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Numerical methods for advection problem
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Abstract. This paper aims is to solve an advection problem where u=u(x, t) is the solution by
Lax-Wendrof and finite difference methods, to study the analytical stability in L2[0, 1], L∞[0, 1],
then calculate the truncation error of these methods and finally study the analytical convergence
of these methods. These numerical techniques of resolution were implemented in Scilab.
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1. Introduction

Many disciplines of physics consist of describing phenomena of transport, heat and
induction. To describe such phenomena, it seems quite natural to describe the evolu-
tion of certain physical quantities in time as well as in space. Since they involve several
parameters, the differential equations involve partial derivatives with respect to each pa-
rameter. Hence the term ”partial differential equations ” in short PDEs. The PDEs are
also involved in the mathematical study of many problems encountered in various fields
of science (mechanics, chemistry, economics, biology, etc.), as well as in various applied
fields, or even advanced industrial, mainly in engineering and oil industry.

A PDE in itself does not have a pure solution, because in general it is difficult to find
a solution u to it in a unique way with no limit condition [1–3, 5, 8, 11]. After modeling a
physical problem (a visible problem) we get an invisible problem (a mathematical equation:
partial differential equations for example), but PDEs are usually very complex to solve,
or they have solutions for particular cases, but also the random phenomena of nature lead
to nonlinear equations which gives a complexity to the mathematical model studied.

The principle of solving partial differential equations is to replace a complex system
into a simple object or operator by leaving the main aspects of the original, which is called
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a numerical resolution. We want to solve the advection problem of order one in time and
space (1) of solution u = u(x, t) by finite difference and Lax-Wendroff methods [4–6, 9, 10].

∂u

∂t
+ α

∂u

∂x
= 0 , (1)

where α is the advection coefficient, subject to the homogeneous Dirichlet conditions

u(0, t) = u(1, t) = 0 ,

going from the initial solution

u(x, 0) = u0(x) = sin(19πx) .

These methods will have to calculate the solution u of the problem for different steps in
space and time in order to represent on the same graph the numerical solutions of the finite
difference and Lax-Wendroff methods for the equation (1), we will study the analytical
stability in L2([0, 1]) and L∞([0, 1]) of finite difference and Lax-Wendroff methods for the
advection equation, then we will calculate the truncation error of these methods. We will
study the analytical convergence of each of these methods.
All these numerical methods will be implemented with the Scilab software.

2. Advection problem

The advection or linear transport equation is a hyperbolic PDE, it is the simplest one
and consists in finding the solution u = u(x, t) ∈ R such that [8]

∂u

∂t
+ α

∂u

∂x
= 0 , (2)

where α > 0 is the advection coefficient.
For the purpose of the resolution we will consider the homogeneous Dirichlet boundary
conditions

u(0, t) = u(1, t) = 0 .

And the solution is initiated from u(x, 0) = u0(x) = sin(19πx).

3. Numerical resolution of advection problem

In this section, we will calculate the solution of the advection model by using two
numerical methods including the finite difference method and that of Lax-Wendroff.

3.1. Resolution by the finite difference method

We shall now calculate the solution u(x, t) of the advection problem for different steps
in space and time. For this purpose, the finite difference scheme of the advection problem
is written:

un+1
j − unj

∆t
+ α

unj − unj−1

∆x
= 0, j ∈ Z, n > 0 , (3)
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and in the form of recurrence

un+1
j = βunj−1 + (1− β)unj , with β = α

∆t

∆x
(4)

The homogeneous Dirichlet boundary conditions are

u(0, t) ' u(x0, tn) = un0 = 0 ,

u(1, t) ' u(xN+1, tn) = unN+1 = 0 ,

By varying the index j = 1, 2, 3, . . . , N of the equation (4), we obtain:

un+1
1

un+1
2

un+1
3

...

un+1
N


=



1− β 0 0 . . . 0

β 1− β 0 . . . 0

0 β 1− β . . . 0

...
. . .

. . .
...

0 0 . . . β 1− β





un1

un2

un3

...

unN


(5)

3.2. Resolution by Lax-Wendroff method

We will calculate the solution u(x, t) of the advection problem for different steps in
space and time. For this purpose, the Lax-Wendroff scheme for the advection equation is
written as follows

un+1
j − unj

∆t
+ c

unj+1 − unj−1

2∆x
−
(
c2∆t

2

)
unj−1 − 2unj + unj+1

∆x2
= 0 (6)

and in the form of recurrence

un+1
j = (1− λ2)unj +

(
λ2

2
+
λ

2

)
unj−1 +

(
λ2

2
− λ

2

)
unj+1, avec λ = c

∆t

∆x
. (7)

The homogeneous Dirichlet boundary conditions are

u(0, t) ' u(x0, tn) = un0 = 0 ,

u(1, t) ' u(xN+1, tn) = unN+1 = 0 ,

by varying the index j = 1, 2, 3, . . . , N of the equation (7) we obtain the following
matrix system



D.V. Pongui Ngoma, G.Nguimbi, V.D.Mabonzo, N. Batangouna / Eur. J. Pure Appl. Math, 13 (1) (2020), 144-157 147



un+1
1

un+1
2

un+1
3

...

un+1
N


=



(1− λ2) (λ
2

2 −
λ
2 ) 0 0 · · · 0

(λ
2

2 + λ
2 ) (1− λ2) (λ

2

2 −
λ
2 ) 0 · · · 0

0 (λ
2

2 + λ
2 ) (1− λ2) (λ

2

2 −
λ
2 ) · · · 0

...
. . .

. . . (λ
2

2 −
λ
2 )

0 · · · 0 (λ
2

2 + λ
2 ) (1− λ2)





un1

un2

un3

...

unN


(8)

Solving the advection problem by the finite difference and Lax-Wendroff methods, we
find that the linear system obtained by the finite difference method admits a bidiagonal and
non-symmetric while that obtained by Lax-Wendroff is tridiagonal and non-symmetric.

3.3. Numerical simulation

The aim here is to represent on the same graph the solutions of the linear systems
(7) and (8) of the finite difference and Lax-Wendroff methods respectively, by making
the choice by numerical tests of the parameters: advection velocity α, number of steps in
space N , number of steps in time T and time steps ∆t, respectively. This simulation will
be implemented in Scilab.



D.V. Pongui Ngoma, G.Nguimbi, V.D.Mabonzo, N. Batangouna / Eur. J. Pure Appl. Math, 13 (1) (2020), 144-157 148

(a) (b)

(c)

Figure 1: Representation of the solution of the advection problem by finite difference (FD) and Lax-Wendroff
methods for N = 99 et T = 2000.

Taking the number of steps in space N = 99 and the number of steps in time T = 2000
in finite difference methods (7) and Lax-Wendroff (8), we sought to vary the advection
speed α and the time step ∆t of the advection problem and numerical methods (finite
differences and Lax-Wendroff) respectively, in order to verify the numerical convergence
of the solutions (7) and Lax-Wendroff (8). ( See figure 1).
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• Taking α = 0.2 et ∆t = 0.001, we note that the solution obtained by the finite
difference (FD) method remains constant whereas that obtained by the Lax-Wendroff
method is unstable at first, then becomes stable and becomes unstable after (Figure
1 a).

• Taking α = 0.002 et ∆t = 0.05, we find that the solution by FD is constant at
the beginning, then oscillates at very low amplitudes whereas by Lax-Wendroff it is
unstable at first, then remains stable for a long time and becomes unstable after (
Figure 1 b ).

• Taking α = 0.02 et ∆t = 0.001, we note that both solutions (FD and Lax-
Wendroff) converge and the solution by Lax-Wendroff admits a higher peak than
that obtained by FD ( Figure 1 c ).

(d) (e)

Figure 2: Representation of the solution of the advection problem by finite difference (FD) and Lax-Wendroff
methods for N = 99 et T = 2000.

• Taking α = 0.002 et ∆t = 0.001, we find that both solutions (FD and Lax-
Wendroff) converge numerically almost everywhere ( Figure 2 d ).

• taking α = 0.002 et ∆t = 0.000001, we see that both solutions (FD and Lax-
Wendroff) admit a total convergence numerically( Figure 2 e)

The numerical convergence of the solution from Finite Difference and Lax-Wendroff
method for resolving the advection equation requires very good choices of the advection
speed parameter α and the time step ∆t , as well as a fairly high number of steps in space
and time (N and T ).
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4. Study of the analytical stability in L2([0; 1]) and L∞([0; 1]) of the finite
difference and Lax-Wendroff methods for the advection equation

In this section, we study the analytical stability in L2([0; 1]) and L∞([0; 1]) of the finite
difference and Lax-Wendroff methods for the advection equation

4.1. Analytical stability in L2([0; 1]) for the finite difference method of the
transport equation

Here, we will study the analytical stability in L2([0; 1]) of the numerical finite difference
method used for the advection problem.

Let eiwx and eiwxj be the mode values of the exact and discrete operators respectively
where i is the imaginary unit such that i2 = −1.

Let un = unwe
iwx, i ∈ C and xj = j∆x ' jh where h = ∆x is the constant step

of space discretization.
Then

unj = unwe
iwxj ' unweiwjh (9)

Replacing (9) in (4) , we obtain

un+1
w eiwjh = βunwe

iwjh.e−iwh + (1− β)unwe
iwjh , (10)

un+1
w = [βe−iwh + (1− β)]unw , wh ∈ [−π;π] (11)

Let us put r(wh) = βe−iwh + (1 − β) , where r(wh) is the amplification coefficient
of the finite difference operator .

Let us show that |r(wh)| 6 1 ,

r(wh)2 = 1− 2β + 2βcoswh− 2β2coswh+ β2 + β2 ,

= (1− β)2 + β2 + 2βcoswh(1− β) ,

= (1− β)2 + 2β(1− β)coswh+ β2 ,

|r(wh)|2 = |(1− β)2 + 2β(1− β)coswh|+ β2 ,

|r(wh)|2 6 (1− β)2 + 2β|(1− β)|+ β2 = [(1− β) + β]2 6 1 ,

where
|r(wh)| 6 1 .

This reflects the analytical stability in L2([0; 1]) of the finite difference method for the
transport equation.
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4.2. Analytical stability in L2([0; 1]) for the Lax-Wendroff method of the
transport equation

We shall want to study the analytical stability in L2([0; 1]) of the Lax-Wendroff method
used for the advection problem. Thus let us use the Von-Neuman condition.
The Lax-Wendroff scheme for the advection equation is

un+1
j = unj − λ

unj+1 − unj−1

2
+ λ2

unj−1 − 2unj + unj+1

2
.

According to the Von-Neumann stability criterion:

A =
un+1

un
(12)

un+1

un
=
unj − λ

2 (unj+1 − unj−1) + λ2

2 (unj−1 − 2unj + unj+1)

un
,

=
(λ

2

2 + λ
2 )unj−1 + (1− λ2)unj + (λ

2

2 −
λ
2 )unj+1

un
.

Let us take two mode values of the exact and discrete operators eik∆x and eikj∆x re-
spectively.

Let be
unj = eikj∆xunk

Equation (12) then becomes

A =
(λ

2

2 + λ
2 )unk .e

ik(j−1)∆x + (1− λ2)unk .e
ikj∆x + (λ

2

2 −
λ
2 )unk .e

ik(j+1)∆x

unk .e
ikj∆x

,

=
(λ

2

2 + λ
2 )unk .e

ikj∆xe−ik∆x + (1− λ2)unk .e
ikj∆x + (λ

2

2 −
λ
2 )unk .e

ikj∆xeik∆x

unk .e
ikj∆x

,

=

[
(λ

2

2 + λ
2 )e−ik∆x + (1− λ2) + (λ

2

2 −
λ
2 )eik∆x

]
unk .e

ikj∆x

unk .e
ikj∆x

.

After simplification, we obtain

A = λ2cos(k∆x)− iλsin(k∆x) + 1− λ2 ,

A = 1− λ2[1− cos(k∆x)]− iλsin(k∆x) .

By taking the semi-norm of A

|A| =
∣∣1− λ2[1− cos(k∆x)]− iλsin(k∆x)

∣∣ ,
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|A|2 =
∣∣1− λ2[1− cos(k∆x)]

∣∣2 + λ2sin2(k∆x) ,

|A| 6 1 ,

because
1− λ2 > 0 ,

λ2 6 1 .

Thus, the scheme is stable in the L2([0, 1]) norm for the Lax-Wendroff method of the CFL
transport equation λ 6 1 [4, 8].

4.3. Analytical stability in L∞([0; 1]) for the finite difference method of
the transport equation

We may now study the analytical stability in L∞([0; 1]) of the finite difference method
used for the advection problem.
Let us then use, the maximum principe.

Considering the linear interpolation between unj−1 and unj of the equation (4), we then
get

un+1
j = βunj−1 + (1− β)unj 6 max

j∈Z
(unj−1, u

n
j ) ,

Therefore :
un+1
j 6 max

j∈Z
(unj−1, u

n
j ) .

By passing to semi-norm and supremum, we obtain

|un+1
j | 6 max

j∈Z
(|unj−1|, |unj )|) ,

sup|un+1
j | 6 sup max

j∈Z
(|unj−1|, |unj )|) ,

‖ un+1 ‖∞6‖ un ‖∞ .

By simple recurrence, we have

for n = 0, ‖ u1 ‖∞6‖ u0 ‖∞
for n = 1, ‖ u2 ‖∞6‖ u1 ‖∞6‖ u0 ‖∞
for n = 2, ‖ u3 ‖∞6‖ u2 ‖∞6‖ u0 ‖∞

...

at rank n, ‖ un ‖∞6‖ u0 ‖∞= C

Then
‖ un ‖∞6 C (C constant) .

Which proves the analytical stability in L∞([0; 1]) for the finite difference method of the
transport equation.
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4.4. Analytical stability in L∞([0; 1]) for the Lax-Wendroff method of the
transport equation

We may now study the analytical stability in L∞([0; 1]) of the finite difference method
used for the advection problem. we may then use the maximum principe.

Considering the linear interpolation between unj−1, unj and unj+1 of the equation (7), we
have:

un+1
j = (1− λ2)unj +

(
λ2

2
+
λ

2

)
unj−1 +

(
λ2

2
− λ

2

)
unj+1 6 max

j∈Z
(unj−1, u

n
j , u

n
j+1) ,

Therefore
un+1
j 6 max

j∈Z
(unj−1, u

n
j , u

n
j+1) .

By passing to semi-norm and supremum, we obtain

|un+1
j | 6 max

j∈Z
(|unj−1|, |unj |, |unj+1|) ,

sup|un+1
j | 6 sup max

j∈Z
(|unj−1|, |unj |, |unj+1|) ,

‖ un+1 ‖∞6‖ un ‖∞ .

by simple recurrence, we have

for n = 0, ‖ u1 ‖∞6‖ u0 ‖∞
for n = 1, ‖ u2 ‖∞6‖ u1 ‖∞6‖ u0 ‖∞
for n = 2, ‖ u3 ‖∞6‖ u2 ‖∞6‖ u0 ‖∞

...

at rank n, ‖ un ‖∞6‖ u0 ‖∞= C.

Which proves the analytical stability in L∞([0; 1]) for the Lax-Wendroff method of the
transport equation.

5. Analytical convergence of numerical methods

In this section, we will study the analytical convergence of the finite difference and
Lax-Wendroff methods for solving the transport equation. For this purpose, we attempt
to compute the truncation errors of these methods.



D.V. Pongui Ngoma, G.Nguimbi, V.D.Mabonzo, N. Batangouna / Eur. J. Pure Appl. Math, 13 (1) (2020), 144-157 154

5.1. Truncation error for the finite difference method of the transport
equation

Using Taylor’s development of order 2 in relation with time to approach ∂u
∂t ,we obtain

u(xj , tn+1)− u(xj , tn)

∆t
=
∂u

∂t
(xj , tn) +

∆t

2!

∂2u

∂t2
(xj , tn) +O(∆t2) . (13)

To approach the derivative ∂u
∂x , let us use Taylor’s development of order 2 in relation

to space. We then obtain

α
u(xj , tn)− u(xj−1, tn)

∆x
= α

∂u

∂x
(xj , tn)− α∆x

2!

∂2u

∂x2
(xj , tn) +O(∆x2) (14)

We then define the truncation error of the transport equation for the finite difference
method by

ζnj =
u(xj , tn+1)− u(xj , tn)

∆t
+ α

u(xj , tn)− u(xj−1, tn)

∆x
. (15)

By adding the equations (13) and (14) member to member, we get

ζnj =
∂u

∂t
(xj , tn)+α

∂u

∂x
(xj , tn)+

∆t

2!

∂2u

∂t2
(xj , tn)−α∆x

2!

∂2u

∂x2
(xj , tn)+O(∆t2+∆x2)

(16)
knowing that

∂u

∂t
(xj , tn) + α

∂u

∂x
(xj , tn) = 0 ,

as a result

ζnj =
∆t

2!

∂2u

∂t2
(xj , tn)− α∆x

2!

∂2u

∂x2
(xj , tn) +O(∆t2 + ∆x2) .

We obtain a truncation error of the equation of transport of order 2 in space and in time.

Expressing ∂2u
∂t2

in terms of ∂2u
∂x2

, the truncation error is written

ζnj =
∆t

2!
α2∂

2u

∂x2
(xj , tn)− α∆x

2!

∂2u

∂x2
(xj , tn) +O(∆t2 + ∆x2) ,

ζnj =
α

2
(α∆t−∆x)

∂2u

∂x2
(xj , tn) . (17)

Study of the consistency

This scheme is said to be consistent if the truncation error goes to zero when the time
discretization step ∆t and the space discretization step ∆x tend to zero independently.
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According to our analysis, the truncation error is

ζnj =
α

2
(α∆t−∆x)

∂2u

∂x2
(xj , tn) .

Doing
(∆x,∆t) −→ (0, 0)

Therefore
ζnj −→ (0, 0).

Which proves the consistency of the finite difference scheme for the transport equation.

Since the scheme is stable and consistent, it is concluded that the numerical solution
of unj of the finite difference scheme for the transport equation is convergent.

5.2. Truncation error for the Lax-Wendroff method of the transport equa-
tion

The Lax-Wendroff scheme for the advection equation is written as

un+1
j − unj

∆t
+ c

unj+1 − unj−1

2∆x
−
(
c2∆t

2

)
unj−1 − 2unj + unj+1

∆x2
= 0 . (18)

The truncation error of the transport equation for the Lax-Wendroff method is defined
by

ζ ′nj =
u(xj , tn+1)− u(xj , tn)

∆t
+c

u(xj+1, tn)− u(xj−1, tn)

2∆x
−
(
c2∆t

2

)
u(xj+1, tn)− 2u(xj , tn) + u(xj−1, tn)

∆x2

(19)
Let us make a development of Taylor in x around the point xj and in t around the point
tn. Since u is the solution of the transport equation (1), we have

u(xj , tn+1)− u(xj , tn)

∆t
=
∂u

∂t
(xj , tn) +

∆t

2!

∂2u

∂t2
(xj , tn) +O(∆t2) , (20)

c
u(xj+1, tn)− u(xj−1, tn)

2∆x
= c

∂u

∂x
(xj , tn) , (21)

(
c2∆t

2

)
unj−1 − 2unj + unj+1

∆x2
=

(
c2

2

)
∆t

∂2u

∂x2
(xj , tn) . (22)

By inserting the relations (20), (21) and (22) into the expression of ζ ′nj , we get

ζ ′nj =
∆t

2!

∂2u

∂t2
(xj , tn)−

(
c2

2

)
∆t

∂2u

∂x2
(xj , tn) +O(∆t2 + ∆x2) ,
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The truncation error for the Lax-Wendroff method of the transport equation can be written

ζ ′nj =
∆t

2

[
∂2u

∂t2
(xj , tn)− c2∂

2u

∂x2
(xj , tn)

]
+O(∆t2 + ∆x2) ,

=
∆t

2

[
c2∂

2u

∂x2
(xj , tn)− c2∂

2u

∂x2
(xj , tn)

]
+O(∆t2 + ∆x2) ,

ζ ′nj = O(∆t2 + ∆x2) .

We obtain a truncation error depending on ∆t and ∆x.

Study of the consistency

Here it is easier to see that the truncation error of the transport equation for the Lax-
Wendroff schem is zero. We can directly deduce the consistency of the schem because it
is obvious that ζ ′nj −→ (0, 0) when (∆t,∆x) −→ (0, 0) .

Therefore the numerical solution of unj of the Lax-Wendroff scheme for the transport
equation is convergent.

6. Conclusion

The work proposed in this paper allowed us not only to highlight the finite differ-
ence and Lax-Wendroff methods, but also to discover the importance of these methods
in the numerical resolution of the advection problem. In this paper, we performed a
numerical resolution of the advection problem using finite difference and Lax-Wendroff
methods. Thus, we obtained linear systems whose matrices are bidiagonal non-symmetric
(Finite Difference method), non-symmetric tridiagonal for Lax-Wendroff method. Then
we proved that the numerical convergence between these solutions is total by taking:
α = 0.002, ∆t = 10−6, N = 99 and T = 2000. In addition, we used the Von-
Neumann and CFL conditions to prove the analytical stability of the solution unj of the
advection equation from the finite difference and Lax-Wendroff schemes. Finally, we have
also proved the analytical convergence of the solution unj using the truncation error of
these methods.
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