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Abstract. Most identities of Genocchi numbers and polynomials are related to the well-known
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1. Introduction

The Genocchi numbers and polynomials can be traced back to Angelo Genocchi (1817-
1889). Genocchi numbers have been extensively studied in many different contexts in
mathematics. For instance, Genocchi numbers have been studied by several authors in
the context of Apostol-type polynomials, Hermite-type polynomials, polylogarithm, and
their q-analogues [3, 6–8, 13, 20, 21, 23, 27, 29, 30]. Many studies and literature provide
relations of Genocchi numbers to Bernoulli and Euler numbers, especially Euler numbers.
Bernoulli, Euler and Genocchi numbers defined by exponential generating function (see
[1, 19, 22])

∞∑
n=0

Bn
tn

n!
=

t

et − 1
, |t| < 2π (1)

∞∑
n=0

En
tn

n!
=

2

et + 1
, |t| < π (2)

∗Corresponding author.
DOI: https://doi.org/10.29020/nybg.ejpam.v13i3.3676

Email addresses: rcorcino@yahoo.com (R. Corcino),
mark.laurente2012@gmail.com (M. Laurente), maryannritzel.vega@g.msuiit.edu.ph (MAR. Vega)

https://www.ejpam.com 444 c© 2020 EJPAM All rights reserved.



R. Corcino, M. Laurente, MAR. Vega / Eur. J. Pure Appl. Math, 13 (3) (2020), 444-458 445

∞∑
n=0

Gn
tn

n!
=

2t

et + 1
, |t| < π. (3)

The Bernoulli, Euler and Genocchi polynomials are defined via generating functions to
be, respectively,
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where, when x = 0, Bn(0) = Bn, En(0) = En and Gn(0) = Gn. (see [5, 19, 22, 24])

Araci [19] and Kim et al. [26] did some researches on the so-called Genocchi polyno-
mials of higher order arising from Genocchi basis, which were defined by(
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)k
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The main objective of their studies is to derive interesting identities on (7) using a new
method constructed by Kim et al. [11].

Moreover, Araci and He [7, 19, 30] introduced the Apostol-Genocchi polynomials as
an extension of the Genocchi polynomials, which were defined by

2t

λet + 1
ext =

∞∑
n=0

Gn(x, λ)
tn

n!
.

Based on this, Araci [23] introduced Apostol-Genocchi polynomials of higher order which
is also called the generalized Apostol-Genocchi polynomials of order k ∈ C,(
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|t| < | log(−λ)| when λ 6= 1;λ ∈ C.

In [15], Lim defined the degenerated Genocchi polynomials G
(k)
n (x, λ) of order k to be(
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Besides these generalizations, Araci [20], Duran et al. [29] and Agyuz et al. [6] also
introduced the q-analogue of the Genocchi polynomials as follows,
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where

[x]q =
1− qx

1− q
, [x]−q =

1− (−q)x

1 + q
.

This definition is constructed by p-adic fermionic q-integral on Zp with respect to µ−q. It
can also be defined by

∞∑
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In which when we take x = 0, it becomes Gn,q(0) := Gn,q, which we call it the nth
q-Genocchi number.

When it comes to Genocchi numbers, the most common thing that comes to our
mind is to determine the relationship between Genocchi numbers, Bernoulli numbers and
Euler numbers [22]. Indeed, most researches on Genocchi numbers concern the relations
between these three kinds of numbers [3, 4, 12, 22]. In other words, there are many
literatures that provide identities on these three kinds of numbers. Similarly, when it comes
to Genocchi polynomials, the most common thing is to establish relationship between
Genocchi polynomials, Bernoulli polynomials and Euler polynomials [2–4, 8, 12, 22, 30].

Another form of generalization of Bernoulli polynomials was introduced by Kaneko
[10]. This generalization was defined in terms of the following kth polylogarithm Lik(z):

Lik(z) =

∞∑
n=1

zn

nk
. (9)

where k ∈ Z and z ∈ C with |z| < 1 which can be extended to z ≥ 1 by the process
of analytic continuation. When z = 1, the kth polylogarithm gives the Riemann zeta
function. That is,

Lik(1) = ζ(k) =
∞∑
n=1

1
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.

Also, when k = 1, the 1st polylogarithm yields the natural logarithmic function as follows:

Li1(z) = − ln(1− z).

This special case of the polylogarithm motivates the construction of poly-Bernoulli num-
bers in the sense that

Li1(1− e−x) = x.

The poly-Bernoulli numbers B
(k)
n were defined by Kaneko [10] as
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Parallel to this, Kim et al. [27] defined poly-Genocchi polynomials as follows
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where G
(k)
n are called the poly-Genocchi numbers. Moreover, they defined a modified

poly-Genocchi polynomials, denoted by G
(k)
n,2(x), as follows
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Note that
G(1)
n := G

(1)
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Kim et al. [27] obtained several properties of these polynomials.

On the other hand, Kurt [13] defined two forms of generalized poly-Genocchi polyno-
mials with parameters a, b, and c, as follows
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which are motivated by the definitions in (11) and (13), respectively. Kurt [13] also derived
several properties parallel to those of poly-Genocchi polynomials by Kim et al. [27].

The followings are some relations between poly-Bernoulli and poly-Genocchi numbers
and polynomials; poly-Genocchi numbers, Euler number and Stirling numbers of the sec-
ond kind; and modified poly-Bernoulli and poly-Genocchi polynomials:
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Moreover, using the generating function of the poly-Genocchi numbers and Stirling
numbers of the second kind, we have
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Replacing n+ l with l, we get
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By comparing the coefficient of tn

n! , we obtain
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The multi poly-Bernoulli numbers was first introduced by Imatomi et al. [9] using the
concept of multiple polylogarithm also known as multiple zeta values, which is given by
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When r = 1, (22) yields
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,

which is exactly (9). The multi poly-Bernoulli numbers defined by Imatomi et al. [9] is
given by
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These numbers possess the following recurrence relation and explicit formula
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Parallel to the above generalization is the generalized multi poly-Bernoulli polynomials

which are denoted by B
(k1,k2,...,kr)
n (x; a, b, c). These polynomials have been introduced in

[18] by means of the above multiple poly-logarithm. More precisely, we have
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When r = 1, (23) boils down to the generalized poly-Bernoulli polynomials with three
parameters a, b, c. Moreover, when c = e, (23) reduces to the multi poly-Bernoulli poly-
nomials with two parameters a, b. These special cases have been discussed intensively in
[18]. On the other hand, the generalized multi poly-Euler polynomials were also defined
in [17] by means of multiple poly-logarithm.

This paper intends to investigate multi poly-Genocchi polynomials with parameters a,
b and c.

2. Multi Poly-Genocchi Polynomials with Parameters a, b and c

In this section, using the concept of multiple polylogarithm, we introduce the multi
poly-Genocchi polynomials with parameters a, b and c. Some properties of these polyno-
mials are established parallel to those of the poly-Genocchi polynomials with parameters
a, b and c.

Definition 2.1. The multi poly-Genocchi polynomials with parameters a, b and c are
defined by
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When c = e, equation (24) reduces to
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The following theorem is given without proof since it follows from [16, Theorems 2.1-
2.3].

Theorem 2.2. The generalized poly-Genocchi polynomials satisfy the relations
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Equation (29) contains a differential identity that can be used to classify generalized
poly-Genocchi polynomials as Appell polynomials [14, 25, 28]. When c = e1/r, equation
(29) reduces to

d
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G(k1,k2,...,kr)n+1 (x; a, b, e1/r) = (n+ 1)G(k1,k2,...,kr)n (x; a, b, e1/r), (30)
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which is one of the property for the polynomial to be classified as Appell polynomial.

Hence, the generalized poly-Genocchi polynomials G(k)n (x; a, b) must possess the following
properties

G(k1,k2,...,kr)n (x; a, b, e1/r) =
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i=0
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n
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for some scalar ci 6= 0. It is then necessary to find the sequence {cn}. However, using

equation (28), ci = G(k1,k2,...,kr)i (a, b), which implies the following corollary.

Corollary 2.3. The generalized poly-Genocchi polynomials satisfy the following formula
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The following theorem contains the addition formula for G(k1,k2,...,kr)n (x; a, b, c).

Theorem 2.4. The generalized poly-Genocchi polynomials satisfy the following addition
formula

G(k1,k2,...,kr)n (x+ y; a, b, c) =
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.
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=
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When y = 1, Theorem 2.4 yields the following recurrence relation
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n

m
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The following corollary immediately follows from equation (36) and the characteriza-
tion of Appell polynomials [14, 25, 28].

Corollary 2.5. The generalized poly-Genocchi polynomials satisfy the following addition
formula
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Taking x = 0 in formula (32) and using the fact G(k)n (0; a, b, c) = G(k)n (a, b), Theorem
2.4 gives formula (28).

The next theorem contains an expression of generalized poly-Genocchi polynomials in
terms of multiple parameters poly-Bernoulli polynomials.

Theorem 2.6. The of generalized poly-Genocchi polynomials satisfy the relation
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=
r∑

m=0
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m
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Using the definition of poly-Bernoulli polynomials, we have
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Comparing the coefficients of tn

n! yields (33).

The next two theorems are given without proof since it follows from [16, Theorem 3.4
and Theorem 2.6].

Theorem 2.7. The generalized multi-poly-Genocchi polynomials have the following ex-
plicit formula
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where s = c1 + 2c2 + · · ·

Theorem 2.8. The generalized poly-Genocchi polynomials G(k1,k2,...,kr)n (x; a, b) satisfy the
following explicit formulas

G(k1,k2,...,kr)n (x; a, b, c) =

∞∑
m=0

n∑
l=m

{
l
m

}(
n

l

)
(ln c)lG(k1,k2,...,kr)n−l (−m ln c; a, b)(x)(m) (35)

G(k1,k2,...,kr)n (x; a, b, c) =
∞∑
m=0

n∑
l=m

{
l
m

}(
n

l

)
(ln c)lG(k1,k2,...,kr)n−l (a, b)(x)m (36)

G(k1,k2,...,kr)n (x; a, b, c) =
n∑
l=0

n−l∑
m=0

(
n

l

){
l + s

s

}(n−l
m

)(
l+s
s

)G(k1,k2,...,kr)n−l−m (a, b)B(s)
m (x ln c) (37)

G(k1,k2,...,kr)n (x; a, b, c) =
∞∑
m=0

(
n
m

)
(1− λ)s

s∑
j=0

(
s

j

)
(−λ)s−jG(k1,k2,...,kr)n−m (j; a, b)H(s)

m (x;λ), (38)

where (x)(n) = x(x+ 1) · · · (x+ n− 1), (x)n = x(x− 1) · · · (x− n+ 1),(
t

et − 1

)s
ext =

∞∑
n=0

B(s)
n (x)

tn

n!
and

(
1− λ
et − λ

)s
ext =

∞∑
n=0

H(s)
n (x;λ)

tn

n!
.
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3. Symmetrized Generalization

In this section, we will consider the symmetrized generalization of multi poly-Genocchi
polynomials with parameters a, b and c.

Definition 3.1. For m,n ≥ 0, we define the symmetrized generalization of multi poly-
Genocchi polynomials with parameters a, b and c as follows

S(m)
n (x, y; a, b, c) =

∑
k1+k2+...+kr=m

(
m

k1, k2, . . . kr

)
G(−k1,−k2,...−kr−1)
n (x; a, b, c)

(ln a+ ln b)n

(
(r − 1)y ln c+ ln a

ln a+ ln b

)kr
.

(39)

The following theorem contains the double generating function for S(m)
n (x, y; a, b, c).

Theorem 3.2. For n,m ≥ 0, we have

∞∑
n=0

∞∑
m=0

S(m)
n (x, y; a, b, c)

tn

n!

um

m!
=
e

(
(r−1)y ln c+ln a

ln a+ln b

)
u
e
(r−1)

(
(r−1)x ln c+ln a

ln a+ln b

)
t
e(

r
2)u+2(r−1)t(1− e−2t)r−1

(1 + et)r−1
∏r−1
i=1 (e2t + eiu − e2t+iu)

.

(40)
Proof.

∞∑
n=0

∞∑
m=0

S(m)
n (x, y; a, b, c)

tn

n!

um

m!

=
∞∑
n=0

∞∑
m=0

∑
k1+k2+...+kr=m

G(−k1,−k2,...−kr−1)
n (x; a, b, c)

(ln a+ ln b)n

(
(r − 1)y ln c+ ln a

ln a+ ln b

)kr tn
n!
×

× um

k1!k2! . . . kr!

=

∞∑
n=0

∑
k1+k2+...+kr≥0

G(−k1,−k2,...−kr−1)
n (x; a, b, c)

(ln a+ ln b)n

(
(r − 1)y ln c+ ln a

ln a+ ln b

)kr tn
n!
×

×u
k1+k2+...+kr

k1!k2! . . . kr!

=
∞∑
n=0

∑
k1+k2+...+kr−1≥0

G(−k1,−k2,...−kr−1)
n (x; a, b, c)

(ln a+ ln b)n

∑
kr≥0

(
(r − 1)y ln c+ ln a

ln a+ ln b

)kr ukr
kr!
×

× t
n

n!

uk1+k2+...+kr−1

k1!k2! . . . kr−1!

= e

(
(r−1)y ln c+ln a

ln a+ln b

)
u
∞∑
n=0

∑
k1+k2+...+kr−1≥0

G(−k1,−k2,...−kr−1)
n (x; a, b, c)

(ln a+ ln b)n
tn

n!

uk1+k2+...+kr−1

k1!k2! . . . kr−1!
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Using identity (26), we obtain

∞∑
n=0

∞∑
m=0

S(m)
n (x, y; a, b, c)

tn

n!

um

m!

= e

(
(r−1)y ln c+ln a

ln a+ln b

)
u

∑
k1+k2+...+kr−1≥0

∞∑
n=0

G(−k1,−k2,...−kr−1)
n

(
(r − 1)x ln c+ ln a

ln a+ ln b

)
tn

n!
×

×u
k1+k2+...+kr−1

k1!k2! . . . kr−1!

= e

(
(r−1)y ln c+ln a

ln a+ln b

)
u
e
(r−1)

(
(r−1)x ln c+ln a

ln a+ln b

)
t

∑
k1+k2+...+kr−1≥0

Li(−k1,−k2,...,−kr−1)(1− e−2t)
(1 + et)r−1

×

×u
k1+k2+...+kr−1

k1!k2! . . . kr−1!

=
e

(
(r−1)y ln c+ln a

ln a+ln b

)
u
e
(r−1)

(
(r−1)x ln c+ln a

ln a+ln b

)
t

(1 + et)r−1

∑
0<m1<m2<...<mr−1

(1− e−2t)mr−1L(u,m1, . . . ,mr−1)

where

L(u,m1, . . . ,mr−1) =
∑

k1+...+kr−1≥0

(um1)
k1 . . . (umr−1)

kr−1

k1! . . . kr−1!

=
∑
m̂≥0

1

m̂!

∑
k1+k2+...+kr−1=m̂

(
m̂

k1, . . . kr−1

)
(um1)

k1 . . . (umr−1)
kr−1

=
∑
m̂≥0

(um1 + . . .+ umr−1)
m̂

m̂!

= eu(m1+...+mr−1).

Thus,

∞∑
n=0

∞∑
m=0

S(m)
n (x, y; a, b, c)

tn

n!

um

m!

=
e

(
(r−1)y ln c+ln a

ln a+ln b

)
u
e
(r−1)

(
(r−1)x ln c+ln a

ln a+ln b

)
t

(1 + et)r−1

∑
0<m1<m2<...<mr−1

(1− e−2t)mr−1eu(m1+...+mr−1)

=
e

(
(r−1)y ln c+ln a

ln a+ln b

)
u
e
(r−1)

(
(r−1)x ln c+ln a

ln a+ln b

)
t

(1 + et)r−1
×
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× eu(1− e−2t)
1− eu(1− e−2t)

e2u(1− e−2t)
1− e2u(1− e−2t)

. . .
e(r−1)u(1− e−2t)

1− e(r−1)u(1− e−2t)

=
e

(
(r−1)y ln c+ln a

ln a+ln b

)
u
e
(r−1)

(
(r−1)x ln c+ln a

ln a+ln b

)
t
e(

r
2)u(1− e−2t)r−1

(1 + et)r−1
∏r−1
i=1 (1− eiu(1− e−2t))

=
e

(
(r−1)y ln c+ln a

ln a+ln b

)
u
e
(r−1)

(
(r−1)x ln c+ln a

ln a+ln b

)
t
e(

r
2)u+2(r−1)t(1− e−2t)r−1

(1 + et)r−1
∏r−1
i=1 (e2t + eiu − e2t+iu)

.

4. Conclusion

This paper introduces certain generalization of poly-Genocchi polynomials, called multi
poly-Genocchi polynomials, using the concept of multiple polylogarithm and explore some
interesting properties and identities which are analogous to those of the multi-poly-Euler
polynomials and multi-poly-Bernoulli polynomials. One of these is the differential identity
that helps classify the multi poly-Genocchi polynomials as an Appell polynomial, which
implies some interesting relations. Moreover, the multi poly-Genocchi polynomials are
expressed in terms of multiple parameters poly-Bernoulli polynomials. This paper is con-
cluded by introducing the symmetrized generalization of multi poly-Genocchi polynomials
and by deriving its double generating function.
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