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The problem of the optimal control with a lower
coefficient for weakly nonlinear wave equation in the

mixed problem
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Abstract. In this paper, we consider the problem of determining the lowest coefficient of weakly
nonlinear wave equation. The problem is reduced to the optimal control problem, in the new
problem. In the this existence theorem of the optimal control and, the Freéchet differentiability of
the functional is proved. Also the necessary condition of optimality is derived in view of variational
inequality.
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1. Introduction

The problems of determining the coefficients of various partial differential equations are
actual problems in connection with of applied significance. Taking into account that the
coefficients of the equations of mathematical physics characterize various properties of the
considered medium, finding them is undoubtedly an important problem. Such problems
arise in various fields of natural science [1–4].

Recently, various methods have been used to solve such problems.One of these methods
is application of the methods of optimal control theory, which is also called variational
approach.

To apply this approach, a residual functional is constructed for finding the unknowns
in boundary value problems using additional data.

Then we consider the problem of minimizing the constructed functional for solving a
boundary value problem, moreover, the unknown in the boundary value problem is treated
as a control function and the new problem is investigated as an optimal control problem
by applying the methods of control theory.
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2. Statement of the problem

Consider the problem of finding a pair of functions {u(x, t), v(x)} from the following
relations

∂2u

∂t2
−∆u+ vu = f(x, t, u), (x, t) ∈ Q, (1)

u = 0, (x, t) ∈ S, u|t=0 = u0(x),
∂u

∂t

∣∣∣∣
t=0

= u1(x), x ∈ Ω, (2)

T∫
0

K(x, t)u(x, t)dt =ϕ(x), x ∈ Ω, (3)

where ∆ is the Laplace operator with respect to x, f(x, t, u), u0(x), u1(x),K(x, t), ϕ(x) are
given functions. Let Q = Ω× (0, T ) be a cylinder in Rn+1(n ≤ 4), Ω be a bounded domain
in Rn with a sufficiently smooth boundary Γ, S = Γ × (0, T ) is the lateral surface of the
cylinder Q,T > 0 be fixed number.

Note that problem (1) - (3) is inverse to the direct problem (1), (2) for a given function
v(x). We reduce this problem to the following optimal control problem: in the class of
functions

V = {v(x) ∈ L2(Ω)/a ≤ v(x) ≤ b a.e.on Ω} (4)

find the minimum of functional

J0(v) =
1

2

∫
Ω

 T∫
0

K(x, t)u(x, t; v)dt− ϕ(x)

2

dx (5)

under constraints (1), (2), where a and b some constants, moreover a < b,u(x, t; v) is the
solution of the boundary value problem (1), (2) for v = v(x) ∈ V . We call a function v(x)
a control, and a set V a class of admissible controls.

Note that between problems (1) - (3) and (1), (2), (4), (5) there is exist a closely
connection - if the minimum of the functional in problem (1), (2), (4), (5) is equal to zero,
then the additional condition (3) is satisfied.

Let’s consider the following problem to avoid the possible degeneration [[12], p.45] in
the obtained necessary condition of optimality in future: find the control v ∈ V that gives
minimum to the functional.

Jα(v) = J0(v) +
α

2

∫
Ω

|v(x)|2dx (6)

under the constraints (1), (2), where α > 0 is the given number.
This problem will be called problem (1), (2), (4), (6).
Let the following conditions be fulfilled on the data of problem (1), (2), (4), (6).
1. The function f(x, t, u) satisfies the Carathéodory conditions, has a continuous par-

tial derivative with respect to u ∈ R, for almost all (x, t) ∈ Q and for all u ∈ R, moreover



G.G Ismayilova / Eur. J. Pure Appl. Math, 13 (2) (2020), 314-322 316

the derivative ∂f(x,t,u)
∂u is bounded, f(x, t, 0) ∈ L2(Q), and the operator ∂f(x,t,u(x,t))

∂u acts
continuously from L2(Q) to L2(Q).

2.

u0 ∈
◦
W 1

2 (Ω), u1 ∈ L2(Ω),K ∈ L∞(Q), ϕ ∈ L2(Ω).

Since, under the imposed conditions, the function f(x, t, u) satisfies the Lipschitz condition
with respect to u, applying the Faedo-Galarkin method [13],[14] under conditions 1.,2. it
is easy to prove that for each v(x) ∈ V the boundary value problem (1), (2) has a unique
generalized solution from

U =

{
u|u ∈ C

(
[0, T ];

◦
W 1

2 (Ω)

)
,
∂u

∂t
∈ C ([0, T ];L2(Ω))

}
and following estimation is true for this solution

‖u‖ ◦
W 1

2 (Ω)
(Ω) +

∥∥∥∥∂u∂t
∥∥∥∥
L2(Ω)

≤

≤ c
[
‖u0‖ ◦

W
1

2

(Ω) + ‖u1‖L2(Ω) + ‖f(x, t, 0)‖L2(Q)

]
, t ∈ [0, T ] . (7)

Here and in the future, with c we denote various constants that are independent of the
estimated quantities and of the admissible controls.

By a generalized solution of the problem (1), (2) for a given function v(x) ∈ V we mean
a function u = u(x, t; v) from U such that for t = 0 it satisfies the condition u(x, 0) = u0(x)
and the integral identity∫

Q

[
−∂u
∂t

∂η

∂t
+

n∑
i=1

∂u

∂xi

∂η

∂xi
+ vuη

]
dxdt−

∫
Ω

u1(x)η(x, 0)dx =

∫
Q

f(x, t, u)ηdxdt (8)

for all η = η(x, t) from U and are equal to zero for t = T .

3. The existence of optimal control in problem (1), (2), (4), (6)

Theorem 1. Let the conditions accepted in the statement of problem (1), (2), (4), (6) be
satisfied. Then the set of optimal controls of problem (1), (2), (4), (6)

V∗ =

{
v ∈ V/Jα(v) = Jα∗ = inf

v∈V
Jα(v)

}
is nonempty, weakly compact in L2(Ω), and any

minimizing sequence {vm} weakly converges to the set V∗ in L2(Ω).

Proof. The set V defined by relation (4) is weakly compact in L2(Ω). We show that
functional (6) is weakly lower semicontinuous on the set V . Let v(x) ∈ V be some element
and {vm} ⊂ V an arbitrary sequence such that vm → v weakly in L2(Ω).

Due to the unique solvability of the boundary value problem (1), (2), to each control
vm ∈ V corresponds a unique solution um = u(x, t; vm) of the problem (1), (2) and, by
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virtue of the estimate (7), the estimate ‖um‖W 1
2,0(Q) ≤ c, ∀m = 1, 2, ..., holds i.e. the

sequence is uniformly bounded in the norm of the space W 1
2,0(Q). Then it follows from the

embedding theorem [see [15], p. 106] that, from sequence {um} can be chosen a sequence
(we also denote it by {um}) that

um → u strongly in L2(Q), (9)

∂um
∂t
→ ∂u

∂t
,
∂um
∂xi

→ ∂um
∂xi

, i = 1, n weakly in L2(Q), (10)

where u = u(x, t) ∈ U is some element.
We show that u(x, t) = u(x, t; v) , i.e. the function u(x, t) is a solution of problem (1),

(2) corresponding to the control v ∈ V . It is clear that, the identities∫
Q

[
−∂um

∂t

∂η

∂t
+

n∑
i=1

∂um
∂xi

∂η

∂xi
+ vmumη

]
dxdt−

−
∫
Ω

u1(x)η(x, 0)dx =

∫
Q

f(x, t, um)ηdxdt (11)

are true for all η ∈ U which are equal to zero at t = T .
For any η ∈ U the following inequality is true:∣∣∣∣∣∣∣
∫
Q

vmumηdxdt−
∫
Q

vuηdxdt

∣∣∣∣∣∣∣ ≤
∣∣∣∣∣∣∣
∫
Q

(vm − v)uηdxdt

∣∣∣∣∣∣∣+

∣∣∣∣∣∣∣
∫
Q

vm(um − u)ηdxdt

∣∣∣∣∣∣∣ .
Since u, η ∈ U and n ≤ 4 by embedding theorem [see [13], pp. 83-84] u, η ∈

C([0, T ];L4(Ω)), therefore uη ∈ L2(Q). Take into account this inclusion, the boundedness
of the sequence {vm, η} in L2(Q), and also the above established convergence sequences
{vm} and {um}, weakly L2(Ω) and strongly in L2(Q), respectively we establish from the
last inequality that

lim
m→∞

∫
Q

vmumηdxdt =

∫
Q

vuηdxdt. (12)

Since the function f(x, t, u) has a bounded derivative with respect to u, it satisfies the
Lipschitz condition with respect to the argument u. Therefore

|f(x, t, u)| ≤ L|u|+ |f(x, t, 0)|,

where L > 0 is the Lipschitz constant. Then it follows that the operator Fu = f(x, t, u(x, t))
generated by the function f(x, t, u) acts continuously from L2(Q) to L2(Q) [16]. Therefore,
the following relation is true:

lim
m→∞

∫
Q

f(x, t,um)ηdxdt =

∫
Q

f(x, t, u)ηdxdt. (13)
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Passing to the limit in (11) as m → ∞ and using (9), (10), (12), (13), we find that the
function u(x, t) is equal to u0(x) for t = 0 and satisfies the identity (8). From this and
the uniqueness of the solution of problem (1), (2) corresponding to the control v ∈ V
imply that u(x, t) = u(x, t; v). Thus, it follows from this that the first term in (6) is
weakly continuous in L2(Ω) on the set V . The second term in the expression of the
functional is weakly lower semicontinuous in L2(Ω). Therefore, functional (6) is weakly
lower semicontinuous on the set V . Then, by virtue of Theorem 2 from [see [17], p. 49],
we obtain that all the statements of Theorem 1 are true. Theorem 1 is proved.

4. The differentiability of functional (6) and the necessary condition of
optimality in problem (1), (2), (4), (6)

Now we study the Frechet differentiability of functional (6) and establish the necessary
condition of optimality in problem (1), (2), (4), (6).

Let ψ = ψ(x, t; v) is a generalized solution from the U of adjoint problem

∂2ψ

∂t2
−∆ψ + vψ =

∂f(x, t, u)

∂u
ψ −K(x, t)

 T∫
0

K(x, t)u(x, t)dt− ϕ(x)

 , (x, t) ∈ Q, (14)

ψ = 0, (x, t) ∈ S, ψ|t=T = 0,
∂ψ

∂t

∣∣∣∣
t=T

= 0, x ∈ Ω. (15)

By a generalized solution of the boundary value problem (14), (15) for a given v ∈ V , we
mean a function ψ = ψ(x, t; v) from U that is equal to zero for t = T and satisfying the
integral identity∫

Q

[
−∂ψ
∂t

∂g
∂t +

n∑
i=1

∂ψ
∂xi

∂g
∂xi

+ vψg

]
dxdt =

=
∫
Q

{
∂f(x,t,u)

∂u ψ −K(x, t)

[
T∫
0

K(x, t)u(x, t)dt− ϕ(x)

]}
gdxdt

(16)

for all g ∈ U which is equal to zero for t = 0.
From the results of [see [13], p. 209-215] it follows that under the above assumptions,

for each given v ∈ V problem (14), (15) has a unique generalized solution from U and the
estimate is true

‖ψ‖ ◦
W 1

2 (Ω)
+

∥∥∥∥∂ψ∂t
∥∥∥∥
L2(Ω)

≤ c
[
‖u‖L2(Q) + ‖ϕ‖L2(Ω)

]
, t ∈ [0, T ].

Taking into account (7), we obtain

‖ψ‖ ◦
W 1

2 (Ω)
+

∥∥∥∥∂ψ∂t
∥∥∥∥
L2(Ω)

≤

c

[
‖u0‖ ◦

W 1
2 (Ω)

+ ‖u1‖L2(Ω) + ‖f(x, t, 0)‖L2(Q) + ‖ϕ‖L2(Ω)

]
, t ∈ [0, T ]. (17)
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Theorem 2. Suppose that the conditions of Theorem 1 are satisfied. Then functional (6)
is continuously differentiable in V by Frechet and its differential at a point v ∈ V in with
increments δv ∈ L∞(Ω) is determined by the expression

〈
J ′α(v), δv

〉
=

∫
Ω

αv +

T∫
0

uψdt

 δv(x)dx. (18)

Proof. Let the increment δv ∈ L∞(Ω) of the element v ∈ V be v + δv ∈ V .
Denote by δu(x, t) ≡ u(x, t; v + δv) − u(x, t; v). It’s clear that the function δu(x, t) is

a generalized solution from U of the boundary value problem

∂2δu

∂t2
−∆δu+ (v + δv)δu = −uδv + [f(x, t, u+ δu)− f(x, t, u)] , (x, t) ∈ Q, (19)

δu = 0, (x, t) ∈ S, δu|t=0 = 0,
∂δu

∂t

∣∣∣∣
t=0

= 0, x ∈ Ω. (20)

The generalized solution U of the problem (19), (20) from is equal to zero for t = 0 and
satisfies the identity∫

Q

[
∂δu
∂t

∂η
∂t −

n∑
i=1

∂δu
∂xi

∂η
∂xi
− (v + δv)δuη

]
dxdt =

=
∫
Q

uηδvdxdt−
∫
Q

[f(x, t, u+ δu)− f(x, t, u)] ηdxdt
(21)

for all η = η(x, t) from U which equal to zero for t = T . Applying the Faedo- Galerkin
method and taking into account that the function f(x, t, u) satisfies the Lipschitz condition
with respect to the argument, we can obtain the estimate for the solution of the problem
(19), (20)

‖δu‖ ◦
W 1

2 (Ω)
+

∥∥∥∥∂δu∂t
∥∥∥∥
L2(Ω)

≤ c ‖δv‖L∞(Ω) , t ∈ [0, T ]. (22)

We consider the increment of functional (6):

∆Jα(v) = Jα(v + δv)− Jα(v) =
∫
Ω

αvδvdx+ α
2

∫
Ω

|δv|2 dx+

+
∫
Ω

[
T∫
0

Kudt− ϕ(x)

]
T∫
0

Kδudtdx+ 1
2

∫
Ω

[
T∫
0

Kδudt

]2

dx.
(23)

If we take g = δu(x, t) in (16) and take η = ψ(x, t; v) in (21) and summing the obtained
relations we get:

∫
Q

K(x, t)

[
T∫
0

Kudt− ϕ(x)

]
δudxdt =

∫
Q

uψδvdxdt+
∫
Q

ψδuδvdxdt+

+
∫
Q

∂f(x,t,u)
∂u ψδudxdt−

∫
Q

[f(x, t, u+ δu)− f(x, t, u)]ψdxdt.
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Taking into account this equality in (23), we obtain

∆Jα(v) =

∫
Ω

αv +

T∫
0

uψdt

δvdx+R, (24)

where R =
4∑
i=1

Ri is the remainder term and

R1 =
α

2

∫
Ω

|δv|2dx, R2 =
1

2

∫
Ω

 T∫
0

Kδudt

2

dx, R3 =

∫
Q

ψδuδvdxdt,

R4 =

∫
Q

{
∂f(x, t, u)

∂u
δu− [f(x, t, u+ δu)− f(x, t, u)]

}
ψdxdt.

The first term in the right-hand side of (24) is a linear bounded functional in L2(Q).
Now we estimate the remainder term of or R in (24).
First, we estimate the fourth term in the expression R.
By the Lagrange mean value theorem, we have

R4 =

∫
Q

[
∂f(x, t, u)

∂u
− ∂f(x, t, u+ θδu)

∂u

]
δuψdxdt,

where 0 ≤ θ ≤ 1.
Since the operator ∂f(x,t,u(x,t))

∂u acts continuously from L2(Q) to L2(Q) with respect

to u, from estimation (22) it follows that ∂f(x,t,u(x,t))
∂u − ∂f(x,t,u(x,t)+θδu(x,t))

∂u → 0 strongly
in L2(Q) as ‖δv‖L∞(Ω) → 0. Therefore, from this and estimation (22) it follows that

R4 = 0
(
‖δv‖L∞(Ω)

)
. Then again using estimation (22), we obtain

|R| ≤
∣∣∣∣ 4∑
i=1

Ri

∣∣∣∣ ≤ c [‖δv‖2L∞(Ω)
+ ‖δu‖2

L2(Q)
+ ‖ψ‖

L2(Q)
‖δu‖

L2(Q)
‖δv‖

L∞(Ω)

]
+

+|R4| ≤ c ‖δv‖2
L∞(Ω)

+ |R4|.

Therefore R = 0
(
‖δv‖L∞(Ω)

)
. Then it follows from (24) that functional (6) is differen-

tiable by Freshet in V and formula (18) is valid.
We show that the map v → J ′α(v) defined by (18) acts continuously from V to

(L∞(Ω))∗, where (L∞(Ω))∗ is adjoint of L∞(Ω).
Let δψ(x, t) = ψ(x, t; v + δv) − ψ(x, t; v). It follows from (14), (15), that δψ(x, t) is a

generalized solution from U of the boundary value problem

∂2δψ
∂t2
−∆δψ + (v + δv)δψ − ∂f(x,t,u+δu)

∂u δψ = −ψδv+

+
[
∂f(x,t,u+δu)

∂u − ∂f(x,t,u)
∂u

]
ψ −K(x, t)

T∫
0

Kδudt, (x, t) ∈ Q,
(25)
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δψ = 0, (x, t) ∈ S, δψ|t=T = 0,
∂δψ

∂t

∣∣∣∣
t=T

= 0, x ∈ Ω. (26)

Using the results of [[13], p. 209-215], it can be shown that the following estimation is
true for the solution of the problem (25), (26)

‖δψ‖ ◦
W 1

2 (Ω)
+

∥∥∥∥∂δψ∂t
∥∥∥∥
L2(Ω)

≤ c ‖δv‖L∞(Ω) , t ∈ [0, T ]. (27)

In addition, using (18) we obtain

‖J ′α(v + δv)− J ′α(v)‖
(L∞(Ω))∗

≤ c
[
‖δv‖

L∞(Ω)
+ ‖u‖

L2(Q)
‖δψ‖

L2(Q)
+

+ ‖ψ‖
L2(Q)

‖δu‖
L2(Q)

+ ‖δu‖
L2(Q)

‖δψ‖
L2(Q)

]
.

By virtue of (22), (27), the right-hand side of this inequality tends to zero as ‖δv‖
L∞(Ω)

→
0.

It follows that v → J∗α(v) is a continuous map from V to (L∞(Ω))∗. Theorem 2 is
proved.

Theorem 3. Let the conditions of Theorem 2 be satisfied. Then, for the optimality of
control v∗ = v∗(x) ∈ V in problem (1), (2), (4), (6), it is necessary that the inequality

∫
Ω

αv∗(x) +

T∫
0

u∗(x, t)ψ∗(x, t)dt

(v(x)− v∗(x))dx ≥ 0 (28)

holds for any control v = v(x) ∈ V here u∗(x, t) = u(x, t; v∗), ψ∗(x, t) = ψ(x, t; v∗) are the
solutions of problems (1), (2) and (14), (15), respectively, for v∗ = v∗(x).

Proof. The set V defined by relation (4) is convex in L∞(Ω). In addition, by Theorem
2, the functional Jα(v) is continuously differentiable by Frechet on V and its differential
at the point v ∈ V is determined by equality (18). Then, by virtue of Theorem 5 of [[17],
p. 28] inequality 〈J ′α(v∗), v − v∗〉 ≥ 0∀v ∈ V must be satisfied on the element v∗ ∈ V .
From here and (18) follows the validity of inequality (28). Theorem 3 is proved.
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