EUROPEAN JOURNAL OF PURE AND APPLIED MATHEMATICS
Vol. 13, No. 3, 2020, 483-497
ISSN 1307-5543 - www.ejpam.com
Published by New York Business Global

Hyper Homomorphism and Hyper Product of Hyper UP-algebras

Rohaima M. Amairanto ${ }^{1, *}$, Rowena T. Isla ${ }^{2}$
${ }^{1}$ Department of Mathematics, Mindanao State University-University Training Center, 9700 Marawi City, Philippines
${ }^{2}$ Department of Mathematics and Statistics, College of Science and Mathematics, Mindanao State University-Iligan Institute of Technology, 9200 Iligan City, Philippines

Abstract

In this paper, we investigate the concept of regular congruence relation on hyper UPalgebras and establish some homomorphism theorems on such algebras. We also examine the notion of hyper product of hyper UP-algebras.

2020 Mathematics Subject Classifications: 08A30, 08A99
Key Words and Phrases: Hyper UP-algebra, Regular Congruence Relation, Hyper Homomorphisms of Hyper UP-algebras, Hyper Product of Hyper UP-algebras

1. Introduction

In 1934, F. Marty [7] first introduced the concept of hyperstructure theory at the 8th Congress of Scandinavian Mathematics. This led to the formulation of hyper BCKalgebra by Y. Jun et al. [11], hyper BCI-algebra by X. Long [6], and many other classes of algebras. R. Borzooei and H. Harizavi [1] defined the regular congruence relation on a hyper BCK-algebra, constructed a quotient hyper BCK-algebra, established some homomorphism theorems, and got some related results involving the hyper product of hyper BCK-algebras. G. Flores and G. Petalcorin [2] introduced regular congruence relation on a hyper BCI-algebra and presented some isomorphism theorems on hyper BCI-algebras.

In 2017, A. Iampan [4] defined a new algebraic structure called a UP-algebra and showed that the notion of UP-algebras is a generalization of KU-algebras that was introduced by C. Prabpayak and U. Leerawat [8]. Recently, D. Gomisong [3] applied hyperstuctures to UP-algebras in her graduate thesis following the structure of hyper KU-algebras by S. Mostafa et al. [5]. D. Romano gave an equivalent definition of hyper UP-algebra in [10] and proved that every hyper KU-algebra is a hyper UP-algebra. He also introduced the quotient of a hyper UP-algebra in [9]. In this paper, we investigate the concept of regular

[^0]congruence relation on a hyper UP-algebra and present some homomorphism theorems on hyper UP-algebras. We also examine the concept of hyper product of hyper UP-algebras and extend it to the hyper product of an arbitrary family of hyper UP-algebras.

2. Preliminaries

Let H be a nonempty set and $\mathcal{P}^{*}(H)$ be the set of all nonempty subsets of H. A hyperoperation on H is a mapping from $H \times H$ into $\mathcal{P}^{*}(H)$.

Definition 1. [3] A hyper UP-algebra is a set H with constant 0 and hyperoperation \circledast satisfying the following axioms: for all $x, y, z \in H$,
(HUP1) $[(x \circledast y) \circledast(x \circledast z)] \ll y \circledast z$,
$($ HUP2) $0 \circledast x=\{x\}$,
$(\mathrm{HUP} 3) x \circledast 0=\{0\}$,
(HUP4) $x \ll y$ and $y \ll x$ imply $x=y$,
where $x \ll y$ is defined by $0 \in y \circledast x$ and for every $A, B \subseteq H, A \ll B$ is defined by: for all $a \in A$, there exists $b \in B$ such that $a \ll b$. In such case, we call "<<" the hyperorder in H.

A hyper UP-algebra H with constant 0 and hyperoperation \circledast is denoted by $(H ; \circledast, 0)$. By (HUP2) or (HUP3), $x \circledast y \neq \varnothing$ for all $x, y \in H$.

Note that in [10], $x \ll y$ is defined by Romano as $0 \in x \circledast y$. Thus, (HUP1) in [3] and [10] are equivalent; that is, $0 \in(y \circledast z) \circledast[(x \circledast y) \circledast(x \circledast z)]$. Moreover, (HUP2) to (HUP4) are identical, with " \circ " denoted by " \circledast ".

Example 1. [3] Let $H=\{0, a, b, c\}$ be a set. Define the hyperoperation \circledast by the following Cayley table :

\circledast	0	a	b	c
0	$\{0\}$	$\{\mathrm{a}\}$	$\{\mathrm{b}\}$	$\{\mathrm{c}\}$
a	$\{0\}$	$\{0, \mathrm{a}\}$	$\{0, \mathrm{~b}\}$	$\{\mathrm{c}\}$
b	$\{0\}$	$\{\mathrm{a}\}$	$\{0, \mathrm{~b}\}$	$\{\mathrm{c}\}$
c	$\{0\}$	$\{0, \mathrm{a}\}$	$\{0, \mathrm{~b}\}$	$\{0, \mathrm{a}, \mathrm{c}\}$

Then, $(H ; \circledast, 0)$ is a hyper UP-algebra.
Proposition 1. [3, 10] Let H be a hyper UP-algebra. Then the following hold for all $x, y, z \in H$ and for every nonempty subsets $A, B, C \subseteq H$:
(i) $0 \circledast 0=\{0\}$
(iii) $z \ll z$
(ii) $0 \circledast A=A$
(iv) $A \subseteq B$ implies $A \ll B$
(v) $x \circledast z \ll z$
$($ viii) $A \circledast(B \circledast C)=B \circledast(A \circledast C)$
(vi) $A \circledast 0=\{0\}$
(ix) $0 \ll x$
(vii) $A \ll\{0\}$ implies $A=\{0\}$
(x) $x \in(0 \circledast y)$ implies $x \ll y$

Definition 2. [3] Let $(H ; \circledast, 0)$ and $\left(H^{\prime} ; \circledast^{\prime}, 0^{\prime}\right)$ be hyper UP-algebras. A mapping $f: H \rightarrow K$ is called a hyper homomorphism if
(HH1) $f(0)=0^{\prime}$,
(HH2) $f(x \circledast y)=f(x) \circledast^{\prime} f(y)$ for all $x, y \in H$.
The following definitions are analogous to the ones given by Borzooei and Harizavi [1] for regular congruence realtions on hyper BCK-algebras.

Definition 3. Let θ be an equivalence relation on a hyper UP-algebra H and $A, B \subseteq H$. Then
(i) $A \theta B$ if there exists $a \in A$ and $b \in B$ such that $a \theta b$;
(ii) $A \bar{\theta} B$ if for all $a \in A$, there exists $b \in B$ such that $a \theta b$ and for all $b \in B$, there exists $a \in A$ such that $a \theta b$;
(iii) θ is called a congruence relation on H if whenever $x \theta y$ and $x^{\prime} \theta y^{\prime}$, then $\left(x \circledast x^{\prime}\right) \bar{\theta}\left(y \circledast y^{\prime}\right)$, for all $x, y, x^{\prime}, y^{\prime} \in H$;
(iv) θ is called a regular congruence relation on H if θ is a congruence relation on H and whenever $(x \circledast y) \theta\{0\}$ and $(y \circledast x) \theta\{0\}$, then $x \theta y$ for all $x, y \in H$.

The set $[x]_{\theta}=\{y \in H: y \theta x\}$ is called the congruence class determined by x.

3. Regular Congruence Relations and Hyper Homomorphisms on Hyper UP-algebras

All throughout, $H, H^{\prime}, H^{\prime \prime}$ are hyper UP-algebras.
Proposition 2. If $f: H \longrightarrow H^{\prime}$ is a hyper homomorphism, then for all nonempty subsets $A, B \subseteq H$ we have $f(A \circledast B)=f(A) \circledast^{\prime} f(B)$.

Proof. Let $f: H \longrightarrow H^{\prime}$ be a hyper homomorphism and $\varnothing \neq A, B \subseteq H$. Let $x \in$ $f(A \circledast B)=f\left(\bigcup_{a \in A, b \in B} a \circledast b\right)$. Then there exist $a \in A$ and $b \in B$ such that $x \in f(a \circledast b)$. Since f is a hyper homomorphism,

$$
x \in f(a) \circledast^{\prime} f(b) \subseteq \bigcup_{f(a) \in f(A), f(b) \in f(B)} f(a) \circledast^{\prime} f(b)=f(A) \circledast^{\prime} f(B) .
$$

Thus, $f(A \circledast B) \subseteq f(A) \circledast^{\prime} f(B)$. Now, let

$$
y \in f(A) \circledast^{\prime} f(B)=\bigcup_{f(a) \in f(A), f(b) \in f(B)} f(a) \circledast^{\prime} f(b) .
$$

Then there exist $f(a) \in f(A)$ and $f(b) \in f(B)$ such that $y \in f(a) \circledast^{\prime} f(b)$. Since f is a hyper homomorphism,

$$
y \in f(a \circledast b) \in f\left(\bigcup_{a \in A, b \in B} a \circledast b\right)=f(A \circledast B) .
$$

Thus, $f(A) \circledast^{\prime} f(B) \subseteq f(A \circledast B)$. Therefore, $f(A \circledast B)=f(A) \circledast^{\prime} f(B)$.
Definition 4. Let $f: H \longrightarrow H^{\prime}$ be a hyper homomorphism. We say that f is a hyper monomorphism if f is one-to-one, and f is a hyper epimorphism if f is onto; f is a hyper isomorphism, denoted by $\cong_{\mathcal{H}}$, if f is both one-to-one and onto.

Lemma 1. Suppose $f: H \longrightarrow H^{\prime}$ and $g: H^{\prime} \longrightarrow H^{\prime \prime}$ are both hyper homomorphisms (epimorphisms) of hyper UP-algebras. Then $g \circ f$ is a hyper homomorphism (epimorphism) of hyper UP-algebras.

The following result establishes the transitivity of the relation $\bar{\theta}$ on H.
Lemma 2. Let θ be an equivalence relation on H and $A, B \subseteq H$. If $A \bar{\theta} B$ and $B \bar{\theta} C$, then $A \bar{\theta} C$.

Proof. Suppose that $A \bar{\theta} B$ and $B \bar{\theta} C$. Since $A \bar{\theta} B$, by Definition 3(ii), for each $a \in A$ (respectively $b \in B$), there exists $b \in B$ (respectively $a \in A$) such that $a \theta b$. Similarly, since $B \bar{\theta} C$, for all $b \in B$ (respectively $c \in C$), there exists $c \in C$ (respectively $b \in B$) such that $b \theta c$. Since by assumption θ is an equivalence relation for each $a \in A$ (respectively $c \in C)$, there exists $c \in C$ (respectively $a \in A$) such that $a \theta c$. Therefore, $A \bar{\theta} C$.

Lemma 3. Let θ be an equivalence relation on H. Then the following are equivalent:
(i) θ is a congruence relation on H;
(ii) if $x \theta y$, then $(x \circledast a) \bar{\theta}(y \circledast a)$ and $(a \circledast x) \bar{\theta}(a \circledast y)$ for all $a, x, y \in H$.

Proof. $(i) \Longrightarrow(i i)$ Let θ be a congruence relation on H and $a, x, y \in H$. Suppose $x \theta y$. Since θ is a congruence relation on H and $a \theta a,(x \circledast a) \bar{\theta}(y \circledast a)$ and $(a \circledast x) \bar{\theta}(a \circledast y)$, by Definition 3(iii).
(ii) \Longrightarrow (i) Assume $x \theta y$. Let $x, y, x^{\prime}, y^{\prime} \in H$. Suppose that $x \theta y$ and $x^{\prime} \theta y^{\prime}$. By $(i i),\left(x \circledast x^{\prime}\right) \bar{\theta}\left(y \circledast x^{\prime}\right)$ and $\left(y \circledast x^{\prime}\right) \bar{\theta}\left(y \circledast y^{\prime}\right)$, so that by Lemma $2,\left(x \circledast x^{\prime}\right) \bar{\theta}\left(y \circledast y^{\prime}\right)$. By Definition $3(i i i), \theta$ is a congruence relation on H.

Theorem 1. Suppose that θ and θ^{\prime} are regular congruence relations on H with $[0]_{\theta}=[0]_{\theta^{\prime}}$. Then $\theta=\theta^{\prime}$.

Proof. Let θ and θ^{\prime} be regular conguence relations on H with $[0]_{\theta}=[0]_{\theta^{\prime}}$. Since θ and θ^{\prime} are both equivalence relations on H, it suffices to show that $x \theta y$ if and only if $x \theta^{\prime} y$ for all $x, y \in H$. Let $x \theta y$. Since θ is a congruence relation on H, by Lemma $3,(x \circledast x) \bar{\theta}(x \circledast y)$. Note that $0 \in x \circledast x$ by Proposition 1(iii). Thus by Definition 3(ii), there exists an element $s \in x \circledast y$ such that $0 \theta s$. It follows that $s \in[0]_{\theta}=[0]_{\theta^{\prime}}$. Hence, $(x \circledast y) \theta^{\prime}\{0\}$.

In a similar manner, since $x \theta y,(y \circledast x) \bar{\theta}(y \circledast y)$. Also, $0 \in y \circledast y$ implies that there exists $t \in y \circledast x$ such that $0 \theta t$. Hence, $t \in[0]_{\theta}=[0]_{\theta^{\prime}}$. Thus, $(y \circledast x) \theta^{\prime}\{0\}$. Now, since $(x \circledast y) \theta^{\prime}\{0\},(y \circledast x) \theta^{\prime}\{0\}$, and θ^{\prime} is a regular congruence relation, we have $x \theta^{\prime} y$ by Definition 3(iv).

Similarly, let $x \theta^{\prime} y$. Then $(x \circledast x) \bar{\theta}^{\prime}(x \circledast y)$. Also, $0 \in x \circledast x$ implies that there exists an element $s \in x \circledast y$ such that $0 \theta^{\prime} s$. Furthermore, $s \in[0]_{\theta^{\prime}}=[0]_{\theta}$. So, $(x \circledast y) \theta\{0\}$.

By similar argument, we will obtain $(y \circledast x) \overline{\theta^{\prime}}(y \circledast y)$. Since $0 \in y \circledast y$, there exists $v \in y \circledast x$ such that $0 \theta^{\prime} v$. So, $v \in[0]_{\theta^{\prime}}=[0]_{\theta}$. Hence, $(y \circledast x) \theta\{0\}$. Since θ is a regular congruence relation, we have $x \theta y$.

We now reformulate the quotient structure of a hyper UP-algebra presented in [9] via regular congruence relation on a hyper UP-algebra H.

Theorem 2. [9] Let θ be a regular congruence relation on $H, I=I_{0}=[0]_{\theta}$ and $H / I=$ $\left\{I_{x}: x \in H\right\}$, where $I_{x}=[x]_{\theta}$ for all $x \in H$. Then H / I with the hyperoperation \circledast and hyperorder \ll which are defined as follows

$$
I_{x} \circledast I_{y}=\left\{I_{z}: z \in x \circledast y\right\} \text { and } I_{x} \ll I_{y} \text { if and only if } I \in I_{y} \circledast I_{x}
$$

is a hyper UP-algebra which is called the quotient hyper UP-algebra.
Example 2. Let $H=\{0,1,2,3\}$ be a set. Define the hyperoperation \circledast by the following Cayley table:

\circledast	0	1	2	3
0	$\{0\}$	$\{1\}$	$\{2\}$	$\{3\}$
1	$\{0\}$	$\{0,1\}$	$\{0,2\}$	$\{1,3\}$
2	$\{0\}$	$\{1\}$	$\{0,2\}$	$\{3\}$
3	$\{0\}$	$\{0,1\}$	$\{0,2\}$	$\{0,1,3\}$

By routine calculations, $(H ; \circledast, 0)$ is a hyper UP-algebra. Define a relation θ on H by $\theta=\{(0,0),(1,1),(0,2),(2,0),(2,2),(3,3)\}$. By Lemma 3, it can be verified that θ is a congruence relation on H. Moreover, by routine calculations, θ is a regular congruence relation. Consider $I_{0}=I=[0]_{\theta}=\{0,2\}, I_{1}=\{1\}$, and $I_{3}=\{3\}$. Then $H / I=\left\{I, I_{1}, I_{3}\right\}$. Thus, our Cayley table is as follows:

\circledast	I	I_{1}	I_{3}
I	$\{I\}$	$\left\{I_{1}\right\}$	$\left\{I_{3}\right\}$
I_{1}	$\{I\}$	$\left\{I, I_{1}\right\}$	$\left\{I_{1}, I_{3}\right\}$
I_{3}	$\{I\}$	$\left\{I, I_{1}\right\}$	$\left\{I, I_{1}, I_{3}\right\}$

By routine calculations, H / I is a hyper UP-algebra.
To establish the First Hyper Isomorphism Theorem on hyper UP-algebras, we first reformulate some results on hyper homomorphisms of hyper UP- algebras.

Lemma 4. [9] Let θ be a regular congruence relation on H and $I=[0]_{\theta}$. Then the mapping $\pi: H \longrightarrow H / I$ which is defined by $\pi(x)=I_{x}$, for all $x \in H$, is a hyper epimorphism which is called the canonical epimorphism.

Theorem 3. [9] (Hyper Homomorphism Theorem) Let θ be a regular congruence on H and $I=[0]_{\theta}$. If $f: H \longrightarrow H^{\prime}$ is a hyper homomorphism of hyper UP-algebras such that I is contained in the kernel of f, then $\bar{f}: H / I \longrightarrow H^{\prime}$, which is defined by $\bar{f}\left(I_{x}\right)=f(x)$, for all $x \in H$, is a unique hyper homomorphism such that $\bar{f} \circ \pi=f$, where π denotes the canonical epimorphism and \circ is the composition map.

Theorem 4. (First Hyper Isomorphism Theorem) Let θ be a regular congruence relation on H and $I=[0]_{\theta}$. If $f: H \longrightarrow H^{\prime}$ is a hyper homomorphism of hyper UPalgebras such that $\operatorname{ker} f=I$, then $H / \operatorname{ker} f \cong_{\mathcal{H}} \operatorname{Imf}$.

Proof. Define $\bar{f}: H / I \longrightarrow H^{\prime}$ by $\bar{f}\left(I_{x}\right)=f(x)$ for all $x \in H$. Let $x, y \in H$. Then $I_{x}, I_{y} \in H / I$. From Theorem 3, \bar{f} is a hyper homomorphism. Thus, $\bar{f}\left(I_{x} \circledast I_{y}\right)=$ $\bar{f}\left(I_{x}\right) \circledast^{\prime} \bar{f}\left(I_{y}\right)$ and $\bar{f}(I)=0^{\prime}$.

Suppose that $\bar{f}\left(I_{x}\right)=\bar{f}\left(I_{y}\right)$ with $x, y \in H$. Then $f(x)=f(y)$. Since f is a hyper homomorphism, $0^{\prime}=f(0) \in f(x \circledast x)=f(x) \circledast^{\prime} f(x)=f(x) \circledast^{\prime} f(y)=f(x \circledast y)$. So, there exists an element $u \in x \circledast y$ such that $f(u)=0^{\prime}$, that is, $u \in \operatorname{kerf}=I=[0]_{\theta}$. Thus, $u \theta 0$ and $(x \circledast y) \theta\{0\}$. Also, $0^{\prime}=f(0) \in f(x \circledast x)=f(x) \circledast^{\prime} f(x)=f(y) \circledast^{\prime} f(x)=f(y \circledast x)$. Thus, there exists an element $v \in y \circledast x$ such that $f(v)=0^{\prime}$. Moreover, $v \in \operatorname{ker} f=I=[0]_{\theta}$ and $v \theta 0$. Thus, $(y \circledast x) \theta\{0\}$. Since θ is a regular congruence relation, it follows that $x \theta y$. Thus, $I_{x}=I_{y}$. Hence, \bar{f} is one-to-one, thus ker $\bar{f}=(\operatorname{ker} f) / I \subseteq H / I$ is trivial, which occurs if and only if $\operatorname{ker} f=I$. Clearly, $\operatorname{Im} \bar{f}=\operatorname{Im} f$ and $\bar{f}: H / I \longrightarrow \operatorname{Im} f$ is onto. Therefore, $H / \operatorname{ker} f \cong_{\mathcal{H}} \operatorname{Imf}$.

Lemma 5. Let $f: H \longrightarrow H^{\prime}$ be a hyper homomorphism on hyper UP-algebras with $I=[0]_{\theta}$ and $J=\left[0^{\prime}\right]_{\theta^{\prime}}$ where θ and θ^{\prime} are regular congruence relations on H and H^{\prime}, respectively. Suppose that $I \subseteq$ ker f. Then for all $x, y \in H, x \theta y$ implies that $f(x) \theta^{\prime} f(y)$.

Proof. Let $f: H \longrightarrow H^{\prime}$ be a hyper homomorphism with $I=[0]_{\theta} \subseteq$ ker f and $J=\left[0^{\prime}\right]_{\theta^{\prime}}$ where θ and θ^{\prime} are regular congruence relations on H and H^{\prime}, respectively. Let $x, y \in H$ such that $x \theta y$. Since θ is a regular congruence relation, we have $x \theta x$ and $(x \circledast x) \bar{\theta}(x \circledast y)$ by Definition $3(i i i)$. Since $0 \in x \circledast x$ by Proposition $1(i i i)$, there exists an element $u \in x \circledast y$ such that $0 \theta u$. Thus, $u \in I \subseteq \operatorname{ker} f$, that is, $f(u)=0^{\prime}$. It follows that $f(u) \in H^{\prime}$ and $f(u) \theta^{\prime} 0^{\prime}$. Since f is a hyper homomorphism, $f(u) \in f(x \circledast y)=f(x) \circledast^{\prime} f(y)$, thus $\left(f(x) \circledast^{\prime} f(y)\right) \bar{\theta}^{\prime}\left\{0^{\prime}\right\}$.

Using similar argument, with $y \theta y$, we have $\left(f(y) \circledast^{\prime} f(x)\right) \bar{\theta}^{\prime}\left\{0^{\prime}\right\}$. Since θ^{\prime} is a regular congruence relation, by Definition $3(i v)$ we have $f(x) \theta^{\prime} f(y)$.

Theorem 5. Let θ and θ^{\prime} be regular congruence relations on hyper UP-algebras H and H^{\prime}, respectively, such that $I=[0]_{\theta}$ and $J=\left[0^{\prime}\right]_{\theta^{\prime}}$. If $f: H \longrightarrow H^{\prime}$ is a hyper homomorphism of hyper UP-algebras such that $x \theta y$ if and only if $f(x) \theta^{\prime} f(y)$, for all $x, y \in H$, then there exists a unique hyper homomorphism $f^{*}: H / I \longrightarrow H^{\prime} / J$ such that $\pi^{\prime} \circ f=f^{*} \circ \pi$ where π and π^{\prime} are the canonical epimorphisms and \circ is the composition map.

Proof. Consider the mapping $f^{*}: H / I \longrightarrow H^{\prime} / J$ defined by $f^{*}\left(I_{x}\right)=J_{f(x)}$, for all $x \in H$. Let $x, y \in H$ such that $I_{x}=I_{y}$. Then $x \theta y$ and so $f(x) \theta^{\prime} f(y)$ by assumption. Hence, $f^{*}\left(I_{x}\right)=J_{f(x)}=J_{f(y)}=f^{*}\left(I_{y}\right)$ and f^{*} is well-defined.

Let $I_{x}, I_{y} \in H / I$ and $J_{t} \in f^{*}\left(I_{x} \circledast I_{y}\right)$. Then there exists an element $t^{\prime} \in x \circledast y$ such that $J_{f\left(t^{\prime}\right)}=f^{*}\left(I_{t^{\prime}}\right)=J_{t}$. Now, $t^{\prime} \in x \circledast y$ implies $f\left(t^{\prime}\right) \in f(x \circledast y)=f(x) \circledast \circledast^{\prime} f(y)$. So, $J_{t}=J_{f\left(t^{\prime}\right)} \in J_{f(x)} \circledast^{\prime} J_{f(y)}=f^{*}\left(I_{x}\right) \circledast^{\prime} f^{*}\left(I_{y}\right)$. Hence, $f^{*}\left(I_{x} \circledast I_{y}\right) \subseteq f^{*}\left(I_{x}\right) \circledast^{\prime} f^{*}\left(I_{y}\right)$.

Next, let $J_{s} \in f^{*}\left(I_{x}\right) \circledast^{\prime} f^{*}\left(I_{y}\right)=J_{f(x)} \circledast^{\prime} J_{f(y)}$. Then $s \in f(x) \circledast^{\prime} f(y)=f(x \circledast y)$. Now, $s \in f(x \circledast y)$ implies there exists $w \in x \circledast y$ such that $f(w)=s$, that is, $I_{w} \in I_{x} \circledast I_{y}$ and $J_{s}=J_{f(w)}=f^{*}\left(I_{w}\right) \in f^{*}\left(I_{x} \circledast I_{y}\right)$. Therefore, $f^{*}\left(I_{x}\right) \circledast^{\prime} f^{*}\left(I_{y}\right) \subseteq f^{*}\left(I_{x} \circledast I_{y}\right)$ and so $f^{*}\left(I_{x} \circledast I_{y}\right)=f^{*}\left(I_{x}\right) \circledast^{\prime} f^{*}\left(I_{y}\right)$. Moreover, $f^{*}(I)=J_{f(0)}=J_{0^{\prime}}=J$. Also, $\operatorname{dom}\left(\pi^{\prime} \circ f\right)=$ $H=\operatorname{dom}\left(f^{*} \circ \pi\right)$. Let $x \in H$. Then

$$
\left(\pi^{\prime} \circ f\right)(x)=\pi^{\prime}(f(x))=J_{f(x)}=f^{*}\left(I_{x}\right)=f^{*}(\pi(x))=\left(f^{*} \circ \pi\right)(x)
$$

Thus, $\pi^{\prime} \circ f=f^{*} \circ \pi$. Next, we let $\phi: H / I \longrightarrow H^{\prime} / J$ be a homomorphism such that $\pi^{\prime} \circ f=\phi \circ \pi$. Note that $\operatorname{dom}\left(\pi^{\prime} \circ f\right)=H=\operatorname{dom}(\phi \circ \pi)$. Then $\phi=f^{*}$ since for all $x \in H$, we have $\phi\left(I_{x}\right)=\phi(\pi(x))=J_{\pi(x)}=\pi^{\prime}(f(x))=\left(\pi^{\prime} \circ f\right)(x)=\left(f^{*} \circ \pi\right)(x)=f^{*}\left(I_{x}\right)$.

Theorem 6. Suppose $f: H \longrightarrow H^{\prime}$ is a hyper epimorphism of hyper UP-algebras, θ^{\prime} is a regular conruence relation on H^{\prime} and $J=\left[0^{\prime}\right]_{\theta^{\prime}}$. Then there exists a regular congruence relation θ on H such that $H / I \cong_{\mathcal{H}} H^{\prime} / J$, where $I=[0]_{\theta}$.

Proof. Define θ on H by $x \theta y$ if and only if $f(x) \theta^{\prime} f(y)$, for all $x, y \in H$. Let $x \in H$. Then $f(x) \in H^{\prime}$ and so, by reflexivity of θ^{\prime} on H^{\prime}, we have $f(x) \theta^{\prime} f(x)$. It follows that $x \theta x$ and θ is a reflexive relation on H. Assume that $x \theta y$, where $x, y \in H$. So, $f(x), f(y) \in H^{\prime}$ and $f(x) \theta^{\prime} f(y)$. Hence, $f(y) \theta^{\prime} f(x)$ which will imply that $y \theta x$. Thus, θ is a symmetric relation on H. Suppose $x \theta y$ and $y \theta z$, where $x, y, z \in H$. Then $f(x) \theta^{\prime} f(y)$ and $f(y) \theta^{\prime} f(z)$, for all $x, y, z \in H$. Note that $f(x), f(y), f(z) \in H^{\prime}$ and by transitivity of θ^{\prime} on H^{\prime}, we have $f(x) \theta^{\prime} f(z)$. Thus, $x \theta z$ on H and θ is a transitive relation on H. Therefore, θ is an equivalence relation on H.

Next, we will show that θ is a congruence relation. Let $a, x, y \in H$ such that $x \theta y$. Then $f(x) \theta^{\prime} f(y)$. Since $f(a), f(x), f(y) \in H^{\prime}$ and θ^{\prime} is a congruence relation on H^{\prime}, from

Lemma 3 it follows that $(f(x) \circledast f(a)) \bar{\theta}^{\prime}(f(y) \circledast f(a))$ and $(f(a) \circledast f(x)) \bar{\theta}^{\prime}(f(a) \circledast f(y))$. Thus, $(x \circledast a) \bar{\theta}(y \circledast a)$ and $(a \circledast x) \bar{\theta}(a \circledast y)$. Therefore, by Lemma 3, θ is a congruence relation on H.

Let $x, y \in H$ such that $(x \circledast y) \theta\{0\}$ and $(y \circledast x) \theta\{0\}$. Then $f(x), f(y) \in H^{\prime}$ and there exist $a \in(x \circledast y)$ and $b \in(y \circledast x)$ such that $a \theta 0$ and $b \theta 0$. Since f is a hyper homomorphism and $f(0)=0^{\prime}, f(a) \in f(x \circledast y)=f(x) \circledast^{\prime} f(y)$ and $f(b) \in f(y \circledast x)=f(y) \circledast^{\prime} f(x)$ such that $f(a) \theta^{\prime} 0^{\prime}$ and $f(b) \theta^{\prime} 0^{\prime}$. Thus, $\left(f(x) \not \circledast^{\prime} f(y)\right) \theta^{\prime}\left\{0^{\prime}\right\}$ and $\left(f(y) \circledast^{\prime} f(x)\right) \theta^{\prime}\left\{0^{\prime}\right\}$. Since θ^{\prime} is a regular congruence relation on $H^{\prime}, f(x) \theta^{\prime} f(y)$, implying that $x \theta y$. Therefore, θ is a regular congruence relation on H.

Next, let $x \in I=[0]_{\theta}$. Since $x \theta 0$ and $f(0)=0^{\prime}, f(x) \theta^{\prime} 0^{\prime}$. It follows that $f(x) \in$ $\left[0^{\prime}\right]_{\theta^{\prime}}=J$, so $x \in f^{-1}(J)$. Thus, $I \subseteq f^{-1}(J)$. On the other hand, let $y \in f^{-1}(J)$. Then $f(y) \in J=\left[0^{\prime}\right]_{\theta^{\prime}}$ and $f(y) \theta^{\prime} 0^{\prime}$. Hence, $y \theta 0$ and $y \in[0]_{\theta}=I$, implying that $f^{-1}(J) \subseteq I$. Thus, $I=f^{-1}(J)$.

Now, let $\pi: H^{\prime} \longrightarrow H^{\prime} / J$ be the canonical hyper epimorphism and define $\bar{f}: H \longrightarrow$ H^{\prime} / J by $\bar{f}=\pi \circ f$. Since π and f are both hyper epimorphisms of hyper UP-algebras, by Lemma $1, \bar{f}$ is a hyper epimorphism. Observe that

$$
\text { ker } \begin{aligned}
\bar{f} & =\{x \in H: \bar{f}(x)=J\} \\
& =\{x \in H: \pi(f(x))=J\} \\
& =\left\{x \in H: J_{f(x)}=J\right\} \\
& =\{x \in H: f(x) \in J\} \\
& =\left\{x \in H: x \in f^{-1}(J)\right\} \\
& =\{x \in H: x \in I\} \\
& =I .
\end{aligned}
$$

Therefore, by the First Hyper Isomorphism Theorem, $H / I \cong_{\mathcal{H}} H^{\prime} / J$.
Theorem 7. Let $f: H \longrightarrow H^{\prime}$ be a hyper epimorphism on hyper UP-algebras and let Θ and Ω be relations on H and H^{\prime}, respectively, defined by $x \Theta y \Longleftrightarrow f(x) \Omega f(y)$ for all $x, y \in H$. Then Θ is a regular congruence relation on H if and only if Ω is a regular congruence relation on H^{\prime}.

Proof. Utilizing the proof of Theorem 6, we only need to show that Θ is a regular congruence relation on H implies that Ω is a regular congruence relation on H^{\prime}. Suppose Θ is a regular congruence relation on H. Let $u, v, w \in H^{\prime}$. Then there exist $x, y, z \in H$ such that $f(x)=u, f(y)=v$, and $f(z)=w$. Since Θ is an equivalence relation on $H, x \Theta x$, thus $u=f(x) \Omega f(x)=u$ and Ω is a reflexive relation on H^{\prime}. Suppose $u \Omega v$. Then $x \Theta y$ and since Θ is a symmetric relation on $H, y \Theta x$, so $v \Omega u$ and Ω is a symmetric relation on H^{\prime}. Suppose $u \Omega v$ and $v \Omega w$. Then $x \Theta y$ and $y \Theta z$. Since Θ is a transitive relation on $H, x \Theta z$, that is, $u \Omega w$. Thus, Ω is an equivalence relation on H^{\prime}.

Let $b, u, v \in H^{\prime}$ and $u \Omega v$. Then there exist $a, x, y \in H$ such that $b=f(a), u=f(x), v=$ $f(y)$, and $x \Theta y$. Since Θ is a congruence relation on H and $a \in H,(a \circledast x) \bar{\Theta}(a \circledast y)$ by

Lemma 3. Hence, $f(a) \circledast^{\prime} f(x)=f(a \circledast x) \bar{\Omega} f(a \circledast y)=f(a) \circledast^{\prime} f(y)$, that is, $\left(b \circledast^{\prime} u\right) \bar{\Omega}\left(b \circledast^{\prime}\right.$ $v)$. Similarly, since Θ is a congruence relation on H and $a \in H,(x \circledast a) \bar{\Theta}(y \circledast a)$. So, $f(x) \circledast^{\prime} f(a)=f(x \circledast a) \bar{\Omega} f(y \circledast a)=f(y) \circledast^{\prime} f(a)$, that is, $\left(u \circledast^{\prime} b\right) \bar{\Omega}\left(v \circledast^{\prime} b\right)$. Hence, Ω is a congruence relation on H^{\prime}.

Now, let $u, v \in H^{\prime}$ such that $\left(u \not \circledast^{\prime} v\right) \Omega\left\{0^{\prime}\right\}$ and $\left(v \circledast^{\prime} u\right) \Omega\left\{0^{\prime}\right\}$. Since $\left(u \circledast^{\prime} v\right) \Omega\left\{0^{\prime}\right\}$ and f is a hyper epimorphism, it follows that there exist $s, t \in H$ such that $f(s)=$ $u, f(t)=v, f(s \circledast t)=f(s) \circledast^{\prime} f(t)=\left(u \circledast^{\prime} v\right) \Omega\left\{0^{\prime}\right\}$. Similarly, $\left(v \circledast^{\prime} u\right) \Omega\left\{0^{\prime}\right\}$ implies $f(t \circledast s)=f(t) \circledast^{\prime} f(s)=\left(v \circledast^{\prime} u\right) \Omega\left\{0^{\prime}\right\}$. Hence, $(s \circledast t) \Theta\{0\}$ and $(t \circledast s) \Theta\{0\}$. Since Θ is a regular congruence relation on H, it follows that $s \Theta t$ and $u \Omega v$. Therefore, Ω is a regular congruence relation on H^{\prime}.

Remark 1. Let $f: H \longrightarrow H^{\prime}$ be a hyper epimorphism on hyper UP-algebras and let Θ and Ω be the relations on H and H^{\prime}, respectively, as defined in Theorem 7. Then
(i) Ω is called the regular congruence relation induced by f and Θ, and
(ii) Θ is called the regular congruence relation induced by f and Ω.

Theorem 8. Let $f: H \longrightarrow H^{\prime}$ be a hyper epimorphism on hyper UP-algebras. Then there is a one-to-one correspondence between the regular congruence relations on H^{\prime} and the regular congruence relations on H such that ker f is contained in the regular congruence class containing 0.

Proof. Let $f: H \longrightarrow H^{\prime}$ be a hyper epimorphism of hyper UP-algebras and

$$
\begin{aligned}
\mathcal{A} & =\left\{\Theta: \Theta \text { is a regular congruence relation on } H \text { with ker } f \subseteq[0]_{\Theta}\right\} \\
\mathcal{B} & =\left\{\Omega: \Omega \text { is a regular congruence relation on } H^{\prime}\right\} .
\end{aligned}
$$

Define $\gamma: \mathcal{A} \longrightarrow \mathcal{B}$ by $\gamma(\Theta)=\Omega$, where Ω is the regular congruence relation on H^{\prime} induced by f and Θ. Then $\Omega \in \mathcal{B}$. Let $\Theta_{1}, \Theta_{2} \in \mathcal{A}$ such that $\Omega_{1}=\gamma\left(\Theta_{1}\right)=\gamma\left(\Theta_{2}\right)=\Omega_{2}$. Then for all $x, y \in H, x \Theta_{1} y \Leftrightarrow f(x) \Omega_{1} f(y) \Leftrightarrow f(x) \Omega_{2} f(y) \Leftrightarrow x \Theta_{2} y$. Hence, $\Theta_{1}=\Theta_{2}$ and γ is well-defined and one-to-one.

Now, let $\Omega \in \mathcal{B}$ and consider the induced regular congruence relation Θ on H. If $x \in \operatorname{ker} f$, then $f(x)=f\left(0\right.$. So, $f(x) \Omega f(0)$ implies $x \Theta 0$. Thus, ker $f \subseteq[0]_{\Theta}$ and so, $\Theta \in \mathcal{A}$. Lastly, we show that γ is onto, that is, $\gamma(\Theta)=\Omega$. Suppose $\gamma(\Theta)=\Omega^{\prime}$ for some $\Omega^{\prime} \in \mathcal{B}$. Then by the definitions of Ω and Θ, for each $t \in H^{\prime}$,

$$
t \Omega^{\prime} 0^{\prime} \Leftrightarrow t=f(x) \text { and } x \Theta 0 \text { for some } x \in H \Leftrightarrow f(x) \Omega f(0) \Leftrightarrow t \Omega 0^{\prime} .
$$

Thus, $\left[0^{\prime}\right]_{\Omega}=\left[0^{\prime}\right]_{\Omega^{\prime}}$ and by Theorem $1, \Omega=\Omega^{\prime}$. Hence, $\gamma(\Theta)=\Omega$. Therefore, γ is a bijection.

4. Hyper Product of Hyper UP-algebras

Throughout this section, H and K shall mean the hyper UP-algebras $\left(H, \circledast_{H}, 0_{H}\right)$ and ($K, \circledast_{K}, 0_{k}$) with $<_{H}$ and $<_{K}$ as their hyper orders, respectively.

The following introduction of the hyper product of two hyper UP-algebras is influenced by the construction of the hyper product of two hyper BCK-algebras by Borzooei et al. [12], as cited in [1].

Suppose H and K are hyper UP-algebras. Then

$$
H \times K=\{(a, b) \mid a \in H \text { and } b \in K\} .
$$

Define the hyperoperation " \circledast " on $H \times K$ by

$$
(a, b) \circledast(c, d)=\left(a \circledast_{H} c, b \circledast_{K} d\right)
$$

and hyperorder " \ll " by $(a, b) \ll(c, d) \Longleftrightarrow a<_{H} c$ and $b<_{K} d$ for all $(a, b),(c, d) \in H \times$ K. For every $(A, B),(C, D) \subseteq H \times K,(A, B) \ll(C, D)$ if and only if for all $(a, b) \in(A, B)$, there exists $(c, d) \in(C, D)$ such that $(a, b) \ll(c, d)$. Then $\left(H \times K ; \circledast,\left(0_{H}, 0_{K}\right)\right)$ is called the hyper product of H and K.

Theorem 9. [9] Let H and K be hyper UP-algebras. Then $H \times K$ is a hyper UP-algebra.
Theorem 10. Let $\alpha_{1}: H_{1} \longrightarrow K_{1}$ and $\alpha_{2}: H_{2} \longrightarrow K_{2}$ be hyper homomorphisms of hyper UP-algebras. Define $\alpha: H_{1} \times H_{2} \longrightarrow K_{1} \times K_{2}$ by $\alpha((a, b))=\left(\alpha_{1}(a), \alpha_{2}(b)\right)$ for all $(a, b) \in H_{1} \times H_{2}$. Then
(i) α is a hyper homomorphism;
(ii) $\operatorname{ker} \alpha=\operatorname{ker} \alpha_{1} \times \operatorname{ker} \alpha_{2}$;
(iii) $\operatorname{Im} \alpha=\operatorname{Im} \alpha_{1} \times \operatorname{Im} \alpha_{2}$; and
(iv) α is a hyper monomorphism (respectively, hyper epimorphism) if and only if α_{i} is a hyper monomorphism (respectively, hyper epimorphism) for each $i=1,2$.

Proof. Define $\alpha: H_{1} \times H_{2} \longrightarrow K_{1} \times K_{2}$ by $\alpha((a, b))=\left(\alpha_{1}(a), \alpha_{2}(b)\right)$ for all $(a, b) \in$ $H_{1} \times H_{2}$.
(i) Let $(a, b),(c, d) \in H_{1} \times H_{2}$ such that $(a, b)=(c, d)$. Then $a=c$ and $b=d$. Now, since α_{1} and α_{2} are well-defined maps, it follows that

$$
\begin{aligned}
\alpha((a, b)) & =\left(\alpha_{1}(a), \alpha_{2}(b)\right) \\
& =\left(\alpha_{1}(c), \alpha_{2}(d)\right) \\
& =\alpha((c, d)) .
\end{aligned}
$$

So, α is a well-defined map. Observe that $\left(0_{H_{1}}, 0_{H_{2}}\right) \in H_{1} \times H_{2}$. Since α_{1} and α_{2} are hyper homomorphisms, by (HH1) we have

$$
\alpha\left(\left(0_{H_{1}}, 0_{H_{2}}\right)\right)=\left(\alpha_{1}\left(0_{H_{1}}\right), \alpha_{2}\left(0_{H_{2}}\right)\right)=\left(0_{K_{1}}, 0_{K_{2}}\right)
$$

and by (HH2),

$$
\begin{aligned}
\alpha((a, b) \circledast(c, d)) & =\alpha((a \circledast c, b \circledast d)) \\
& =\{\alpha((u, v)) \mid u \in a \circledast c, v \in b \circledast d\} \\
& =\left\{\left(\alpha_{1}(u), \alpha_{2}(v)\right) \mid u \in a \circledast c, v \in b \circledast d\right\} \\
& =\left(\alpha_{1}(a \circledast c), \alpha_{2}(b \circledast d)\right) \\
& =\left(\alpha_{1}(a) \circledast \alpha_{1}(c), \alpha_{2}(b) \circledast \alpha_{2}(d)\right) \\
& =\alpha(a, b) \circledast \alpha(c, d) .
\end{aligned}
$$

Hence, α is a hyper homomorphism.
(ii) By definition,

$$
\begin{aligned}
\operatorname{ker} \alpha & =\left\{(a, b) \in H_{1} \times H_{2} \mid \alpha((a, b))=\left(0_{K_{1}}, 0_{K_{2}}\right)\right\} \\
& =\left\{(a, b) \in H_{1} \times H_{2} \mid\left(\alpha_{1}(a), \alpha_{2}(b)\right)=\left(0_{K_{1}}, 0_{K_{2}}\right)\right\} \\
& =\left\{(a, b) \in H_{1} \times H_{2} \mid \alpha_{1}(a)=0_{K_{1}} \text { and } \alpha_{2}(b)=0_{K_{2}}\right\} \\
& =\left\{(a, b) \in H_{1} \times H_{2} \mid a \in \operatorname{ker} \alpha_{1}, b \in \operatorname{ker} \alpha_{2}\right\} \\
& =\text { ker } \alpha_{1} \times \text { ker } \alpha_{2} .
\end{aligned}
$$

(iii) By definition,

$$
\begin{aligned}
\operatorname{Im} \alpha & =\left\{\alpha((a, b)) \mid(a, b) \in H_{1} \times H_{2}\right\} \\
& =\left\{\left(\alpha_{1}(a), \alpha_{2}(b)\right) \mid(a, b) \in H_{1} \times H_{2}\right\} \\
& =\left\{\left(\alpha_{1}(a), \alpha_{2}(b)\right) \mid \alpha_{1}(a) \in \operatorname{Im} \alpha_{1}, \alpha_{2}(b) \in \operatorname{Im} \alpha_{2}\right\} \\
& =\operatorname{Im} \alpha_{1} \times \operatorname{Im} \alpha_{2} .
\end{aligned}
$$

(iv) Suppose that α is one-to-one. Let $a, c \in H_{1}$ and $b, d \in H_{2}$ such that $\alpha_{1}(a)=\alpha_{1}(c)$ and $\alpha_{2}(b)=\alpha_{2}(d)$. Then

$$
\alpha((a, b))=\left(\alpha_{1}(a), \alpha_{2}(b)\right)=\left(\alpha_{1}(c), \alpha_{2}(d)\right)=\alpha((c, d))
$$

Since α is one-to-one, $(a, b)=(c, d)$, that is, $a=c$ and $b=d$. Thus, α_{1} and α_{2} are one-to-one maps.

Conversely, assume that α_{1} and α_{2} are one-to-one maps. Suppose $(a, b),(c, d) \in$ $H_{1} \times H_{2}$ such that $\alpha((a, b))=\alpha((c, d))$. Then $\left(\alpha_{1}(a), \alpha_{2}(b)\right)=\alpha((a, b))=\alpha((c, d))=$ $\left(\alpha_{1}(c), \alpha_{2}(d)\right)$. This means that $\alpha_{1}(a)=\alpha_{1}(c)$ and $\alpha_{2}(b)=\alpha_{2}(d)$ and since α_{1} and α_{2} are both one-to-one, it follows that $a=c$ and $b=d$. Hence, $(a, b)=(c, d)$. Therefore, α is one-to-one.

Suppose α is onto. Let $x \in K_{1}$ and $y \in K_{2}$. It follows that $(x, y) \in K_{1} \times K_{2}$. Since α is onto, there exists $(a, b) \in H_{1} \times H_{2}$ such that $\left(\alpha_{1}(a), \alpha_{2}(b)\right)=\alpha((a, b))=(x, y)$, that is, $\alpha_{1}(a)=x$ and $\alpha_{2}(b)=y$ for some $a \in H_{1}$ and $b \in H_{2}$. So, α_{1} and α_{2} are onto
maps. Next, suppose α_{1} and α_{2} are onto maps. Let $(x, y) \in K_{1} \times K_{2}$. Then $x \in K_{1}$ and $y \in K_{2}$. Since α_{1} and α_{2} are onto maps, we can pick some elements $a \in H_{1}$ and $b \in H_{2}$ such that $\alpha_{1}(a)=x$ and $\alpha_{2}(b)=y$, that is, $\alpha((a, b))=\left(\alpha_{1}(a), \alpha_{2}(b)\right)=(x, y)$ for some $(a, b) \in H_{1} \times H_{2}$. Therefore, α is onto and (iv) holds.

Recall that if $\left\{A_{k}: k \in \mathcal{I}\right\}$ is a family of sets, the Cartesian product $\prod_{k \in \mathcal{I}} A_{k}$ is the set of all functions $p: \mathcal{I} \longrightarrow \bigcup_{k \in \mathcal{I}} A_{k}$ such that $p(k) \in A_{k}$, for all $k \in \mathcal{I}$. If $p \in \prod_{k \in \mathcal{I}}^{k \in \mathcal{I}} A_{k}$ such that $p(i)=a_{i} \in A_{i}$ for all $i \in \mathcal{I}$, then we will denote p as $\left\{a_{i}\right\}$.

We now extend the hyper product $H \times K$ of H and K to the hyper product of an arbitrary family of hyper UP-algebras.

Let $\left\{H_{k}: k \in \mathcal{I}\right\}$ be a family of hyper UP-algebras. For each $k \in \mathcal{I}$, let $\circledast_{k}, 0_{k}$, and $<_{k}$ be the hyperoperation, the zero element, and the hyperorder of H_{k}, respectively. Let $G=\prod_{k \in \mathcal{I}} H_{k}$ and define the hyperoperation \circledast as follows: for $\left\{x_{k}\right\},\left\{y_{k}\right\} \in G,\left\{x_{k}\right\} \circledast$ $\left\{y_{k}\right\}=\prod_{k \in \mathcal{I}}\left(x_{k} \circledast y_{k}\right)$. Since $x_{k} \circledast y_{k} \neq \varnothing$ for each $k \in \mathcal{I}$, the Axiom of Choice ensures us that $\prod_{k \in \mathcal{I}}\left(x_{k} \circledast y_{k}\right) \neq \varnothing$, and so \circledast is indeed a hyperoperation. The zero element of G is $\left\{0_{k}\right\}$, and under the hyperoperation \circledast, the hyperorder \ll is established as follows: for $\left\{x_{k}\right\},\left\{y_{k}\right\} \in G$,

$$
\begin{aligned}
\left\{x_{k}\right\} \ll\left\{y_{k}\right\} & \Longleftrightarrow\left\{0_{k}\right\} \in\left\{y_{k}\right\} \circledast\left\{x_{k}\right\} \\
& \Longleftrightarrow\left\{0_{k}\right\} \in \prod_{k \in \mathcal{I}}\left(y_{k} \circledast x_{k}\right) \\
& \Longleftrightarrow \text { for all } k \in \mathcal{I}, 0_{k} \in y_{k} \circledast x_{k} \\
& \Longleftrightarrow \text { for all } k \in \mathcal{I}, x_{k} \ll_{k} y_{k},
\end{aligned}
$$

and for all $\prod_{k \in \mathcal{I}} A_{k}, \prod_{k \in \mathcal{I}} B_{k} \subseteq \prod_{k \in \mathcal{I}} H_{k}$,

$$
\begin{aligned}
\prod_{k \in \mathcal{I}} A_{k} \ll \prod_{k \in \mathcal{I}} B_{k} & \Longleftrightarrow \forall\left\{a_{k}\right\} \in \prod_{k \in \mathcal{I}} A_{k}, \exists\left\{b_{k}\right\} \in \prod_{k \in \mathcal{I}} B_{k} \text { such that }\left\{a_{k}\right\} \ll\left\{b_{k}\right\} \\
& \Longleftrightarrow \forall k \in \mathcal{I}, \forall a_{k} \in A_{k}, \exists b_{k} \in B_{k} \text { such that } a_{k} \ll_{k} b_{k} \\
& \Longleftrightarrow \forall k \in \mathcal{I}, A_{k}<_{k} B_{k} .
\end{aligned}
$$

Then $\left(G, \circledast,\left\{0_{K}\right\}\right)$ is called the hyper product of $\left\{H_{k}: k \in \mathcal{I}\right\}$.

Lemma 6. Let $\left\{H_{k}: k \in \mathcal{I}\right\}$ be a nonempty family of hyper UP-algebras. Suppose that $A_{k}, B_{k} \subseteq H_{k}$, for all $k \in \mathcal{I}$. Then for each $k \in \mathcal{I}$,

$$
\prod_{k \in \mathcal{I}} A_{k} \circledast \prod_{k \in \mathcal{I}} B_{k}=\prod_{k \in \mathcal{I}}\left(A_{k} \circledast B_{k}\right) .
$$

Theorem 11. Suppose that $\left\{H_{k}: k \in \mathcal{I}\right\}$ is a nonempty family of hyper UP-algebras. Then $\left(\prod_{k \in \mathcal{I}} H_{k}, \circledast,\left\{0_{k}\right\}\right)$ is a hyper UP-algebra.

Proof. Suppose $\left\{H_{k}: k \in \mathcal{I}\right\}$ is a nonempty family of hyper UP-algebras. Let $\left\{a_{k}\right\},\left\{b_{k}\right\},\left\{c_{k}\right\},\left\{d_{k}\right\} \in \prod_{k \in \mathcal{I}} H_{k}$. Then $a_{k}, b_{k}, c_{k}, d_{k} \in H_{k}$ for all $k \in \mathcal{I}$. We will show first that \circledast is a well-defined hyperoperation on $\prod_{k \in \mathcal{I}} H_{k}$.

Assume that $\left\{a_{k}\right\}=\left\{b_{k}\right\}$ and $\left\{c_{k}\right\}=\left\{d_{k}\right\}$, for all $k \in \mathcal{I}$. Then $a_{k}=b_{k}$ and $c_{k}=d_{k}$ for all $k \in \mathcal{I}$. So,

$$
\left\{a_{k}\right\} \circledast\left\{c_{k}\right\}=\prod_{k \in \mathcal{I}}\left(a_{k} \circledast_{k} c_{k}\right)=\prod_{k \in \mathcal{I}}\left(b_{k} \circledast_{k} d_{k}\right)=\left\{b_{k}\right\} \circledast\left\{d_{k}\right\}
$$

for all $k \in \mathcal{I}$. Thus, \circledast is a well-defined hyperoperation on $\prod_{k \in \mathcal{I}} H_{k}$. Let $\left\{x_{k}\right\},\left\{y_{k}\right\},\left\{z_{k}\right\} \in$ $\prod_{k \in \mathcal{I}} H_{k}$. Then $x_{k}, y_{k}, z_{k} \in H_{k}$ for all $k \in \mathcal{I}$. Now, for each $k \in \mathcal{I}$, we have

$$
\begin{aligned}
\left(\left\{x_{k}\right\} \circledast\left\{y_{k}\right\}\right) \circledast\left(\left\{x_{k}\right\} \circledast\left\{z_{k}\right\}\right) & =\left(\prod_{k \in \mathcal{I}}\left(x_{k} \circledast_{k} y_{k}\right)\right) \circledast\left(\prod_{k \in \mathcal{I}}\left(x_{k} \circledast_{k} z_{k}\right)\right) \\
& =\left(\prod_{k \in \mathcal{I}}\left(x_{k} \circledast_{k} y_{k}\right) \circledast\left(x_{k} \circledast_{k} z_{k}\right)\right) .
\end{aligned}
$$

Since for each $k \in \mathcal{I},\left(x_{k} \circledast_{k} y_{k}\right) \circledast\left(x_{k} \circledast_{k} z_{k}\right)<_{k} y_{k} \circledast_{k} z_{k}$, it follows that

$$
\prod_{k \in \mathcal{I}}\left(x_{k} \circledast_{k} y_{k}\right) \circledast\left(x_{k} \circledast_{k} z_{k}\right) \ll \prod_{k \in \mathcal{I}}\left(y_{k} \circledast_{k} z_{k}\right),
$$

that is,

$$
\left(\left\{x_{k} \circledast y_{k}\right\}\right) \circledast\left(\left\{x_{k} \circledast z_{k}\right\}\right) \ll\left\{y_{k}\right\} \circledast\left\{z_{k}\right\} .
$$

This means that (HUP1) holds on $\prod_{k \in \mathcal{I}} H_{k}$.
Since for each $k \in \mathcal{I}, 0_{k} \circledast_{k} x_{k}=\left\{x_{k}\right\}$, it follows that

$$
\left\{0_{k}\right\} \circledast\left\{x_{k}\right\}=\prod_{k \in \mathcal{I}}\left(0_{k} \circledast_{k} x_{k}\right)=\prod_{k \in \mathcal{I}}\left\{x_{k}\right\} .
$$

Thus, (HUP2) holds on $\prod_{k \in \mathcal{I}} H_{k}$.
Moreover, since for each $k \in \mathcal{I}, x_{k} \circledast_{k} 0_{k}=\left\{0_{k}\right\}$, it follows that

$$
\left\{x_{k}\right\} \circledast\left\{0_{k}\right\}=\prod_{k \in \mathcal{I}}\left(x_{k} \circledast_{k} 0_{k}\right)=\prod_{k \in \mathcal{I}}\left\{0_{k}\right\} .
$$

Hence, (HUP3) holds on $\prod_{k \in \mathcal{I}} H_{k}$.
Furthermore, suppose $\left\{x_{k}\right\} \ll\left\{y_{k}\right\}$ and $\left\{y_{k}\right\} \ll\left\{x_{k}\right\}$ for all $k \in \mathcal{I}$. Then $x_{k}<_{k} y_{k}$ and $y_{k}<_{k} x_{k}$ for all $k \in \mathcal{I}$. Hence, $x_{k}=y_{k}$ for all $k \in \mathcal{I}$ and so $\left\{x_{k}\right\}=\left\{y_{k}\right\}$. This means that (HUP4) holds on $\prod_{k \in \mathcal{I}} H_{k}$. Therefore, $\left(\prod_{k \in \mathcal{I}} H_{k}, \circledast,\left\{0_{k}\right\}\right)$ is a hyper UP-algebra.

Acknowledgements

This research is funded by the Philippine Department of Science and TechnologyAccelerated Science and Technology Human Resource Development Program (DOSTASTHRDP) and the Mindanao State University-Iligan Institute of Technology. The authors wish to express their sincere thanks to the reviewers for their valuable suggestions for the improvement of this paper.

References

[1] R. Borzooei and H. Harizavi. Regular congruence relations on hyper BCK-algebras. Scientiae Mathematicae Japonicae Online, pages 217-231, 2004.
[2] G. Flores and G. Petalcorin. Some hyper isomorphism theorems on hyper BCIalgebra. Journal of Algebra and Applied Mathematics, 13(1):15-31, 2015.
[3] D. Gomisong. On Fully UP-semigroups and Hyper UP-algebras. Mindanao State University-Iligan Institute of Technology, Philippines, 2019.
[4] A. Iampan. A new branch of the logical algebra: UP-algebras. Journal of Algebra and Related Topics, 5(1):35-54, 2017.
[5] S. Mostafa F. Kareem and B. Davvaz. Hyper structure theory applied to KU-algebra. Journal of Hyperstructures, 6(2):82-95, 2017.
[6] X. Long. Hyper BCI-algebra. Discuss Math. Soc., 26:5-19, 2006.
[7] F. Marty. Sur une generalisation de la notion de groupe. In 8th Congress des Mathematician Scandinaves, pages 45-49, Stockholm, 1934.
[8] C. Prabpayak and U. Leerawat. On ideals and congruence in KU-algebras. Scientia Magna Journal, 5(1):54-57, 2009.
[9] D. Romano. Quotient of hyper UP-algebras. Preprint.
[10] D. Romano. Hyper UP-algebras. Journal of Hyperstructures online, 8(2):1-11, 2019.
[11] Y. Jun M. Zahedi X. Xin and R. Borzooei. On hyper BCK-algebra. Italian Journal of Pure and Applied Mathematics, 10:127-136, 2000.
[12] R. Borzooei A. Hasankhani M. Zahedi and Y. Jun. On hyper K-algebras. Mathematicae Japonicae, 52(1):113-121, 2000.

[^0]: * Corresponding author.

 DOI: https://doi.org/10.29020/nybg.ejpam.v13i3.3704
 Email addresses: rohaima87@yahoo.com (R. Amairanto), rowena.isla@g.msuiit.edu.ph (R. Isla)

