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Abstract. In the paper, ideas of the Lomov regularization method are generalized to the Cauchy
problem for a singularly perturbed partial integro-differential equation in the case when the integral
term contains a rapidly varying kernel. Regularization of the problem is carried out, the normal
and unique solvability of general iterative problems is proved.
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1. Introduction

In the paper, we consider the Cauchy problem for the integro-differential equation with
partial derivatives:

Lεy(x, t, ε) ≡ ε ∂y∂x = a(x)y +
x∫
x0

K(x, t, s)y(s, t, ε)ds+ h(x, t)+

+εg(x)cosβ(x)
ε y, y(x0, t, ε) = y0(t) ( (x, t) ∈ [x0, X]× [0, T ] ),

(1)

where β′(x) > 0, g(x), a(x) is a scalar functions, y0(t) constant, ε > 0 is a small parameter.
The problem of constructing a regularized asymptotic solution [1] of the problem (1) is
posed. Earlier, in [2], [3], [4], [5], [6], [7], systems for ordinary integro-differential equations
were mainly considered. In this paper we consider an partial integro-differential equa-
tions. Construction of asymptotic solutions for singularly perturbed integro-differential
equations with partial derivatives in the case when integral operators change rapidly was
first investigated in the works [8], [9], [10]. Construction of asymptotical solutions for
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ordinary integro-differential equations with fast oscillating coefficients from the position
of the regularization method are considered in [11].

Denote by λ1(x) = −a(x), β′(x) is a frequency of fast oscillating cosine. In the fol-
lowing, functions λ2(x) = −iβ′(x), λ3(x) = +iβ′(x) will be called the spectrum of a fast
oscillating coefficient.

We assume that the conditions are fulfilled:
(i) K(x, t, s) ∈ C∞{x0 < x < s < X, 0 < t < T}, h(x, t) ∈ C∞([x0, X]× [0, T ]), a(x),

g(x), β(x) ∈ C∞[x0, X],
(ii) λ1(x) 6= λj(x), j = 2, 3, λi(x) 6= 0, (∀x ∈ [x0, X]), i = 1, 2, 3;
(iii) Reλ1(x) ≤ 0, (∀x ∈ [x0, X]);
(iv) for ∀x ∈ [x0, X] and n2 6= n3 inequalities

n2λ2(x) + n3λ3(x) 6= λ1(x),
λ1(x) + n2λ2(x) + n3λ3(x) 6= λ1(x), (∀x ∈ [x0, X])

for all multi-indices n = (n2, n3) with |n| ≡ n2 + n3 ≥ 1 (n2 and n3 are non-negative
integers) are holds.

We will develop an algorithm for constructing a regularized [1] asymptotic solution of
problem (1).

2. Regularization of the problem

Denote by σj = σj(ε) independent of magnitude σ1 = e−
i
ε
β(t0), σ2 = e+ i

ε
β(t0), and

rewrite system (1) as

ε ∂y∂x = a(x)y + εg(x)
2

e− i
ε

t∫
t0

β′(θ)dθ

σ1+ +e
+ i

ε

t∫
t0

β′(θ)dθ

σ2

 y+

+
x∫
x0

K(x, t, s)y(s, t, ε)ds+ h(x, t), y(x0, t, ε) = y0.

(2)

Introduce the regularized variables:

τj =
1

ε

x∫
x0

λj(θ)dθ ≡
ψj(x)

ε
, j = 1, 3

and instead of problem (2), consider the problem

ε ∂ỹ∂x +
3∑
j=1

λj(x) ∂ỹ∂τj − a(x)ỹ −
x∫
x0

K(x, t, s)ỹ(s, t, ψ(s)
ε , ε)ds−

−εg(x)
2 (eτ2σ1 + eτ3σ2)ỹ = h(x, t), ỹ(x0, t, 0, ε) = y0,

(3)

for the function ỹ = ỹ(x, t, τ, ε) where is indicated: ψ = (ψ1, ψ2, ψ3). It is clear that if

ỹ = ỹ(x, t, τ, ε) is a solution of the problem (3), then the function is ỹ = ỹ(x, t, ψ(x)
ε , ε) an
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exact solution to problem (2), therefore, problem (3) is extended with respect to problem
(2). However, it cannot be considered fully regularized, since it does not regularize the
integral

Jỹ =

x∫
x0

K(x, t, s)ỹ(s, t, ψ(s, ε), ε)ds.

Definition. A class Mε is said to be asymptotically invariant (with ε → +0) with
respect to an operator P0 if the following conditions are fulfilled:

1) Mε ⊂ D(P0) for each fixed ε > 0;
2) the image P0µ(x, t, ε) of any element µ(x, t, ε) ∈Mε decomposes in a power series

P0µ(x, t, ε) =

∞∑
n=0

εnµn(x, t, ε)(ε→ +0, µn(x, t, ε) ∈Mε, n = 0, 1, ...),

convergent asymptotically for ε→ +0) (uniformly with ∈ [t0, T ]).
From this definition it can be seen that the class Mε depends on the space U, in which

the operator P0 is defined. In our case P0 = J. For the space U we take the space of vector
functions y (x, t, τ) , represented by sums

y(x, t, τ, σ) =
3∑
i=1

yi(x, t, σ)eτi +
∗∑

2≤|m|≤Ny

ym(x, t, σ)e(m,τ)+

+y0(x, t, σ) +
∗∑

1≤|m|≤Ny

ye1+m(x, t, σ)e(e1+m,τ), yi(x, t, σ),

ym(x, t, σ), ye1+m(x, t, σ) ∈ C∞ ([x0, X]× [0, T ]) ,
1 ≤ |m| ≡ m2 +m3 ≤ Ny, i = 0, 3, m = (0,m2,m3).

(4)

where is denoted: (m,λ(x)) ≡ m2λ2(x) +m3λ3(x), (e1 +m,λ(x)) ≡ λ1(x) +m2λ2(x) +
m3λ3(x); an asterisk ∗ above the sum sign indicates that the summation for |m| ≥ 1 it
occurs only over multi-indices m = (0,m2,m3) with m2 6= m3, e1 = (1, 0, 0) , σ = (σ1, σ2) .

Note that here the degree Ny of the polynomial y (x, t, τ) , relative to the exponentials
eτj depends on the element y. In addition, the elements of space U depend on bounded
in ε > 0 terms of constants σ1 = σ1 (ε) and σ2 = σ2 (ε) and which do not affect the
development of the algorithm described below, therefore, in the record of element (4) of
this space U , we omit the dependence on σ = (σ1, σ2) for brevity. We show that the class
Mε = U |τ=ψ(t)/ε is asymptotically invariant with respect to the operator J .

The image of the integral operator J on an arbitrary element y (x, t, τ) , of the space
U has the form

Jy(x, t, τ) =

x∫
x0

K(x, t, s)y0(s, t)ds+
3∑
i=1

x∫
x0

K(x, t, s)yi(s, t)e

1
ε

s∫
x0

λi(θ)dθ

ds+

+
∗∑

2≤|m|≤Ny

x∫
x0

K(x, t, s)ym(s, t)e

1
ε

s∫
x0

(m,λ(θ))dθ

ds+
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+
∗∑

1≤|m|≤Ny

x∫
x0

K(x, t, s)ye1+m(s, t)e

1
ε

s∫
x0

(e1+m,λ(θ))dθ

ds.

Apply the operation of integration by parts to the first term.

Ji(x, t, ε) =

x∫
x0

K(x, t, s)yi(s, t)e

1
ε

s∫
x0

λi(θ)dθ

ds = ε

x∫
x0

K(x, t, s)yi(s, t)

λi(s)
de

1
ε

s∫
x0

λi(θ)dθ

=

= ε

K(x, t, s)yi(s, t)

λi(s)
e

1
ε

s∫
x0

λi(θ)dθ

∣∣∣∣∣∣
s=x

s=x0

−
x∫

x0

(
∂

∂s

K(x, t, s)yi(s, t)

λi(θ)

)
e

1
ε

s∫
x0

λi(θ)dθ

ds

 =

= ε

K(x, t, x)yi(x, t)

λi(x)
e

1
ε

x∫
x0

λi(θ)dθ

− K(x, t, x0)yi(x0, t)

λi(x0)

−
−ε

x∫
x0

(
∂

∂s

K(x, t, s)yi(s, t)

λi(s)

)
e

1
ε

s∫
x0

λi(θ)dθ

ds .

Continuing this process, we obtain the series

Ji(x, t, ε) =
∞∑
ν=0

(−1)νεν+1

(Iνi (K(x, t, s)yi(s, t)))s=x e

1
ε

x∫
x0

λi(θ))dθ

−

− (Iνi (K(x, t, s)yi(s, t)))s=x0
]
,

where I0
i = 1

λi(s)
· , Iνi = 1

λi(s)
Iν−1
i (ν ≥ 1, i = 1, 3).

Applying the integration operation in parts to integrals

Jm(x, t, ε) =

x∫
x0

K(x, t, s)ym(s, t)e

1
ε

s∫
x0

(m,λ(θ))dθ

ds,

Je1+m(x, t, ε) =

x∫
x0

K(x, t, s)ye1+m(s, t)e

1
ε

s∫
x0

(e1+m,λ(θ))dθ

ds,

we note that for all multi-indices m = (0,m2,m3) , m2 6= m3, inequalities

(m,λ(x)) ≡ m2λ2(x) +m3λ3(x) 6= 0 ∀x ∈ [x0, X] , m2 +m3 ≥ 2

are satisfied. In addition, for the same multi-indices we have

(e1 +m,λ(x)) 6= 0∀x ∈ [x0, X] , m2 6= m3, |m| = m2 +m3 ≥ 1.
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Indeed, if (e1 +m,λ(x)) = 0 for some x ∈ [x0, X] and m2 6= m3, m2 + m3 ≥ 1, then
m2λ2(x) +m3λ3(x) = −λ1(x)), m2 +m3 ≥ 1, which contradicts condition (iv). Therefore,
integration by parts in integrals Jm (t, ε) , Je1+m (t, ε) is possible. Performing it, we will
have:

Jm(x, t, ε) =

x∫
t0

K(x, t, s)ym(s, t)e

1
ε

s∫
x0

(m,λ(θ))dθ

ds = ε

x∫
x0

K(x, t, s)ym(s, t)

(m,λ(s))
de

1
ε

s∫
x0

(m,λ(θ))dθ

=

= ε

K(x, t, x)ym(x, t)

(m,λ(x))
e

1
ε

x∫
x0

(m,λ(θ))dθ

− K(x, t, x0)ym(x0, t)

(m,λ(x0))

−
−ε

x∫
x0

(
∂

∂s

K(x, t, s)ym(s, t)

(m,λ(s))

)
e

1
ε

s∫
x0

(m,λ(θ))dθ

ds =

=
∞∑
ν=0

(−1)νεν+1

(Iνm (K(x, t, s)ym(s, t)))s=t e

1
ε

x∫
x0

(m,λ(θ))dθ

−

− (Iνm (K(x, t, s)ym(s, t)))s=t0
]
,

where I0
m = 1

(m,λ(s)) · , I
ν
m = 1

(m,λ(s))
∂
∂s I

ν−1
m (ν ≥ 1, |m| ≥ 2),

Je1+m(x, t, ε) =

x∫
x0

K(x, t, s)ye1+m(s, t)e

1
ε

s∫
x0

(e1+m,λ(θ))dθ

ds =

= ε

s∫
x0

K(x, t, s)ye1+m(s, t)

(e1 +m,λ(s))
de

1
ε

s∫
x0

(e1+m,λ(θ))dθ

=

= ε

K(x, t, x)ye1+m (x, t)

(e1 +m,λ(x))
e

1
ε

x∫
x0

(e1+m,λ(θ))dθ

− K(x, t, x0)ye1+m (x0, t)

(e1 +m,λ(x0))

−
−ε

x∫
x0

(
∂

∂s

K (t, s) ye1+m(s, t)

(e1 +m,λ (s))

)
e

1
ε

s∫
x0

(e1+m,λ(θ))dθ

ds =

=
∞∑
ν=0

(−1)νεν+1

(Iνe1+m

(
K(x, t, s)ye1+m(s, t)

))
s=t

e

1
ε

x∫
x0

(e1+m,λ(θ))dθ

−

−
(
Iνe1+m

(
K(x, t, s)ye1+m(s, t)

))
s=t0

]
,

where I0
e1+m = 1

(e1+m,λ(s)) · , I
ν
e1+m = 1

(e1+m,λ(s))
∂
∂s I

ν−1
e1+m (ν ≥ 1, |m| ≥ 1,
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Therefore, the image of the operator J on the element (5) of the space U is represented
as a series

Jy(x, t, τ) =

x∫
x0

K(x, t, s)y0(s, t)ds+

+

3∑
i=1

∞∑
ν=0

(−1)νεν+1

(Iνi (K(x, t, s)yi(s, t)))s=t e

1
ε

x∫
x0

λi(θ))dθ

−

− (Iνi (K(x, t, s)yi(s, t)))s=t0
]

+

+
∗∑

2≤|m|≤NY

∞∑
ν=0

(−1)νεν+1

(Iνm (K(x, t, s)ym(s, t)))s=t e

1
ε

x∫
x0

(m,λ(θ))dθ

−

− (Iνm (K(x, t, s)ym(s, t)))s=t0
]

+

+
∑

1≤|m|≤NY

∞∑
ν=0

(−1)νεν+1[
(
Iνe1+m

(
K(x, t, s)ye1+m(s, t)

))
s=t
×

×e
1
ε

x∫
x0

(e1+m,λ(θ))dθ

−
(
Iνe1+m

(
K(x, t, s)ye1+m(s, t)

))
s=t0

]
.

It is easy to show (see, for example, [12], pp. 291-294) that this series converges
asymptotically for ε → +0 (uniformly in (x, t) ∈ [x0, X] × [0, T ]). This means that the
class Mε is asymptotically invariant (for ε→ +0) with respect to the operator J .

We introduce operators Rν : U → U, acting on each element y(x, t, τ) ∈ U of the form
(5) according to the law:

R0y(x, t, τ) =

x∫
x0

K(x, t, s)y0(s, t)ds, (60)

R1y(x, t, τ) =
3∑

i=1

[(
I0
i (K(x, t, s)yi(s, t))

)
s=x

eτi − (
(
I0
i (K(x, t, s)yi(s, t))

)
s=x0

]+

+
∗∑

1≤|m|≤Ny

[
(
I0
m (K(x, t, s)ym(s, t))

)
s=x

e(m,τ) −
(
I0
m (K(x, t, s)ym(s, t))

)
s=x0

]+

+
∗∑

1≤|m|≤Ny

[(
I0
e1+m

(
K(x, t, s)y

e1+m
(s, t)

))
s=x

e(e1+m,τ)− (61)

−
(
I0
e1+m

(
K(x, t, s)y

e1+m
(s, t)

))
s=x0

]
,
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Now let ỹ(x, t, τ, ε) be an arbitrary continuous function on (x, t, τ) ∈ [x0, X]× [0, T ]×
{τ : Re τj , j = 1, 3}, with asymptotic expansion

ỹ(x, t, τ, ε) =

∞∑
k=0

εkyk(x, t, τ), yk(x, t, τ) ∈ U, (7)

converging as ε→ +0 (uniformly in (x, t, τ) ∈ [x0, X]× [0, T ]×{τ : Re τj , j = 1, 3}). Then
the image Jỹ (x, t, τ, ε) of this function is decomposed into an asymptotic series

Jỹ(x, t, τ, ε) =

∞∑
k=0

εkJyk(x, t, τ) =

∞∑
r=0

εr
r∑
s=0

Rr−sys(x, t, τ)|τ=ψ(t)/ε.

This equality is the basis for introducing an extension of an operator J on series of the
form (7):

J̃ ỹ ≡ J̃

( ∞∑
k=0

εkyk(x, t, τ)

)
=
∞∑
r=0

εr

(
r∑

k=0

Rr−kyk(x, t, τ)

)
.

Although the operator J̃ is formally defined, its utility is obvious, since in practice it is
usual to construct the N -th approximation of the asymptotic solution of the problem (2),
in which impose only N -th partial sums of the series (7), which have not a formal, but a
true meaning. Now you can write a problem that is completely regularized with respect
to the original problem (2):

Lεỹ(x, t, τ, ε) ≡ ε ∂ỹ∂x +
3∑
j=1

λj(x) ∂ỹ∂τj − a(x)ỹ − J̃ ỹ − εg(x)
2 (eτ2σ1 + eτ3σ2)ỹ =

= h(x, t), ỹ(x0, t, 0, ε) = y0, ((x, t) ∈ [x0, X]× [0, T ]) .

(8)

3. Solvability of iterative problems

Substituting the series (7) into (8) and equating the coefficients of the same powers of
ε, we obtain the following iterative problems:

Ly0 ≡
3∑
j=1

λj(x)∂y0∂τj
− a(x)y0 −R0y0 = h(x, t), y0(x0, t, 0) = y0; (90)

Ly1 = −∂y0

∂x
+
g(x)

2
(eτ2σ1 + eτ3σ2)y0 +R1y0, y1(x0, t, 0) = 0; (91)

Ly2 = −∂y1

∂x
+
g(x)

2
(eτ2σ1 + eτ3σ2)y1 +R1y1 +R2y0, y2(x0, t, 0) = 0; (92)

............................................................

Lyk = −∂yk−1

∂x + g(x)
2 (eτ2σ1 + eτ3σ2)yk−1 +Rky0 +R1yk−1, yk(x0, t, 0) = 0, k ≥ 1. (9k)
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Each iterative problem (9k) has the form

Ly ≡
3∑
j=1

λj(x)
∂y

∂τj
− a(x)y −R0y = H(x, t, τ), y(x0, t, 0) = y∗, (10)

where H(x, t, τ) ∈ U, is the known vector function of space U, y∗ is the known constant
vector of the complex space C, and the operator R0 has the form (see (60))

R0y(x, t, τ) ≡ R0

y0(x, t) +
3∑
i=1

yi(x, t)e
τi+

∗∑
2≤|m|≤Ny

ym(x, t)e(m,τ)+

+

∗∑
1≤|m|≤Ny

ye1+m(x, t)e(e1+m,τ)

 ∆
=

x∫
x0

K(x, t, s)y0(s, t)ds.

We introduce scalar (for each x ∈ [x0, X]) product in space U :

< u,w >≡< u0(x, t) +

3∑
i=1

ui(x, t)e
τi +

∗∑
2≤|m|≤Ny

um(x, t)e(m,τ)+

+

∗∑
1≤|m|≤Ny

ue1+m(x, t)e(e1+m,τ), w0(x, t) +

3∑
i=1

wi(x, t)e
τi+

+
∗∑

2≤|m|≤Nw

wm(x, t)e(m,τ) +
∗∑

1≤|m|≤Nw

we1+m(x, t)e(e1+m,τ) >
∆
=

∆
= (u0(x, t), w0(x, t)) +

3∑
i=1

(ui(x, t), wi(x, t)) +

∗∑
2≤|m|≤min(Ny ,Nw)

(um(x, t), wm(x, t)) +

+

∗∑
1≤|m|≤min(Ny ,Nw)

(
ue1+m(x, t), we1+m(x, t)

)
,

where we denote by (∗ , ∗) the usual scalar product in the complex space C. Let us prove
the following statement.

Theorem 1. Let conditions (i)-(ii), (iv) be fulfilled and the right-hand side H(x, t, τ)
of system (10) belongs to the space U . Then the system (10) is solvable in U, if and only
if

H1(x, t, τ) ≡ 0, ∀x ∈ [x0, X] . (11)

Proof. We will determine the solution of system (10) as an element (5) of the space
U :

y(x, t, τ) = y0(x, t) +
3∑
i=1

yi(x, t)e
τi +

∗∑
2≤|m|≤Ny

ym(x, t)e(m,τ)+
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+
∗∑

1≤|m|≤Ny

ye1+m(x, t)e(e1+m,τ) ≡ y0(x, t) +
3∑
i=1

yi(x, t)e
τi+ (12)

+
∗∑

2≤|m|≤Ny

ym(x, t)e(m,τ) +
∗∑

2≤|m1|≤Ny

ym
1
(x, t)e(mk,τ),

where for convenience introduced multi-indices m1 = e1 + m ≡ (1,m2,m3) , m2 and m3

are non-negative integer numbers. Substituting (12) into system (10), we will have

3∑
i=1

[λi(x)− a(x)] yi(x, t)e
τi +

∗∑
2≤|m|≤Ny

[(m,λ(x))− a(x)] ym(x, t)e(m,τ)+

+
∗∑

2≤|m1|≤Ny

[(
m1, λ(x)

)
− a(x)

]
ym

1
(x, t)e(m1,τ)−

−a(x)y0(x, t)−
x∫

x0

K(x, t, s)y0(s, t)ds = H0(x, t)+

+

3∑
i=1

Hi(x, t)e
τi +

∗∑
2≤|m|≤Ny

Hm(x, t)e(m,τ) +

∗∑
2≤|m1|≤Ny

Hm1
(x, t)e(m1,τ).

Equating here the free terms and coefficients separately for identical exponents, we obtain
the following systems of equations:

−a(x)y0(x, t)−
x∫

x0

K(x, t, s)y0(s, t)ds =H0(x, t), (13)

[λi(x)− a(x)] yi(x, t) = Hi(x, t), i = 1, 4, (13i)

[(m,λ(x))− a(x)] ym(x, t) = Hm(x, t), m2 6= m3, 2 ≤ |m| ≤ Ny, (13m)[(
m1, λ(x)

)
− a(x)

]
zm

1
(x, t) = Hm1

(x, t),m2 6= m3,2 ≤
∣∣m1

∣∣ ≤ Ny. (14)

The equation (13) can be written as

y0(x, t) =

x∫
x0

(
−a−1(x)K(x, t, s)

)
y0(s, t)ds− a−1(x)H0(x, t). (130)

Due to the smoothness of the kernel −a−1(x)K(x, t, s) and heterogeneity −a−1(x)H0(x, t),
this Volterra integral equation has a unique solution z0(x, t) ∈ C∞ ([x0, X]× [0, T ]) . The
equations (132) and (133) also have unique solutions

zi(x, t) = [λ1(x)− a(x)]−1Hi(x, t) ∈ C∞ ([x0, X]× [0, T ]) , i = 2, 3.
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Equation (131) are solvable in space C∞ ([x0, X]× [0, T ]) if and only if there are identities

H1(x, t) ≡ 0 ∀x ∈ [x0, X] ,

It is not difficult to see that these identities coincide with identities (11).
Further, since (m,λ(x)) ≡ m2λ2(x) + m3λ3(x) 6= λ1(x), |m| = m2 + m3 ≥ 2 (see

condition (iv)) the absence of resonance), the equation system (13m) has a unique solution

zm(x, t) = [(m,λ(x))− a(x)]−1Hm(x, t), 2 ≤ |m| ≤ Ny ∈ C∞ ([x0, X]× [0, T ]) .

We now consider equation (14). Let
(
m1, λ(x)

)
= λ1(x),

∣∣m1
∣∣ ≥ 2. Then

λ1(x) +m2λ2(x) +m3λ3(x) = λ1(x)⇔

⇔ m2λ2(x) +m3λ3(x) = 0⇔ m2 6= m3, m2 +m3 ≥ 1,

which cannot be (see definition of class U). Unique solution of equation (18) for
∣∣m1

∣∣ ≥ 2
in the class C∞ ([x0, X]× [0, T ]) :

zm
1
(x, t) =

[(
m1, λ(x)

)
− a(x)

]−1
Hm1

(x, t), 2 ≤
∣∣m1

∣∣ ≤ Ny.

Thus, condition (11) is necessary and sufficient for the solvability of equation (10) in
the space U . The theorem is proved.

Remark. If identity (11) holds, then under conditions (i)-(ii) and (iv), equation (10)
has the following solution in the space U :

y(x, t, τ) = y0(x, t) + α1(x, t)eτ1 +

3∑
i=2

[λi(x)− a(x)]−1Hi(x, t)e
τi+

+

∗∑
2≤|m|≤Ny

[(m,λ(x))− a(x)]−1Hm(x, t)e(m,τ)+ (14)

+

∗∑
1≤|m|≤Ny

[(e1 +m,λ(x))− a(x)]−1He1+m(x, t)e(e1+m,τ),

where α1(x, t) ∈ C∞ ([x0, X]× [0, T ]) are arbitrary function, y0(x, t) is the solution of an
integral equation (130), m ≡ (0,m2,m3) ,m2 6= m3, |m| = m2 +m3 ≥ 1.

4. The unique solvability of the general iterative problem in the space
U . Residual term theorem

Let us proceed to the description of the conditions for the unique solvability of equation
(10) in space U . Along with problem (10), we consider the equatiom

Ly(x.t, τ) = −∂y
∂x

+
g(x)

2
(eτ2σ1 + eτ3σ2) y +Q(x, t, τ), (15)



B.T. Kalimbetov, A.N. Temirbekov, A.S. Tolep / Eur. J. Pure Appl. Math, 13 (2) (2020), 287-302 297

where y = y(x, t, τ) is the solution (14) of the equation (10), Q(x, t, τ) ∈ U is the well-
known function of the space U. The right part of this equation:

G(x, t, τ) ≡ −∂y
∂x

+
g(x)

2
(eτ2σ1 + eτ3σ2) y +Q(x, t, τ) =

= − ∂

∂x

y0(x, t) +
3∑
i=1

yi(x, t)e
τi +

∗∑
2≤|m|≤Ny

ym(x, t)e(m,τ)+

+

∗∑
1≤|m|≤Ny

ye1+m(x, t)e(e1+m,τ)

+

+
g(x)

2
(eτ2σ1 + eτ3σ2)

y0(x, t) +
3∑
i=1

yi(x, t)e
τi +

∗∑
2≤|m|≤Ny

ym(x, t)e(m,τ)+

+

∗∑
1≤|m|≤Ny

ye1+m(x, t)e(e1+m,τ)

+Q(x, t, τ),

may not belong to space U , if y = y(x, t, τ) ∈ U. Indeed, taking into account the form (14)
of the function y = y(x, t, τ) ∈ U, we will have

Z(x, t, τ) ≡ G(x, t, τ) +
∂y

∂x
− g(x)

2
(eτ2σ1 + eτ3σ2)

[
y0(x, t) +

3∑
i=1

yi(x, t)e
τi+

+
∗∑

2≤|m|≤Ny

ym(x, t)e(m,τ) +
∗∑

1≤|m|≤Ny

ze1+m(x, t)e(e1+m,τ)

 =

=
g(x)

2
y0(x, t) (eτ2σ1 + eτ3σ2) +

3∑
i=2

g(x)

2
yi(x, t)

(
eτi+τ2σ1 + eτi+τ3σ2

)
+

+
g(x)

2
y1(x, t)

(
eτ1+τ2σ1 + eτ1+τ3σ2

)
+
g(x)

2
(eτ2σ1 + eτ3σ2)

 ∗∑
2≤|m|≤Ny

ym(x, t)e(m,τ)+

+

∗∑
1≤|m|≤Ny

ze1+m(x, t)e(e1+m,τ)

+Q(x, t, τ).

Here are terms with exponents

eτ3+τ2 = e(m,τ)|m=(0,1,1),

eτ2+(m,τ) (if m2 + 1 = m3) , eτ3+(m,τ) (if m3 + 1 = m2) , (∗)
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eτ2+(e1+m,τ) (if m2 + 1 = m3)m3 + 1 = m2,

do not belong to space U, since in multi-index m = (0,m2,m3) of the space U must be
m2 6= m3, m2 +m3 ≥ 1. Then, according to the well-known theory (see, [1] , p. 234), we
embed these terms in the space U according to the following rule (see (∗)):

êτ2+τ3 = e0 = 1, ̂eτ2+(m,τ) = e0 = 1 (m2 + 1 = m3,m2 6= m3) ,

̂eτ3+(m,τ) = e0 = 1 (m3 + 1 = m2,m2 6= m3) ,

̂eτ2+(e1+m,τ) = eτ1 (m2 + 1 = m3,m2 6= m3) . (∗∗)

In Z(x, t, τ) need of embedding only the terms

M(x, t, τ) ≡
3∑
i=2

g(x)

2
yi(x, t)

(
eτi+τ2σ1 + eτi+τ3σ2

)
+
g(x)

2
y1(x, t)

(
eτ1+τ2σ1 + eτ1+τ3σ2

)
,

S(x, t, τ) ≡ g(x)

2
(eτ2σ1 + eτ3σ2) [

∗∑
2≤|m|≤Ny

ym(x, t)e(m,τ)+
∗∑

1≤|m|≤Ny

ye1+m(x, t)e(e1+m,τ)].

We describe this embedding in more detail, taking into account formulas (∗∗) :

M(x, t, τ) ≡ g(x)

2
y1(x, t)

(
eτ1+τ2σ1 + eτ1+τ3σ2

)
+

3∑
i=2

g(x)

2
yi(x, t)

(
eτi+τ2σ1 + eτi+τ3σ2

)
=

=
g(x)

2

[
y1(x, t)eτ1+τ2σ1 + y1(x, t)eτ1+τ3σ2 + y2(x, t)e2τ2σ1 + y2(x, t)σ2+

+y3(x, t)σ1 + y3(x, t)e2τ3σ2

]
⇒

⇒ M̂(x, t, τ) =
g(x)

2

[
y1(x, t)eτ1+τ2σ1 + y1(x, t)eτ1+τ3σ2 + y2(x, t)e2τ2σ1+

+y2(x, t)σ2 + y3(x, t)σ1 + y3(x, t)e2τ3σ2

]
,

(note that in M̂(x, t, τ) there are no members containing eτ1 , measurement exponents
|m| = 1) :

S(x, t, τ) ≡ g(x)

2
(eτ2σ1 + eτ3σ2)

 ∗∑
2≤|m|≤Ny

ym(x, t)e(m,τ)+

∗∑
1≤|m|≤Ny

ye1+m(x, t)e(e1+m,τ)

 =

=
g(x)

2

 ∗∑
2≤|m|≤Ny

ym(x, t)
(
eτ2+(m,τ)σ1 + eτ3+(m,τ)σ2

)
+

+

∗∑
1≤|m|≤Ny

ye1+m(x, t)
(
e(e1+m,τ)+τ2σ1 + e(e1+m,τ)+τ3σ2

)
⇒
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⇒ Ŝ(x, t, τ) =
g(x)

2
[

∑
2 ≤ |m| ≤ Ny,
m2 + 1 = m3

ym(x, t)σ1 +
∑

2 ≤ |m| ≤ Ny,
m3 + 1 = m2

ym(x, t)σ2+

+
∗∑

2 ≤ |m| ≤ Ny,
m2 + 1 6= m3,m3 + 1 6= m2

ym(x, t)e(m,τ)+

+


∑

1 ≤ |m| ≤ Ny,
m2 + 1 = m3

ye1+m(x, t)σ1 +
∑

1 ≤ |m| ≤ Ny,
m3 + 1 = m2

ye1+m(x, t)σ2

 e
τ1+

+
∗∑

1 ≤ |m| ≤ Ny,
m2 + 1 6= m3,m3 + 1 6= m2

ye1+m(x, t)e(e1+m,τ),

After embedding, the right-hand side of system (15) will look like

Ĝ(x, t, τ) = − ∂

∂x

y0(x, t) +
3∑
i=1

yi(x, t)e
τi+

∗∑
2≤|m|≤Ny

ym(x, t)e(m,τ)

−
− ∂

∂x

 ∗∑
1≤|m|≤Ny

ye1+m(x, t)e(e1+m,τ)

+ M̂(x, t, τ) + Ŝ(x, t, τ) +Q(x, t, τ),

moreover, in Ŝ(x, t, τ) the coefficients at eτ1 do not depend on z1(x, t). As indicated in [1],
the embedding G(x, t, τ) → Ĝ(x, t, τ) will not affect the accuracy of the construction of
asymptotic solutions of problem (2), since G(x, t, τ)→ Ĝ(x, t, τ).

Theorem 2. Let conditions (i)-(ii), (iv) be fulfilled and the right-hand side H(x, t, τ) ∈
U of equation (10) satisfy condition (11). Then problem (10) under additional conditions

Ĝ(x, t, τ) ≡ 0 ∀t ∈ [x0, X] , (16)

where Q(x, t, τ) is the known vector function of space U , is uniquely solvable in U .
Proof. Since the right-hand side of equation (10) satisfies condition (11), this equation

has a solution in space U in the form (14), where α1(x, t) ∈ C∞ ([x0, X]× [0, T ]) are
arbitrary function so far. Submit (14) to the initial condition y (x0, t, 0) = y∗. We get
α1(x0, t) = y∗, where denoted

y∗ = y∗ + a−1(x0)H0(x0, t)−
3∑
i=2

[λi(x0)− a(x0)]−1Hi(x0, t)−
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−
∗∑

2≤|m|≤Ny

[(m,λ(x0))− a(x0)]−1Hm(x0, t)−

−
∗∑

1≤|mk|≤Ny

[(
mk, λ(x0)

)
− a(x0)

]−1
Hmk

(x0, t).

where do we find the values α1(x0, t) = y∗. Then condition (16) takes the form

− ∂

∂x
α1(x, t)eτ1+

+


∑

1 ≤ |m| ≤ Ny,
m2 + 1 = m3

ye1+m(x, t)σ1 +
∑

1 ≤ |m| ≤ Ny,
m3 + 1 = m2

ye1+m(x, t)σ2

 e
τ1+

+Q1(x, t)eτ1 ≡ 0 ∀(x, t) ∈ [x0, X]× [0, T ], .

We obtain linear ordinary differential equations with respect to the function α1(x, t),
involved in the solution (14) of equation (10). Attaching to them the initial conditions
α1 (t0) = y∗ computed earlier, we find uniquely the function α1(x0, t) = y∗ and, therefore,
we construct solution (14) in the space in a unique way. The theorem 2 is proved.

Applying Theorems 1 and 2 to iterative problems (9k) (in this case, the right-hand
sides H(k)(x, t, τ) of these problems are embedded in the space U , i.e. H(k)(x, t, τ) we
replace with Ĥ(k)(x, t, τ) ∈ U), we find uniquely their solutions in space U and construct
series (7). Justasin [1], we prove the following statement.

Theorem 3. Suppose that conditions (i)-(ii), (iv) are satisfied for problem (2). Then,
when ε ∈ (0, ε0](ε0 > 0 is sufficiently small), problem (2) has a unique solution y(x, t, ε) ∈
C1 ([x0, X]× [0, T ]) , in this case, the estimate

||y(x, t, ε)− yεN (x, t)||C[x0,X]×[0,T ] ≤ cNεN+1,

holds true, where zεN (x, t) is the restriction (for τ = ψ(t)
ε ) of the N - partial sum of

series (7) (with coefficients yk(x, t, τ) ∈ U, satisfying the iteration problems (9k)), and the
constant cN > 0 does not depend on ε ∈ (0, ε0].
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