) is nonzero. We write
\[[I_2, A] = \begin{bmatrix} 1 & 0 & s_1 & t_1 \\ 0 & 1 & u_1 & v_1 \end{bmatrix}, \]
where \(s_1, t_1, u_1, v_1 \in F_p \) and \(s_1 \neq 0 \). Let
\[\hat{A} = \begin{bmatrix} s & t \\ u & v \end{bmatrix}. \]
Since \(s_1 \) is nonzero, then \(s \) is a nonzero element of \(T_{p^2} \), and thus, is a unit of \(\text{GR}(p^3, 2) \).
Also, since \(A \) has an inverse modulo \(p \), then \(\det A = s_1v_1 - t_1u_1 \neq 0 \), which implies that \(sv - tu \neq 0 \) and \((sv - tu)/s = v - tus^{-1} \) has an inverse modulo \(p \).

Proposition 5. \(C_{[4,2]} \) has generator matrix
\[m_p(\hat{A}, y_{12}, z_{12}) = [I_2 \hat{A} + pY + p^2Z], \]
where \(y_{12} \) and \(z_{12} \) are arbitrary elements of \(T_p^2 \) and \(Y = (y_{ij}) \) and \(Z = (z_{ij}) \) are matrices over \(T_p^2 \) satisfying

\[
F + \widetilde{\gamma} Y^t \equiv 0 \pmod{p} \\
H + \widetilde{\gamma} Z^t \equiv 0 \pmod{p},
\]

with \(F = \frac{1}{p}(I_2 + \hat{A}^\dagger) \) and \(H = \frac{1}{p}(F + \widetilde{\gamma} Y^t + pY Y^t) \).

Proof. Let \(A_{40} = \hat{A} \). From (20), we compute

\[
pF = I_2 + \hat{A}^\dagger,
\]

where \(F = (f_{ij}) \). Note that \(F \) is a symmetric matrix. The matrix \(A_{41} = Y = (y_{ij}) \), with entries from \(T_p^2 \), satisfies (24). We then have \(F + \widetilde{\gamma} Y^t \equiv 0 \pmod{p} \), that is,

\[
\begin{bmatrix}
f_{11} & f_{12} \\
f_{12} & f_{22}
\end{bmatrix} + \begin{bmatrix}
s & t \\
u & v
\end{bmatrix} \begin{bmatrix}
y_{11} & y_{12} \\
y_{12} & y_{22}
\end{bmatrix} + \begin{bmatrix}
s & u \\
0 & 0
\end{bmatrix} \begin{bmatrix}
y_{11} & y_{12} \\
y_{12} & y_{22}
\end{bmatrix} \equiv 0 \pmod{p}.
\]

Hence \(Y \) satisfies

\[
\begin{align*}
f_{11} + 2s y_{11} + 2t y_{12} & \equiv 0 \pmod{p} \\
f_{22} + 2u y_{21} + 2v y_{22} & \equiv 0 \pmod{p} \\
f_{12} + s y_{21} + t y_{22} + u y_{11} + v y_{12} & \equiv 0 \pmod{p}
\end{align*}
\]

Observe that \(y_{11} \), \(y_{21} \) and \(y_{22} \) can each be expressed in terms of \(y_{12} \). Thus \(y_{11}, y_{21} \) and \(y_{22} \) are determined by \(\hat{A} \) and \(y_{12} \).

Next we compute

\[
pH = F + \widetilde{\gamma} Y^t + pY Y^t
\]

from (26), where \(H = (h_{ij}) \). The matrix \(A_{42} = Z = (z_{ij}) \), with entries from \(T_p^2 \), satisfies (25). Hence \(Z \) satisfies \(H + \widetilde{\gamma} Z^t \equiv 0 \pmod{p} \), that is,

\[
\begin{bmatrix}
h_{11} & h_{12} \\
h_{12} & h_{22}
\end{bmatrix} + \begin{bmatrix}
s & t \\
u & v
\end{bmatrix} \begin{bmatrix}
z_{11} & z_{12} \\
z_{12} & z_{22}
\end{bmatrix} + \begin{bmatrix}
s & u \\
0 & 0
\end{bmatrix} \begin{bmatrix}
z_{11} & z_{12} \\
z_{12} & z_{22}
\end{bmatrix} \equiv 0 \pmod{p}.
\]

Using a similar argument as earlier, we see that \(z_{11}, z_{21} \) and \(z_{22} \) are determined by \(\hat{A} \) and \(z_{12} \). \(\square \)

5.2. Self-dual codes over \(GR(27, 2) \)

We consider \(GR(27, 2) = \mathbb{Z}_{27}[\omega] \), where \(\omega^2 + 5\omega + 26 = 0 \) and \(\omega^8 = 1 \), and \(F_9 = \mathbb{Z}_3[\bar{\omega}] \), where \(\bar{\omega}^2 + 2\bar{\omega} + 2 = 0 \) and \(\bar{\omega}^8 = 1 \).
From [4], there exist two inequivalent self-dual codes of length 4 over \mathbb{F}_9: $C_1^{[4]}$ and $C_2^{[4]}$ with generator matrices

$$[I_2 A_{3,1}] = \begin{bmatrix} 1 & 0 & 0 & \omega^2 & 0 \\ 0 & 1 & 0 & \omega^2 \\ \end{bmatrix}$$

and$$[I_2 A_{3,2}] = \begin{bmatrix} 1 & 0 & 1 & 1 \\ 0 & 1 & \omega^4 & 1 \\ \end{bmatrix},$$

respectively. The matrices

$$G_{3,1,0} = \begin{bmatrix} 1 & 0 & \omega^2 & 0 \\ 0 & 1 & \omega^2 & 0 \\ \end{bmatrix}, \quad G_{3,1,1} = \begin{bmatrix} 1 & 1 & \omega^2 & \omega^2 \\ 0 & 1 & 0 & \omega^2 \\ \end{bmatrix}$$

and

$$G_{3,1,\omega} = \begin{bmatrix} 1 & \omega & \omega^2 & \omega^3 \\ 0 & 1 & 0 & \omega^2 \\ \end{bmatrix}$$

generate codes which are equivalent to $C_1^{[4]}$, while the matrices

$$G_{3,2,0} = [I_2 A_{3,2}]$$

and

$$G_{3,2,\omega} = \begin{bmatrix} 1 & \omega & \omega^3 & \omega^2 \\ 0 & 1 & \omega^4 & 1 \\ \end{bmatrix}$$

generate codes which are equivalent to $C_2^{[4]}$.

Table 1: Self-dual Codes of Length 4 over GR(27, 2).

| Type | Generator Matrix | No. of Codes | $|\text{Aut}(C)|$ |
|--------|------------------|--------------|------------------|
| {0, 2, 2} | $m_3(3, 1)$ | 1 | 32 |
| | $m_3(3, 2)$ | 1 | 48 |
| {1, 1, 1} | $m_3(G_{3,1,0}, 0)$ | 1 | 16 |
| | $m_3(G_{3,1,1, 0})$, $m_3(G_{3,1,\omega, 0})$, $m_3(G_{3,2,\omega, 0})$ | 3 | 8 |
| | $m_3(G_{3,1,0}, x)$, where $x \in \{1, \omega\}$ | 11 | 4 |
| | $m_3(G_{3,1,1, x})$, where $x \in \{1, \omega, \omega^2, \omega^3\}$ | 3 | 2 |
| | $m_3(G_{3,2,0}, 0)$ | | |
| | $m_3(G_{3,2,\omega, x})$, where $x \in \{1, \omega^2, \omega^3, \omega^5\}$ | | |
| | $m_3(G_{3,1,\omega, x})$, where $x \in \{1, \omega\}$ | | |
| | $m_3(G_{3,2,0}, \omega)$ | | |
| {2, 0, 0} | $m_3(3, 1, 0, 0)$ | 1 | 32 |
| | $m_3(3, 2, 0, 0)$ | 1 | 16 |
| | $m_3(3, 1, 0, z)$, where $z \in \{1, \omega\}$ | 33 | 8 |
| | $m_3(3, 1, 1, z)$, where $z \in \{0, 1, \omega, \ldots, \omega^7\}$ | | |
| | $m_3(3, 1, \omega, z)$, where $z \in \{0, 1, \omega, \ldots, \omega^7\}$ | | |
| | $m_3(3, 2, 0, z)$, where $z \in \{1, \omega, \omega^2, \omega^3\}$ | | |
| | $m_3(3, 2, \omega, z)$, where $z \in \{0, 1, \omega, \ldots, \omega^7\}$ | | |

In Table 1, we give the list of inequivalent self-dual codes over GR(27, 2) of length 4. Using the mass formula in Theorem 1, we make the following computations, confirming that Table 1 gives a complete classification.

$$N_{27,2}(4) = |\sigma_0(4, 2)| \sum_{k=0}^2 \binom{2}{k} \cdot 32^k = 20 + 1800 + 1620 = \sum_C \frac{2^4 \cdot 4!}{|\text{Aut}(C)|}.$$
Hence there are 55 self-dual codes of length 4 over GR(27, 2).

5.3. Self-dual codes over GR(125, 2)

We consider GR(125, 2) = Z_{125}[\omega], where \omega^2 + 89\omega + 57 = 0 and \omega^{24} = 1, and \mathbb{F}_{25} = Z_5[\bar{\omega}], where \bar{\omega}^2 + 4\omega + 2 = 0 and \bar{\omega}^{24} = 1.

From [4], there exist three inequivalent self-dual codes of length 4 over \mathbb{F}_5: C_1^{[4]}, C_2^{[4]} and C_3^{[4]} with generator matrices [I_2 A_{5,1}], [I_2 A_{5,2}] and [I_2 A_{5,3}] respectively, where

\[A_{5,1} = \begin{bmatrix} \bar{\omega}^6 & 0 \\ 0 & \bar{\omega}^6 \end{bmatrix}, \quad A_{5,2} = \begin{bmatrix} \bar{\omega}^8 & \bar{\omega}^4 \\ \bar{\omega}^{16} & \bar{\omega}^8 \end{bmatrix} \quad \text{and} \quad A_{5,3} = \begin{bmatrix} 1 & \bar{\omega}^{21} \\ \bar{\omega}^9 & 1 \end{bmatrix}, \]

respectively. C_1^{[4]} is equivalent to codes with generator matrices

\[G_{5,1,0} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & \bar{\omega}^6 \\ 0 & \bar{\omega}^6 & 1 \end{bmatrix}, \quad G_{5,1,1} = \begin{bmatrix} 1 & 1 & \bar{\omega}^6 \\ 0 & 0 & \bar{\omega}^6 \\ \bar{\omega}^6 & \bar{\omega}^6 & 1 \end{bmatrix}, \quad G_{5,1,\omega} = \begin{bmatrix} 1 & \bar{\omega} & \bar{\omega}^6 \\ 0 & 1 & 0 \\ 0 & 0 & \bar{\omega}^6 \end{bmatrix}, \]

\[G_{5,1,\omega^2} = \begin{bmatrix} 1 & \bar{\omega}^2 & \bar{\omega}^6 \\ 0 & 0 & \bar{\omega}^6 \\ \bar{\omega}^6 & \bar{\omega}^6 & 1 \end{bmatrix} \quad \text{and} \quad G_{5,1,\omega^3} = \begin{bmatrix} 1 & \bar{\omega}^3 & \bar{\omega}^6 \\ 0 & 0 & 0 \\ \bar{\omega}^6 & \bar{\omega}^6 & 0 \end{bmatrix}, \]

C_2^{[4]} is equivalent to codes with generator matrices

\[G_{5,2,0} = [I_2 A_{5,2}], \quad G_{5,2,1} = \begin{bmatrix} 1 & 1 & \bar{\omega}^{12} \\ 0 & 1 & \bar{\omega}^{16} \\ \bar{\omega}^{16} & \bar{\omega}^{16} & 1 \end{bmatrix}, \]

\[G_{5,2,\omega} = \begin{bmatrix} 1 & \bar{\omega} & \bar{\omega}^{19} \\ 0 & 0 & \bar{\omega}^{16} \\ \bar{\omega}^{16} & \bar{\omega}^{16} & 1 \end{bmatrix} \quad \text{and} \quad G_{5,2,\omega^2} = \begin{bmatrix} 1 & \bar{\omega}^2 & \bar{\omega}^{21} \\ 0 & 0 & \bar{\omega}^{16} \\ \bar{\omega}^{16} & \bar{\omega}^{16} & 1 \end{bmatrix}, \]

while C_3^{[4]} is equivalent to codes with generator matrices

\[G_{5,3,0} = [I_2 A_{5,3}], \quad G_{5,3,1} = \begin{bmatrix} 1 & 1 & \bar{\omega}^{11} \\ 0 & 0 & \bar{\omega}^{9} \\ \bar{\omega}^{9} & \bar{\omega}^{9} & 1 \end{bmatrix}, \quad G_{5,3,\omega} = \begin{bmatrix} 1 & \bar{\omega}^2 & \bar{\omega}^{16} \\ 0 & 0 & \bar{\omega}^{9} \\ \bar{\omega}^{9} & \bar{\omega}^{9} & 1 \end{bmatrix}, \]

\[G_{5,3,\omega^2} = \begin{bmatrix} 1 & \bar{\omega}^6 & \bar{\omega}^{10} \\ 0 & 0 & \bar{\omega}^{9} \\ \bar{\omega}^{9} & \bar{\omega}^{9} & 1 \end{bmatrix} \quad \text{and} \quad G_{5,3,\omega^3} = \begin{bmatrix} 1 & \bar{\omega}^{15} & \bar{\omega}^9 \\ 0 & 0 & \bar{\omega}^{9} \\ \bar{\omega}^{9} & \bar{\omega}^{9} & 1 \end{bmatrix}. \]

Let J_1 and J_2 be subsets of \mathcal{T}_{25}, with

\[J_1 = \{0, 1, \omega, \omega^2, \omega^4, \omega^5, \omega^7, \omega^9, \omega^{10}, \omega^{11}, \omega^{13}, \omega^{17}\} \]
\[J_2 = \{0, 1, \omega, \omega^2, \omega^4, \omega^5, \omega^6, \omega^7, \omega^{10}, \omega^{11}, \omega^{15}, \omega^{16}\}. \]

Table 2 gives the list of inequivalent self-dual codes over GR(125, 2) of length 4.

Using the mass formula in Theorem 1, we make the following computations, confirming that Table 2 gives a complete classification.

\[N_{125,2}(4) = 32 \sum_{k=0}^{2} \binom{2}{k} 5^{2k} = 52 + 33800 + 32500 = \sum_{c} \frac{2^4 \cdot 4!}{|\text{Aut}(C)|}. \]

Hence there are 904 self-dual codes of length 4 over GR(125, 2).
We discussed a method to construct self-dual codes over GR(p^3, r) from a self-dual code over \mathbb{F}_p, where p is an odd prime and r is a positive integer. This construction method led to a mass formula and classification of self-dual codes of length 4 over GR(p^3, 2) for $p = 3, 5$.

In this study, we only dealt with the case when p is an odd prime. Letting $p = 2$ in
(24), we obtain
\[f_{ij} + \tilde{A}_{30}A_{31} + \tilde{A}_{40}A_{41} = 0 \pmod{2}. \]
Since the diagonal entries of \tilde{X} are all 0, then we must have $f_{ii} \equiv 0 \pmod{2}$ for each i. Hence, from (20), the diagonal entries of $I_k + A_2A_2' + A_3A_3' + A_4A_4' = 2(f_{ij})$ must be doubly even.

Thus, in the case of $p = 2$, the construction algorithm becomes more complicated because we need an additional property for the self-dual codes over F_{2^r}. We are still investigating the mass formula for self-dual codes over $GR(8, r)$.

Acknowledgements

This research is funded by the Department of Science and Technology - Accelerated Science and Technology Human Resource Development Program (DOST-ASTHRDP).

References

