EUROPEAN JOURNAL OF PURE AND APPLIED MATHEMATICS

Vol. 13, No. 2, 2020, 346-350 ISSN 1307-5543 – www.ejpam.com Published by New York Business Global

On regular hypersemigroups

Niovi Kehayopulu

Abstract. It is shown that an hypersemigroup (S, \circ) is regular if and only if the set of all quasiideals of S with the operation "*" is a von Neumann regular semigroup. It is both regular and intra-regular if and only if the set of all quasi-ideals of S with the operation "*" is a band.

2020 Mathematics Subject Classifications: 20M99, 06F05

 ${\bf Key}$ Words and Phrases: Hypersemigroup, regular, intra-regular, right (left) ideal, quasi-ideal, band

It has been shown in Semigroup Forum [2] that an *le*-semigroup (S, \cdot, \leq) is regular if and only if the set Q of all quasi-ideal elements of S with the multiplication "·" of S is a von Neumann regular semigroup. Moreover, it has been proved that if S is both regular and intra-regular, then (Q, \cdot) is a band. "Conversely", if the quasi-ideal elements of S are idempotent, then S is both regular and intra-regular. As a consequence, an *le*-semigroup S is both regular and intra-regular if and only if (Q, \cdot) is a band.

As an example to the paper in Turkish J. Math. [7], we examine the above results on lattice ordered semigroups in case of an hypersemigroup. An hypersemigroup (S, \circ) is called *regular* if for every $a \in S$ there exists $x \in S$ such that $a \in (a \circ x) * \{a\}$; that is, for every $a \in S$ there exists $y \in a \circ x$ such that $a \in y \circ a$. It is called *intra-regular* if for every $a \in S$ there exist $x, y \in S$ such that $a \in (x \circ a) * (a \circ y)$; that is, for every $a \in S$ there exist $x, y \in S, u \in x \circ a$ and $v \in a \circ y$ such that $a \in u \circ v$. A subset A of an hypersemigroup (S, \circ) is called *idempotent* if A * A = A. For notations and definitions not given in the present paper we refer to [7].

Lemma 1 [3] Let (S, \circ) be an hypersemigroup. If S is regular, then the right ideals and the left ideals of S are idempotent and for every right ideal A and every left ideal B of S, the product A * B is a quasi-ideal of S.

Lemma 2 [4,5] An hypersemigroup (S, \circ) is regular if and only if, for any nonempty subset A of S, we have $A \subseteq A * S * A$.

Lemma 3 Let (S, \circ) be an hypersemigroup, A a right ideal and B a left ideal of S. Then the intersection $A \cap B$ is a quasi-ideal of S.

DOI: https://doi.org/10.29020/nybg.ejpam.v13i2.3703

Email address: nkehayop@math.uoa.gr (N. Kehayopulu)

http://www.ejpam.com

© 2020 EJPAM All rights reserved.

N. Kehayopulu / Eur. J. Pure Appl. Math, 13 (2) (2020), 346-350

Proof First of all, since A is a right ideal and B is a left ideal of S, the intersection $A \cap B$ is nonempty. Indeed: Take an element $a \in A$ and an element $b \in B$ $(A, B \neq \emptyset)$; then $a \circ b \subseteq A * B \subseteq A * S \subseteq A$ and $a \circ b \subseteq A * B \subseteq S * B \subseteq B$, so $a \circ b \subseteq A \cap B$. Since $a \circ b$ is a nonempty set, the set $A \cap B$ is nonempty as well (see also [5]). We also have

$$((A \cap B) * S) \cap (S * (A \cap B)) \subseteq (A * S) \cap (S * B) \subseteq A \cap B,$$

thus $A \cap B$ is a quasi-ideal of S.

Lemma 4 [4,5] An hypersemigroup (S, \circ) is regular if and only if, for every right ideal A and every left ideal B of S, we have $A \cap B \subseteq A * B$ (equivalently, $A \cap B = A * B$).

Lemma 5 If (S, \circ) is a regular hypersemigroup, then S * S = S.

Proof Since S is regular, for every nonempty subset A of S, by Lemma 2, we have $A \subseteq A * S * A$. Thus we have $S \subseteq (S * S) * S \subseteq S * S \subseteq S$ and so S * S = S.

A semigroup (S, \cdot) is called *von Neumann regular* (or just *regular*) if for each $a \in S$ there exists $x \in S$ such that a = axa [1,8].

As always, $\mathcal{P}^*(S)$ denotes the set of all nonempty subsets of S.

Theorem 6 An hypersemigroup (S, \circ) is regular if and only if the set Q of all quasi-ideals of S with the multiplication "*" of $\mathcal{P}^*(S)$ is a von Neumann regular semigroup.

Proof \implies . First of all, for every quasi-ideal Q of S, we have

$$Q = (Q * S) \cap (S * Q) \tag{1}$$

In fact: Since S is regular, R(Q) is a right ideal and L(Q) is a left ideal of (S, \circ) , by Lemma 1, they are idempotent and we have

$$\begin{array}{rcl} Q & \subseteq & Q \cup (Q \ast S) = R(Q) = R(Q) \ast R(Q) = \left(Q \cup (Q \ast S)\right) \ast \left(Q \cup (Q \ast S)\right) \\ & = & Q \ast Q \cup Q \ast S \ast Q \cup Q \ast Q \ast S \cup Q \ast S \ast Q \ast S \subseteq Q \ast S \end{array}$$

and

$$\begin{array}{rcl} Q & \subseteq & Q \cup (S \ast Q) = L(Q) = L(Q) \ast L(Q) = \left(Q \cup (S \ast Q)\right) \ast \left(Q \cup (S \ast Q)\right) \\ & = & Q \ast Q \cup S \ast Q \ast Q \cup Q \ast S \ast Q \cup S \ast Q \ast S \ast Q \subseteq S \ast Q. \end{array}$$

Thus we have $Q \subseteq (Q * S) \cap (S * Q) \subseteq Q$, then $Q = (Q * S) \cap (S * Q)$ and property (1) is satisfied.

In addition, since S is regular, A is a right ideal and B is a left ideal of S, by Lemmas 3 and 4, A * B is a quasi-ideal of S. So, by (1), we have

$$A * B = (A * B * S) \cap (S * A * B)$$

$$\tag{2}$$

We are ready now to prove that $(\mathcal{Q}, *)$ is a von Neumann regular semigroup. In this respect, we prove the following:

N. Kehayopulu / Eur. J. Pure Appl. Math, 13 (2) (2020), 346-350

 $(\mathcal{Q}, *)$ is semigroup. Indeed: First of all, in an hypersemigroup, the operation "*" is associative (see [5], also [6; p. 22]). Let now Q_1, Q_2 be quasi-ideals of S. Then $Q_1 * Q_2$ is a quasi-ideal of S. Indeed: Since S is regular, $Q_1 * Q_2 * S$ is a right ideal and $S * Q_1 * Q_2$ is a left ideal of S, by Lemma 1, they are idempotent and we have

$$\begin{pmatrix} (Q_1 * Q_2) * S \end{pmatrix} \cap \begin{pmatrix} S * (Q_1 * Q_2) \end{pmatrix} \\ = & (Q_1 * Q_2 * S) * (Q_1 * Q_2 * S) \cap (S * Q_1 * Q_2) * (S * Q_1 * Q_2) \\ = & (Q_1 * Q_2 * S * S) * (Q_1 * Q_2 * S) \cap (S * Q_1 * Q_2) * (S * S * Q_1 * Q_2) \\ & (\text{since } S * S = S) \\ = & (Q_1 * Q_2 * S) * (S * Q_1 * Q_2) * S \cap S * (Q_1 * Q_2 * S) * (S * Q_1 * Q_2) \\ = & (Q_1 * Q_2 * S) * (S * Q_1 * Q_2) (\text{by } (2)) \\ \subseteq & Q_1 * (Q_2 * S * Q_2) \\ \subseteq & Q_1 * (Q_2 * S \cap S * Q_2) \\ \subseteq & Q_1 * Q_2 (\text{since } Q_2 \text{ is a quasi-ideal of } S). \end{cases}$$

Hence $Q_1 * Q_2$ is a quasi-ideal of S. Thus $(\mathcal{Q}, *)$ is semigroup.

The semigroup $(\mathcal{Q}, *)$ is a von Neumann regular semigroup. In fact: Let $Q \in \mathcal{Q}$. Since (S, \circ) is regular, by Lemma 2, we have

$$Q \subseteq Q * S * Q \subseteq (Q * S) \cap (S * Q) \subseteq Q.$$

Then Q = Q * S * Q, where $S \in \mathcal{Q}$ and so $(\mathcal{Q}, *)$ is a von Neumann regular semigroup.

 \Leftarrow . We remark first that for each quasi-ideal Q of S, we have

$$Q = Q * S * Q \tag{3}$$

In fact: Let Q be a quasi-ideal of S. Since (Q, *) is von Neumann regular semigroup, there exists $X \in Q$ such that Q = Q * X * Q. Then

$$Q = Q * X * Q \subseteq Q * S * Q \subseteq (Q * S) \cap (S * Q) \subseteq Q.$$

Thus we have Q = Q * S * Q and property (3) holds.

We are ready now to prove that (S, \circ) is regular. For this, let A be a nonempty subset of S. By Lemma 2, it is enough to prove that $A \subseteq A * S * A$.

Since R(A) is a right ideal and L(A) is a left ideal of S, by Lemma 3, $R(A) \cap L(A)$ is a quasi-ideal of S. Then, by (3), we have

$$A \subseteq R(A) \cap L(A) = \left(R(A) \cap L(A)\right) * S * \left(R(A) \cap L(A)\right)$$
$$\subseteq \left(R(A) * S\right) * L(A) \subseteq R(A) * L(A)$$
$$= \left(A \cup (A * S)\right) * \left(A \cup (S * A)\right)$$

N. Kehayopulu / Eur. J. Pure Appl. Math, 13 (2) (2020), 346-350

$$= A * A \cup A * S * A \cup A * S * S * A$$
$$= A * A \cup A * S * A,$$

then $A * A \subseteq A * A * A \cup A * S * A * A \subseteq A * S * A$, thus we obtain $A \subseteq A * S * A$ and so the hypersemigroup (S, \circ) is regular.

Lemma 7 [4,5] An hypersemigroup (S, \circ) is intra-regular if and only if, for every right ideal A and every left ideal B of S, we have $A \cap B \subseteq B * A$.

An element a of a semigroup S is called *idempotent* if $a^2 = a$. An *idempotent semigroup* or shorter a *band* is a semigroup in which all elements are idempotent.

Theorem 8 Let (S, \circ) is an hypersemigroup. If (S, \circ) is both regular and intra-regular, then the set Q of all quasi-ideals of S with the operation "*" is a band. "Conversely", if the quasi-ideals of (S, \circ) are idempotent, then S is both regular and intra-regular.

Proof \implies . Let (S, \circ) be both regular and intra-regular. Since (S, \circ) is regular, by Theorem 6, $(\mathcal{Q}, *)$ is a semigroup. Moreover, the elements of the semigroup \mathcal{Q} are idempotent. In fact: Let Q be a quasi-ideal of S. Since S is regular, we have Q = Q * S * Q (cf. the proof of Theorem 6). Hence we have

$$Q = Q * S * Q = (Q * S * Q) * S * (Q * S * Q)$$

= (Q * S * Q) * S * S * (Q * S * Q) (by Lemma 5)
= (Q * S) * (Q * S) * (S * Q) * (S * Q).

Since S is intra-regular and Q * S is a right ideal and S * Q is a left ideal of S, by Lemma 7, we have $(Q * S) \cap (S * Q) \subseteq (S * Q) * (Q * S)$. Thus we have

$$Q = (Q * S) * (Q * S) * (S * Q) * (S * Q)$$

$$\subseteq (Q * S) * (S * Q) * (Q * S) * (S * Q)$$

$$= (Q * S * S * Q) * (Q * S * S * Q)$$

$$= (Q * S * Q) * (Q * S * Q) (by Lemma 5)$$

$$= Q * Q \subseteq (Q * S) \cap (S * Q) \subseteq Q,$$

and Q * Q = Q. Hence (Q, *) is an idempotent semigroup and so is a band.

 \Leftarrow . Let A be a right ideal and B a left ideal of S. By Lemma 3, $A \cap B$ is a quasi-ideal of S. By hypothesis, we have $A \cap B = (A \cap B) * (A \cap B) \subseteq A * B$, B * A. Since $A \cap B \subseteq A * B$, by Lemma 4, S is regular. Since $A \cap B \subseteq B * A$, by Lemma 7, S is intra-regular. \Box

Corollary 9 An hypersemigroup (S, \circ) is both regular and intra-regular if and only if the set Q of all quasi-ideals of S with the operation "*" is a band.

Proof If $(\mathcal{Q}, *)$ is a band, that is an idempotent semigroup, then for every $Q \in \mathcal{Q}$, we have Q * Q = Q, that means that the quasi-ideals of (S, \circ) are idempotent so, by Theorem 8, S is both regular and intra-regular.

References

- A.H. Clifford, G.B. Preston. The Algebraic Theory of Semigroups. Vol. I. Mathematical Surveys, No. 7 American Mathematical Society, Providence, R.I. 1961.
- [2] N. Kehayopulu. On regular le-semigroups. Semigroup Forum 49(2):267–269, 1994.
- [3] N. Kehayopulu. On hypersemigroups. Pure Mathematics and Applications (PU.M.A.) 25(2):151–156, 2015.
- [4] N.Kehayopulu. Hypersemigroups and fuzzy hypersemigroups. European Journal of Pure and Applied Mathematics 10(5):929–945, 2017.
- [5] N. Kehayopulu. How we pass from semigroups to hypersemigroups. Lobachevskii Journal of Mathematics 39(1):121–128, 2018.
- [6] N. Kehayopulu. From ordered semigroups to ordered hypersemigroups. Turkish Journal of Mathematics 43(1):21–35, 2019.
- [7] N. Kehayopulu. Lattice ordered semigroups and hypersemigroups. Turkish Journal of Mathematics 43(5):2592–2601, 2019.
- [8] M. Petrich. Introduction to Semigroups. Merrill Research and Lecture Series. Charles E. Merrill Publishing Co., Columbus, Ohio 1973.