EUROPEAN JOURNAL OF PURE AND APPLIED MATHEMATICS
Vol. 12, No. 4, 2019, 1676-1688
ISSN 1307-5543 - www.ejpam.com
Published by New York Business Global

Hankel Transform of the Second Form (q, r)-Dowling Numbers

Roberto B. Corcino ${ }^{1, *}$, Jay M. Ontolan ${ }^{1}$, Gladys Jane S. Rama ${ }^{1}$
${ }^{1}$ Research Institute for Computational Mathematics and Physics, Cebu Normal University, 6000 Cebu City, Philippines

Abstract

In this paper, using the rational generating for the second form of the q-analogue of r-Whitney numbers of the second kind, certain divisibility property for this form is established. Moreover, the Hankel transform for the second form of the q-analogue of r-Dowling numbers is derived.

2010 Mathematics Subject Classifications: 05A15, 11B65, 11B73
Key Words and Phrases: r-Whitney numbers, r-Dowling numbers, generating function, q analogue, q-exponential function, A-tableau, convolution formula, Hankel transform, Hankel matrix, k-binomial transform

1. Introduction

The matrix of the form

$$
\left[\begin{array}{ccccc}
a_{0} & a_{1} & a_{2} & \ldots & a_{n} \tag{1}\\
a_{1} & a_{2} & a_{3} & \ldots & a_{n+1} \\
a_{2} & a_{3} & a_{4} & \ldots & a_{n+2} \\
\ldots & \ldots & \ldots & \ldots & \ldots \\
a_{n} & a_{n+1} & a_{n+2} & \ldots & a_{2 n}
\end{array}\right]
$$

whose entries are the elements of the sequence $A=\left(a_{n}\right)_{n=0}^{\infty}$ was defined in [16] as the Hankel matrix of order n of a sequence A, denoted by H_{n}. This can also be written as $H_{n}=\left(a_{i+j}\right)_{0 \leq i, j \leq n}$. In the same paper [16], the Hankel determinant h_{n} of order of n of A was defined as the determinant of the corresponding Hankel matrix of order n, (i.e. $\left.h_{n}=\operatorname{det}\left(H_{n}\right)\right)$ and the Hankel transform of the sequence A, denoted by $H(A)$, was defined as the sequence $\left\{h_{n}\right\}$ of Hankel determinants of A.

[^0]http://www.ejpam.com 1676 © 2019 EJPAM All rights reserved.

For example, the sequence of (r, β)-Bell numbers in $[12,15]$, denoted by $\left\{G_{n, r, \beta}\right\}$, has possessed the following Hankel transform (see [14])

$$
H\left(G_{n, r, \beta}\right)=\prod_{j=0}^{n} \beta^{j} j!.
$$

As mentioned in [16], one can easily verify that the (r, β)-Bell numbers are simply the r-Dowling numbers $D_{m, r}(n)$, which are defined in [5] as

$$
D_{m, r}(n)=\sum_{k=0}^{n} W_{m, r}(n, k)
$$

where $W_{m, r}(n, k)$ denotes the r-Whitney numbers of the second kind introduced by Mezo in [29]. In [14], the authors have also tried to derive the Hankel transform of the sequence of q-analogue of (r, β)-Bell numbers. In this attempt, they used the q-analogue defined in [17]. But they failed to derive it.

Just recently, another definition of q-analogue of r-Whitney numbers of the second $W_{m, r}[n, k]_{q}$ was introduced in $[13,16]$ by means of the following triangular recurrence relation

$$
\begin{equation*}
W_{m, r}[n, k]_{q}=q^{m(k-1)+r} W_{m, r}[n-1, k-1]_{q}+[m k+r]_{q} W_{m, r}[n-1, k]_{q} . \tag{2}
\end{equation*}
$$

From this definition, two more forms of the q-analogue were defined in $[13,16]$ as

$$
\begin{align*}
& W_{m, r}^{*}[n, k]_{q}:=q^{-k r-m\binom{k}{2}} W_{m, r}[n, k]_{q} \tag{3}\\
& \widetilde{W}_{m, r}[n, k]_{q}:=q^{k r} W_{m, r}^{*}[n, k]_{q}=q^{-m\binom{k}{2}} W_{m, r}[n, k]_{q}, \tag{4}
\end{align*}
$$

where $W_{m, r}^{*}[n, k]_{q}$ and $\widetilde{W}_{m, r}[n, k]_{q}$ denote the second and third forms of the q-analogue, respectively. Corresponding to these, three forms of q-analogues for r-Dowling numbers may be defined as follows:

$$
\begin{align*}
D_{m, r}[n]_{q} & :=\sum_{k=0}^{n} W_{m, r}[n, k]_{q} \tag{5}\\
D_{m, r}^{*}[n]_{q} & :=\sum_{k=0}^{n} W_{m, r}^{*}[n, k]_{q} \tag{6}\\
\widetilde{D}_{m, r}[n]_{q} & :=\sum_{k=0}^{n} \widetilde{W}_{m, r}[n, k]_{q} . \tag{7}
\end{align*}
$$

However, among these three forms, only the third form was considered in [16] and was given the Hankel transform as follows

$$
\begin{equation*}
H\left(\widetilde{D}_{m, r}[n]_{q}\right)=q^{m\binom{n+1}{3}-r n(n+1)}[0]_{q^{m}}![1]_{q^{m}}!\ldots[n]_{q^{m}}![m]_{q}^{\binom{n+1}{2}} . \tag{8}
\end{equation*}
$$

This Hankel transform was derived using the Hankel transform of q-exponential polynomials in [20], the Layman's Theorem in [26] and the Spivey-Steil Theorem in [34]. This method cannot be used to derive the Hankel transform of the first and second forms of q-analogues for r-Dowling numbers. But the method used by Cigler in [8] is found to be useful to derive the Hankel transforms for the second form of the q-analogue of r-Dowling numbers.

In this paper, the Hankel transform for the sequence $\left(D_{m, r}^{*}[n]_{q}\right)_{n=0}^{\infty}$ will be established using Cigler's method [8]. However, a more general form of $D_{m, r}^{*}[n]_{q}$, denoted by $\varphi_{n}[x, r, m]_{q}$, is considered, which is defined in polynomial form as follows:

$$
\begin{equation*}
\varphi_{n}[x, r, m]_{q}=\sum_{k=0}^{n} W_{m, r}^{*}[n, k][x]_{q}^{n}, \tag{9}
\end{equation*}
$$

such that, when $x=1, \varphi_{n}[1, r, m]_{q}=D_{m, r}^{*}[n]_{q}$.

2. A q-Analogue of $W_{m, r}(n, k)$: Second Form

The second form of q-analogue of $W_{m, r}(n, k)$ is a kind of generalization of the q analogue considered by Cigler [8]. This q-analogue possessed several properties (see [13]) including certain combinatorial interpretation in terms of A-tableau, which is defined in [27] to be a list ϕ of column c of a Ferrer's diagram of a partition λ (by decreasing order of length) such that the lengths $|c|$ are part of the sequence $A=\left(r_{i}\right)_{i \geq 0}$, a strictly increasing sequence of nonnegative integers. By making use of the following explicit formula in symmetric function form [13]

$$
\begin{align*}
W_{m, r}[n, k]_{q} & =q^{m\binom{k}{2}+k r} \sum_{S_{1}+S_{2}+\cdots S_{k}=n-k} \prod_{j=1}^{k}[m j+r]_{q}^{S_{j}} \\
& =\sum_{0 \leq j_{1} \leq j_{2} \leq \cdots j_{n-k} \leq k} q^{m\binom{k}{2}+k r} \prod_{i=1}^{n-k}\left[m j_{i}+r\right]_{q}, \tag{10}
\end{align*}
$$

we have

$$
\begin{equation*}
W_{m, r}^{*}[n, k]_{q}=\sum_{0 \leq j_{1} \leq j_{2} \leq \cdots \leq j_{n-k} \leq k} \prod_{i=1}^{n-k}\left[m j_{i}+r\right]_{q} . \tag{11}
\end{equation*}
$$

In [16], $W_{m, r}^{*}[n, k]$ was expressed as

$$
W_{m, r}^{*}[n, k]=\sum_{\phi \in T_{r}^{A}(k, n-k)} \prod_{c \in \phi} \omega(|c|)
$$

where $T_{r}^{A}(h, l)$ denotes the set of A-tableau with l columns of lengths $|c| \leq h$ and $\omega(|c|)=$ $[m|c|+r]_{q}$. Using the combinatorics of A-tableau, the following identities were established
in [16]:

$$
\begin{align*}
W_{m, r}^{*}[n, k]_{q} & =\sum_{j=k}^{n}(-1)^{n-j}\binom{n}{j} q^{-n r_{2}}\left[r_{2}\right]_{q}^{n-j} W_{m, r_{1}}^{*}[j, k]_{q} \tag{12}\\
W_{m, r}^{*}[n+1, m+j+1]_{q} & =\sum_{k=0}^{n} W_{m, r}^{*}[k, m]_{q} W_{m, r-m-1}^{*}[n-k, j]_{q} \tag{13}\\
W_{m, r}^{*}[s+p, t]_{q} & =\sum_{k=\max \{0, t-p\}}^{\min \{t, s\}} W_{m, r}^{*}[s, k]_{q} W_{m, r+m k}^{*}[p, t-k]_{q} . \tag{14}
\end{align*}
$$

Moreover, the convolution-type identity (14) has been used in [13] to derive the following Hankel determinant

$$
\operatorname{det}\left(W_{m, r}^{*}[s+i+j, s+j]_{q}\right)_{0 \leq i, j \leq n}=\prod_{k=0}^{n}[m(s+k)+r]_{q}^{k}
$$

Another interesting property of $W_{m, r}^{*}[n, k]_{q}$ is the divisibility property. One can easily observe that, using the triangular recurrence relation of $W_{m, r}[n, k]_{q}$ in (2), we can generate the following table of values

n / k	0	1	2	3
0	1			
1	$[r]_{q}$	q^{r}		
2	$[r]_{q}^{2}$	$q^{r}\left([r]_{q}+[m+r]_{q}\right)$	$q^{m+2 r}$	
2	$[r]_{q}^{2}$	$q^{r}\left([r]_{q}+[m+r]_{q}\right)$	$q^{m+2 r}$	
3	$[r]_{q}^{3}$	$q^{r}[r]_{q}^{2}+q^{r}[r]_{q}[m+r]_{q}$		
		$q^{m+2 r}\left([r]_{q}+[m+r]_{q}\right)$	$q^{3 m+3 r}$	
$q^{m+2 r}\left(+[2 m+r]_{q}^{2}\right)$				

Then, we can generate the first values of $W_{m, r}^{*}[n, k]_{q}$ as follows

n / k	0	1	2	3
0	1			
1	$[r]_{q}$	1	1	
2	$[r]_{q}^{2}$	$[r]_{q}+[m+r]_{q}$		
3	$[r]_{q}^{3}$	$[r]_{q}^{2}+[r]_{q}[m+r]_{q}+[m+r]_{q}^{2}$	$[r]_{q}+[m+r]_{q}+[2 m+r]_{q}$	1

Note that $[n]_{q}=1+q+q^{2}+\ldots+q^{n-1}$. Based on the preceding table, the constant values of $W_{m, r}^{*}[n, k]_{q}$ from row 0 to row 3 form the following triangle of numbers

					1
		1		1	
	1		2		1
1	3		3		1.

This can be written as

which is a portion of Pascal's triangle. The following theorem generalizes the above observation.

Theorem 2.1. The q-analogue $W_{m, r}^{*}[n, k]_{q}$ satisfies the following congruence relations

$$
\begin{equation*}
W_{m, r}^{*}[n, k]_{q} \equiv\binom{n}{k} \quad(\bmod q) \tag{15}
\end{equation*}
$$

Proof. We recall the rational generating function [13] for $W_{m, r}^{*}[n, k]_{q}$ is given by

$$
\Psi_{k}^{*}(t)=\sum_{n \geq 0} W_{m, r}^{*}[n, k]_{q}[t]_{q}^{n}=\frac{[t]_{q}^{k}}{\prod_{j=0}^{k}\left(1-[m j+r]_{q}[t]_{q}\right)}
$$

Since

$$
\begin{aligned}
\frac{1}{1-[m j+r]_{q}[t]_{q}} & =\sum_{n \geq 0}[m j+r]_{q}^{n}[t]_{q}^{n} \\
& =\sum_{n \geq 0}\left(1+q+q^{2}+\ldots+q^{m j+r-1}\right)^{n}[t]_{q}^{n} \\
& =\sum_{n \geq 0}(1+q y)^{n}[t]_{q}^{n}
\end{aligned}
$$

where y in q. Then

$$
\frac{1}{1-[m j+r]_{q}[t]_{q}}=\sum_{n \geq 0}\left(1+q z_{n}\right)[t]_{q}^{n}
$$

for some polynomial z_{n} in q. Hence,

$$
\begin{aligned}
\frac{1}{1-[m j+r]_{q}[t]_{q}} & =\sum_{n \geq 0}[t]_{q}^{n}+q \sum_{n \geq 0} z^{n}[t]_{q}^{n} \\
& \equiv \sum_{n \geq 0}[t]_{q}^{n} \quad(\bmod q) \equiv\left(\frac{1}{1-[t]_{q}}\right) \quad(\bmod q)
\end{aligned}
$$

Then

$$
\Psi_{k}^{*}(t)=\sum_{n \geq 0} W_{m, r}^{*}[n, k]_{q}[t]_{q}^{n}=\frac{[t]_{q}^{k}}{\prod_{j=0}^{k}\left(1-[m j+r]_{q}[t]_{q}\right)}
$$

$$
\equiv[t]_{q}^{k}\left(\frac{1}{\left(1-[t]_{q}\right)^{k+1}}\right) \quad(\bmod q)
$$

Using the Newton's Binomial Theorem, we have

$$
\begin{aligned}
\sum_{n \geq 0} W_{m, r}^{*}[n, k]_{q}[t]_{q}^{n} & \equiv[t]_{q}^{k} \sum_{n \geq 0}\binom{n+(k+1)-1}{n}[t]_{q}^{n} \quad(\bmod q) \\
& \equiv \sum_{n \geq 0}\binom{n+k}{n}[t]_{q}^{n+k} \quad(\bmod q) \\
& \equiv \sum_{n \geq k}\binom{n-k+k}{n-k}[t]_{q}^{n+k-k} \quad(\bmod q) \\
& \equiv \sum_{n \geq k}\binom{n}{k}[t]_{q}^{n} \quad(\bmod q)
\end{aligned}
$$

Comparing the coefficients of $[t]_{q}^{n}$ completes the proof of the theorem.

3. Hankel Transform of $D_{m, r}^{*}[n]_{q}$

We recall that the horizontal generating function for $W_{m, r}[n, k]_{q}$ is given by

$$
\begin{equation*}
\sum_{k=0}^{n} W_{m, r}[n, k]_{q}[x-r \mid m]_{k, q}=[x]_{q}^{n} \tag{16}
\end{equation*}
$$

Using the fact that

$$
[x-r \mid m]_{k, q}=q^{-k r-m\binom{k}{2}}\langle x\rangle_{r, m, k}
$$

where $\langle x\rangle_{r, m, k}=\prod_{j=0}^{n-1}\left([x]_{q}-[r+j m]_{q}\right)$, we can write (16) as follows

$$
\begin{aligned}
\sum_{k=0}^{n} q^{-k r-m\binom{k}{2}} W_{m, r}[n, k]_{q}\langle x\rangle_{r, m, k} & =[x]_{q}^{n} \\
\sum_{k=0}^{n} W_{m, r}^{*}[n, k]_{q}\langle x\rangle_{r, m, k} & =[x]_{q}^{n}
\end{aligned}
$$

Using the method of Cigler [8], let $d[n, k]=\operatorname{det}\left(a_{i+j+k}\right)_{i, j=0}^{n-1}$ denote the $k t h$ Hankel determinant. That is, the 0th Hankel determinant is given by

$$
d[n, 0]=\operatorname{det}\left[\begin{array}{ccccc}
a_{0} & a_{1} & a_{2} & \ldots & a_{n-1} \\
a_{1} & a_{2} & a_{3} & \ldots & a_{n} \\
\ldots \ldots & \ldots & \ldots & \ldots & \ldots \\
\hdashline a_{n-1} & a_{n} & a_{n+1} & \ldots & a_{2 n-2}
\end{array}\right]
$$ and the 1 st Hankel determinant is given by

$$
d[n, 1]=\operatorname{det}\left[\begin{array}{ccccc}
a_{1} & a_{2} & a_{3} & \ldots & a_{n} \\
a_{2} & a_{3} & a_{4} & \ldots & a_{n+1} \\
\ldots & \ldots & \ldots & \ldots & \ldots \\
\hline a_{n} & a_{n+1} & a_{n+2} & \ldots & a_{2 n-1}
\end{array}\right]
$$

Now, define a linear functional F on the polynomial by

$$
F\left(x^{n}\right)=a_{n}
$$

By Gram-Schmidt orthogonalization process, there exists a sequence of orthogonal polynomials

$$
p_{n}(x)=c_{0, n}+c_{1, n} x+\ldots+c_{n-1, n} x^{n-1}+x^{n} \quad\left(c_{n, n}=1\right)
$$

with respect to F such that

$$
p_{n}(x)=\frac{1}{d[n, 0]} \operatorname{det}\left[\begin{array}{cccccc}
a_{0} & a_{1} & a_{2} & \ldots & a_{n-1} & 1 \tag{17}\\
a_{1} & a_{2} & a_{3} & \ldots & a_{n} & x \\
a_{2} & a_{3} & a_{4} & \ldots & a_{n+1} & x^{2} \\
\ldots \ldots & \ldots & \ldots & \ldots & \ldots & \ldots \\
\ldots & \ldots & \\
a_{n} & a_{n+1} & a_{n+2} & \ldots & a_{2 n} . & x^{n}
\end{array}\right]
$$

where $p_{n}(x):=1$. This means that

$$
F\left(p_{n} p_{k}\right)=d_{n}[n=k] \text { with } d_{n} \neq 0
$$

Then

$$
d[n, 0]=\prod_{i=0}^{n-1} d_{i}
$$

Clearly, from (17), we have

$$
p_{n}(0)=c_{0, n}=\frac{1}{d[n, 0]}(-1)^{n} d[n, 1]
$$

Hence, we have

$$
\begin{equation*}
d[n, 1]=d[n, 0](-1)^{n} p_{n}(0) . \tag{18}
\end{equation*}
$$

First, let us consider the Hankel transform of $\varphi_{n}[x, r, m]_{q}$ corresponding to the 0th Hankel determinant.

Theorem 3.1. The Hankel transform of $\varphi_{n}[x, r, m]_{q}$ corresponding to the 0 th Hankel determinant is given by

$$
H\left(\varphi_{n}[x, r, m]_{q}\right)=\left([m]_{q}[x]_{q}\right)^{\binom{n}{2}} q^{r\binom{n}{2}+\binom{n}{3}} \prod_{k=0}^{n-1}[k]_{q^{m}}!
$$

Proof. We prove this theorem using the method of Cigler [8]. First, consider a linear operator $U_{r, q}$ on the polynomials defined by

$$
U_{r, q}\langle x\rangle_{r, m, n}=[x]_{q}^{n} \quad \text { where } \quad U_{r, q}[x]_{q} U_{r, q}^{-1}=[x]_{q}\left(1+[x]_{q}^{-r} D[x]_{q}^{r}\right)
$$

Then, we have

$$
\begin{aligned}
U_{r, q}[x]_{q} U_{r, q}^{-1}[x]_{q}^{n} & =U_{r}[x]_{q}\langle x\rangle_{r, m, n} \\
& =U_{r, q}\left(\langle x\rangle_{r, m, n+1}+[r+n]_{q}\langle x\rangle_{r, m, n}\right) \\
& =[x]_{q}^{n+1}+[r+n]_{q}[x]_{q}^{n} \\
& =[x]_{q}\left(1+[x]_{q}^{-r} D[x]_{q}^{r}\right)[x]_{q}^{n}
\end{aligned}
$$

Let $F_{r, q}$ be the linear function defined by

$$
F_{r, q}\left(\langle x\rangle_{r, m, n}\right)=[a]_{q}^{n}
$$

The orthogonal polynomial with respect to $F_{r, q}$ is given by

$$
h_{n, q}(x, a, r, m)=\sum_{k=0}^{n}\left(-[a]_{q}\right)^{k} q^{\binom{k}{2}}\left[\begin{array}{l}
n \\
k
\end{array}\right]_{q}\langle x\rangle_{r, m, n-k}
$$

which is a kind of q-Poisson-Charlier polynomials satisfying the following recurrence relation

$$
\begin{aligned}
h_{n+1, q}(x, a, r, m)=(& {\left.[x]_{q}-[m n+r]_{q}-q^{n}[a]_{q}\right) h_{n, q}(x, a, r, m) } \\
& -q^{r+m n-1}[a]_{q}[n]_{q} h_{n-1, q}(x, a, r, m) .
\end{aligned}
$$

Now, consider the following polynomial in $[x]_{q}$

$$
p_{n, q}(x, a)=\prod_{k=0}^{n-1}\left([x]_{q}-q^{k}[a]_{q}\right)=\sum_{k=0}^{n}\left(-[a]_{q}\right)^{k} q^{\binom{k}{2}}\left[\begin{array}{l}
n \\
k
\end{array}\right]_{q}[x]_{q}^{n-k} .
$$

By applying the linear operator $U_{r, q}:\langle x\rangle_{r, m, k} \mapsto[x]_{q}^{k}$ to $h_{n, q}(x, a, r, m)$,

$$
U_{r} h_{n, q}(x, a, r, m)=\sum_{k=0}^{n}\left(-[a]_{q}\right)^{k} q^{\binom{k}{2}}\left[\begin{array}{l}
n \\
k
\end{array}\right]_{q}[x]_{q}^{n-k}=p_{n, q}(x, a)
$$

This implies that

$$
U_{r, q}^{-1}\left(p_{n, q}(x, a)\right)=h_{n, q}(x, a, r, m)
$$

Then

$$
\begin{aligned}
U_{r}[x]_{q} h_{n, q}(x, a, r, m) & =U_{r}[x]_{q} U_{r, q}^{-1}\left(p_{n, q}(x, a)\right) \\
& =[x]_{q}\left(1+[x]_{q}^{-r} D[x]_{q}^{r}\right) p_{n, q}(x, a)
\end{aligned}
$$

$$
=[x]_{q} p_{n, q}(x, a)+[r+m n]_{q} p_{n, q}(x, a)
$$

Note that

$$
p_{n+1, q}(x, q)=\prod_{k=0}^{n}\left([x]_{q}-q^{k}[a]_{q}\right)=\left([x]_{q}-q^{n}[a]_{q}\right) p_{n, q}(x, q)
$$

Hence, $[x]_{q} p_{n, q}(x, a)=p_{n+1, q}(x, a)+[a]_{q} q^{n} p_{n, q}(x, a)$. Using the fact that

$$
[r+m n]_{q}=[r]_{q}+q^{r}[m n]_{q},
$$

we have

$$
\begin{aligned}
& U_{r}[x] h_{n, q}(x, a, r, m)=p_{n+1, q}(x, a)+[a]_{q} q^{n} p_{n, q}(x, a) \\
& \quad+\left([r]_{q}+q^{r}[m n]_{q}\right) p_{n, q}(x, a) \\
& =p_{n+1, q}(x, a)+[a]_{q} q^{n} p_{n, q}(x, a)+[r]_{q} p_{n, q}(x, a)+q^{r}[m n]_{q} p_{n, q}(x, a) \\
& =p_{n+1, q}(x, a)+[a]_{q} q^{n} p_{n, q}(x, a)+[r]_{q} p_{n, q}(x, a)+q^{r}[m n]_{q}[x]_{q} p_{n-1, q}(x, a) .
\end{aligned}
$$

Also, $[x]_{q} p_{n-1, q}(x, a)=p_{n, q}(x, a)+[a]_{q} q^{n-1} p_{n-1, q}(x, a)$. Then

$$
\begin{aligned}
U_{r}[x] & h_{n, q}(x, a, r, m)=p_{n+1, q}(x, a)+[a]_{q} q^{n} p_{n, q}(x, a) \\
& \quad+[r]_{q} p_{n, q}(x, a)+q^{r}[m n]_{q}\left(p_{n, q}(x, a)+[a]_{q} q^{n-1} p_{n-1, q}(x, a)\right) \\
= & p_{n+1, q}(x, a)+[a]_{q} q^{n} p_{n, q}(x, a)+[r]_{q} p_{n, q}(x, a)+q^{r}[m n]_{q} p_{n}(x, a) \\
& +[a]_{q}[m n]_{q} q^{r+n-1} p_{n-1, q}(x, a)
\end{aligned}
$$

Applying $U_{r, q}^{-1}$ yields

$$
\begin{aligned}
{[x]_{q} h_{n, q}(x, a, r, m)=} & h_{n+1, q}(x, a, r, m)+\left([a]_{q} q^{n}+[r]_{q}+q^{r}[m n]_{q}\right) h_{n, q}(x, a, r, m) \\
& +[a]_{q}[m n]_{q} q^{r+n-1} h_{n-1, q}(x, a, r, m)
\end{aligned}
$$

Clearly,

$$
F_{r, q}\left(h_{n, q}(x, a, r, m)\right)=\sum_{k=0}^{n}\left(-[a]_{q}\right)^{k} q^{\binom{k}{2}}\left[\begin{array}{l}
n \\
k
\end{array}\right]_{q}[a]_{q}^{n}=p_{n, q}(a, a)=0
$$

which implies

$$
\begin{aligned}
d_{n, q} & =F_{r, q}\left([x]_{q}^{n} h_{n, q}(x, a, r, m)\right) \\
& =q^{r+n-1}[m n]_{q}[a]_{q} F_{r, q}\left([x]_{q}^{n-1} h_{n-1, q}(x, a, r, m)\right) \\
& =\prod_{k=1}^{n} q^{r+k-1}[m k]_{q}[a]_{q}=\prod_{k=1}^{n} q^{r+k-1}[k]_{q^{m}}[m]_{q}[a]_{q} \\
& =\left(q^{r}[a]_{q}[m]_{q}\right)^{n} q^{\binom{n}{2}}[n]_{q^{m}}!
\end{aligned}
$$

Hence, we have

$$
d[n, 0]_{q}=\prod_{k=0}^{n-1} d_{k, q}
$$

$$
\begin{aligned}
& =\prod_{k=0}^{n-1}\left(q^{r}[m]_{q}[x]_{q}\right)^{k} q^{\binom{k}{2}}[k]_{q^{m}}! \\
& =\left(q^{r}[m]_{q}[x]_{q}\right)^{0+1+2+\ldots+n-1} q^{\binom{0}{2}+\binom{1}{2}+\binom{2}{2}+\ldots+\binom{n-1}{2}} \prod_{k=0}^{n-1}[k]_{q^{m}}! \\
& =\left(q^{r}[m]_{q}[x]_{q}\right)^{\binom{n}{2}} q^{\binom{n}{3}} \prod_{k=0}^{n-1}[k]_{q^{m}}!.
\end{aligned}
$$

This is exactly the desired Hankel transform.
As an immediate consequence of Theorem 3.1, we have the following corollary.
Corollary 3.2. The Hankel transform of $D_{m, r}^{*}[n]_{q}$ is given by

$$
H\left(D_{m, r}^{*}[n]_{q}\right)=[m]_{q}^{\binom{n}{2}} q^{\binom{n}{3}+r\binom{n}{2}} \prod_{k=0}^{n-1}[k]_{q^{m}}!
$$

Proof. This can easily be derived from Theorem 3.1 by letting $x=1$.
Remark 3.3. When $m=1$, the Hankel tranform in Corollary 3.2 yields

$$
H\left(D_{1, r}^{*}[n]_{q}\right)=q^{\binom{n}{3}+r\binom{n}{2}} \prod_{k=0}^{n-1}[k]_{q}!,
$$

which is exactly the Hankel transform of the second form of q-noncentral Bell numbers $\widehat{B}_{n, a}^{q}$ when $r=-a$ in [11] defined by

$$
\widehat{B}_{n, a}^{q}=\sum_{k=0}^{n} S_{a}^{*}[n, k] .
$$

Remark 3.4. When $q \rightarrow 1$, Corollary 3.2 gives

$$
H\left(D_{m, r}^{*}(n)\right)=m^{\binom{n}{2}} \prod_{k=0}^{n-1} k!
$$

which is exactly the Hankel transform of (r, β)-Bell numbers $G_{n, \beta, r}$ with $\beta=m$ in [14].
Theorem 3.5. The Hankel transform of $\varphi_{n}[x, r, m]_{q}$ corresponding to the 1 st Hankel determinant $d[n, 1]_{q}$ is given by

$$
\begin{aligned}
& H\left(\varphi_{n}[x, r, m]_{q}\right)=d[n, 1]_{q} \\
& \quad=\left([m]_{q}[x]_{q}\right)^{\binom{n}{2}} q^{r\binom{n}{2}+\binom{n}{3}} \prod_{k=0}^{n-1}[k]_{q^{m}}!\sum_{k=0}^{n}(-1)^{n}[x]_{q}^{k} q^{k}\left(\begin{array}{c}
k \\
2
\end{array}\right]\left[\begin{array}{l}
n \\
k
\end{array}\right]_{q} \prod_{j=0}^{k-1}[r+j m]_{q} .
\end{aligned}
$$

Proof. Taking $\left[p_{n}(x)\right]_{q}=h_{n, q}(x, a, r, m)$, we can compute the desired Hankel transform using (18) with

$$
\begin{aligned}
{\left[p_{n}(0)\right]_{q} } & =h_{n, q}(0, a, r, m)=\sum_{k=0}^{n}\left(-[a]_{q}\right)^{k} q^{\binom{k}{2}}\left[\begin{array}{l}
n \\
k
\end{array}\right]_{q}[0-r \mid m]_{k, q} \\
& =\sum_{k=0}^{n}(-1)^{k}[a]_{q}^{k} q^{\binom{k}{2}}\left[\begin{array}{l}
n \\
k
\end{array}\right]_{q}(-1)^{k} \prod_{j=0}^{k-1}[r+j m]_{q} \\
& =\sum_{k=0}^{n}[a]_{q}^{k} q^{\binom{k}{2}}\left[\begin{array}{c}
n \\
k
\end{array}\right]_{q} \prod_{j=0}^{k-1}[r+j m]_{q} .
\end{aligned}
$$

Hence, we have

$$
\begin{aligned}
& H\left(\varphi_{n}[x, r, m]_{q}\right)=d[n, 1]_{q}=d[n, 0]_{q}(-1)^{n}\left[p_{n}(0)\right]_{q} \\
& \quad=\left([m]_{q}[x]_{q}\right)^{\binom{n}{2}} q^{r\binom{n}{2}+\binom{n}{3}} \prod_{k=0}^{n-1}[k]_{q^{m}}!\sum_{k=0}^{n}(-1)^{n}[x]_{q}^{k} q^{\binom{k}{2}}\left[\begin{array}{c}
n \\
k
\end{array}\right]_{q} \prod_{j=0}^{k-1}[r+j m]_{q} .
\end{aligned}
$$

4. Recommendation

We observe that the Hankel transform of the second and third forms of the q-analogue of r-Dowling numbers are obtained using different methods. It would be interesting to find a method that can be used to establish the Hankel transform of the first form of the q-analogue of r-Dowling numbers. It may be possible that this method is closely related to the one being applied in this paper.

Data Availability. No data were used to support this study.

Acknowledgements

This research has been funded by Cebu Normal University (CNU) and the Commission on Higher Education - Grants-in-Aid for Research (CHED-GIA).

References

[1] M. Aigner, A Characterization of the Bell Numbers, Discrete Math. 205 (1999), 207-210.
[2] A.Z. Broder, The r-Stirling Numbers, Discrete Math. 49(1984), 241-259.
[3] Carlitz, L., q-Bernoulli numbers and polynomials. Duke Math. J. 15 (1948) 987-1000.
[4] Ch.A. Charalambides and J. Singh, A review of the Stirling numbers, their generalization and statistical applications, Commun. Statist.-Theory Meth. 20(8) (1988), 2533-2595.
[5] G.S. Cheon and J.H. Jung, r-Whitney number of Dowling lattices, Discrete Math. 312(2012), 2337-2348.
[6] J. Cigler, A new q-Analog of Stirling numbers. Sitzunber. Abt. II. 201.(1992) 97-109.
[7] J. Cigler, Eine Charakterisierung der q-Exponentialpolynome, sterreich. Akad. Wiss. Math.-Natur. Kl. Sitzungsber. II, 208 (1999) 143157.
[8] J. Cigler, Hankel determinants of generalized q-exponential polynomials, arXiv:0909.5581v1 [math.CO]. Available at https://arxiv.org/abs/0909.5581.
[9] L. Comtet, Advanced Combinatorics, Reidel, Dordrecht, The Netherlands, 1974.
[10] K. Conrad, A q-Analogue of Mahler Expansions I, Adv. in Math. 153 (2000), 185-230.
[11] C.B. Corcino, R.B. Corcino, J.M. Ontolan, C.M. Perez-Fernandez, and E.R. Cantallopez, The Hankel Transform of q-Noncentral Bell Numbers, Int. J. Math. Math. Sci., Volume 2015, Article ID 417327, 10 pages.
[12] R.B. Corcino, The (r, β)-Stirling numbers. Mindanao Forum. 14(2) (1999)
[13] R.B. Corcino, J.T. Cañete, Jay M. Ontolan, and M.R. Latayada, A q-Analogue of r-Whitney Numbers of the Second Kind, arXiv:1907.03094v2 [math.CO]. Available at http://arxiv.org/abs/1907.03094v2.
[14] R.B. Corcino and C.B. Corcino, The Hankel Transform of Generalized Bell Numbers and Its q-Analogue, Util. Math., 89 (2012), 297-309.
[15] R.B. Corcino, C.B. Corcino, and R. Aldema, Asymptotic Normality of the $(r, \beta)-$ Stirling Numbers, Ars Combin., 81 (2006), 81-96.
[16] R.B. Corcino, M.R. Latayada and M.P. Vega, Hankel Transform of (q, r)-Dowling Numbers, Eur. J. Pure Appl. Math., 12(2) (2019), 279-293.
[17] R.B. Corcino and C.B. Montero, A q-Analogue of Rucinski-Voigt Numbers, ISRN Discrete Mathematics, Volume 2012, Article ID 592818, 18 pages, doi:10.5402/2012/592818
[18] A. Cvetković, P. Rajković, and M. Ivković, Catalan numbers, The Hankel Transform and Fibonnaci numbers, J. Integer Seq., 5(2002), Article 02.1.3
[19] M. Desainte-Catherine and X. G. Viennot, Enumeration of certain Young tableaux with bound height, Combinatorie Énumérative (Montreal 1985), Lect. Notes in Math. 1234 (1986), 58-67.
[20] R. Ehrenborg, Determinants of Involving q-Stirling Numbers, Advances in Applied Mathematics, 31(2003), 630-642.
[21] R. Ehrenborg, The Hankel Determinant of exponential Polynomials, Amer. Math. Monthly, 107(2000), 557-560
[22] M. Garcia-Armas and B. A. Seturaman, A note on the Hankel transform of the central binomial coefficients, J. Integer Seq. 11(2008), Article 08.5.8.
[23] H.W. Gould, The q-Stirling Number of the First and Second Kinds. Duke Math. J. 28(1968) 281-289.
[24] M. S. Kim and J. W. Son, A Note on q-Difference Operators, Commun. Korean Math. Soc. 17 (2002), No. 3, pp. 423-430
[25] M. Koutras. Non-Central Stirling Numbers and Some Applications. Discrete Math. 42 (1982):73-89.
[26] J.W. Layman, The Hankel transform and some of its properties, J. Integer Seq. 4 (2001), Article 01.1.5.
[27] A. De Medicis and P. Leroux, Generalized Stirling Numbers, Convolution Formulae and p, q-Analogues, Can. J. Math 47(3) (1995), 474-499.
[28] I. Mező, On the Maximum of r-Stirling Numbers, Adv. in Appl. Math. 41(3) (2008), 293-306.
[29] I. Mező, A new formula for the Bernoulli polynomials, Result. Math. 58(3) (2010), 329-335.
[30] I. Mező, The r-Bell numbers, J. Integer Seq. 14 (2011), Article 11.1.1.
[31] C. Radoux, Déterminat de Hankel construit sur des polynomes liés aux nombres de dérangements, European Journal of Combinatorics 12(1991) 327-329
[32] J. Riordan, Combinatorial identities, Wiley, New York, 1968
[33] N. J. Sloane, The On-line Encyclopedia of Integer Sequences, http://www.research.att.com/njas/sequences.
[34] M.Z. Spivey and L. L. Steil, The k-binomial transform and the Hankel transform, J. Integer Sq. 9(2006), Article 06.1.1
[35] U. Tamm, Some aspects of Hankel matrices in coding theory and combinatorics, Electron. J. combin. 8(1) A1(2001)
[36] R. Vein and A. Dale, Determinants and Their Applications in Mathematical Physics, Springer, 1991
[37] Daniel Zelinsky, A First Course in Linear Algebra, 2ed, Academic Press, Inc., 1973

[^0]: ${ }^{*}$ Corresponding author.
 DOI: https://doi.org/10.29020/nybg.ejpam.v12i4.3583
 Email addresses: rcorcino@yahoo.com (R. Corcino),
 ontolanjay@gmail.com (J. Ontolan), gjsrama@yahoo.com (G. J. Rama)

