EUROPEAN JOURNAL OF PURE AND APPLIED MATHEMATICS

Vol. 13, No. 3, 2020, 483-497 ISSN 1307-5543 – www.ejpam.com Published by New York Business Global

Hyper Homomorphism and Hyper Product of Hyper UP-algebras

Rohaima M. Amairanto^{1,*}, Rowena T. Isla²

 ¹ Department of Mathematics, Mindanao State University-University Training Center, 9700 Marawi City, Philippines
² Department of Mathematics and Statistics, College of Science and Mathematics,

Mindanao State University-Iligan Institute of Technology, 9200 Iligan City, Philippines

Abstract. In this paper, we investigate the concept of regular congruence relation on hyper UP-algebras and establish some homomorphism theorems on such algebras. We also examine the notion of hyper product of hyper UP-algebras.

2020 Mathematics Subject Classifications: 08A30, 08A99

Key Words and Phrases: Hyper UP-algebra, Regular Congruence Relation, Hyper Homomorphisms of Hyper UP-algebras, Hyper Product of Hyper UP-algebras

1. Introduction

In 1934, F. Marty [7] first introduced the concept of hyperstructure theory at the 8th Congress of Scandinavian Mathematics. This led to the formulation of hyper BCKalgebra by Y. Jun et al. [11], hyper BCI-algebra by X. Long [6], and many other classes of algebras. R. Borzooei and H. Harizavi [1] defined the regular congruence relation on a hyper BCK-algebra, constructed a quotient hyper BCK-algebra, established some homomorphism theorems, and got some related results involving the hyper product of hyper BCK-algebras. G. Flores and G. Petalcorin [2] introduced regular congruence relation on a hyper BCI-algebra and presented some isomorphism theorems on hyper BCI-algebras.

In 2017, A. Iampan [4] defined a new algebraic structure called a UP-algebra and showed that the notion of UP-algebras is a generalization of KU-algebras that was introduced by C. Prabpayak and U. Leerawat [8]. Recently, D. Gomisong [3] applied hyperstuctures to UP-algebras in her graduate thesis following the structure of hyper KU-algebras by S. Mostafa et al. [5]. D. Romano gave an equivalent definition of hyper UP-algebra in [10] and proved that every hyper KU-algebra is a hyper UP-algebra. He also introduced the quotient of a hyper UP-algebra in [9]. In this paper, we investigate the concept of regular

https://www.ejpam.com

© 2020 EJPAM All rights reserved.

^{*}Corresponding author.

DOI: https://doi.org/10.29020/nybg.ejpam.v13i3.3704

 $^{{\}it Email\ addresses:\ {\tt rohaima87@yahoo.com\ (R.\ Amairanto),\ {\tt rowena.isla@g.msuiit.edu.ph\ (R.\ Isla)}}$

congruence relation on a hyper UP-algebra and present some homomorphism theorems on hyper UP-algebras. We also examine the concept of hyper product of hyper UP-algebras and extend it to the hyper product of an arbitrary family of hyper UP-algebras.

2. Preliminaries

Let H be a nonempty set and $\mathcal{P}^*(H)$ be the set of all nonempty subsets of H. A hyperoperation on H is a mapping from $H \times H$ into $\mathcal{P}^*(H)$.

Definition 1. [3] A hyper UP-algebra is a set H with constant 0 and hyperoperation \circledast satisfying the following axioms: for all $x, y, z \in H$,

- (HUP1) $[(x \circledast y) \circledast (x \circledast z)] \ll y \circledast z$,
- (HUP2) $0 \circledast x = \{x\},\$
- (HUP3) $x \circledast 0 = \{0\},\$
- (HUP4) $x \ll y$ and $y \ll x$ imply x = y,

where $x \ll y$ is defined by $0 \in y \circledast x$ and for every $A, B \subseteq H, A \ll B$ is defined by: for all $a \in A$, there exists $b \in B$ such that $a \ll b$. In such case, we call " \ll " the hyperorder in H.

A hyper UP-algebra H with constant 0 and hyperoperation \circledast is denoted by $(H; \circledast, 0)$. By (HUP2) or (HUP3), $x \circledast y \neq \emptyset$ for all $x, y \in H$.

Note that in [10], $x \ll y$ is defined by Romano as $0 \in x \circledast y$. Thus, (HUP1) in [3] and [10] are equivalent; that is, $0 \in (y \circledast z) \circledast [(x \circledast y) \circledast (x \circledast z)]$. Moreover, (HUP2) to (HUP4) are identical, with " \circ " denoted by " \circledast ".

Example 1. [3] Let $H = \{0, a, b, c\}$ be a set. Define the hyperoperation \circledast by the following Cayley table :

*	0	a	b	с
0	{0}	{a}	{b}	$\{c\}$
a	$\{0\}$	$\{0,a\}$	${0,b}$	$\{c\}$
b	$\{0\}$	$\{a\}$	${0,b}$	$\{c\}$
c	$\{0\}$	$\{0,a\}$	$\{0,b\}$	$\{0,a,c\}$

Then, $(H; \circledast, 0)$ is a hyper UP-algebra.

Proposition 1. [3, 10] Let H be a hyper UP-algebra. Then the following hold for all $x, y, z \in H$ and for every nonempty subsets $A, B, C \subseteq H$:

- (i) $0 \circledast 0 = \{0\}$ (iii) $z \ll z$
- (ii) $0 \circledast A = A$ (iv) $A \subseteq B$ implies $A \ll B$

Definition 2. [3] Let $(H; \circledast, 0)$ and $(H'; \circledast', 0')$ be hyper UP-algebras. A mapping $f: H \to K$ is called a *hyper homomorphism* if

- (HH1) f(0) = 0',
- (HH2) $f(x \circledast y) = f(x) \circledast' f(y)$ for all $x, y \in H$.

The following definitions are analogous to the ones given by Borzooei and Harizavi [1] for regular congruence realtions on hyper BCK-algebras.

Definition 3. Let θ be an equivalence relation on a hyper UP-algebra H and $A, B \subseteq H$. Then

- (i) $A\theta B$ if there exists $a \in A$ and $b \in B$ such that $a\theta b$;
- (*ii*) $A\overline{\theta}B$ if for all $a \in A$, there exists $b \in B$ such that $a\theta b$ and for all $b \in B$, there exists $a \in A$ such that $a\theta b$;
- (*iii*) θ is called a *congruence relation* on H if whenever $x\theta y$ and $x'\theta y'$, then $(x \circledast x')\overline{\theta}(y \circledast y')$, for all $x, y, x', y' \in H$;
- (iv) θ is called a regular congruence relation on H if θ is a congruence relation on H and whenever $(x \circledast y)\theta\{0\}$ and $(y \circledast x)\theta\{0\}$, then $x\theta y$ for all $x, y \in H$.

The set $[x]_{\theta} = \{y \in H : y \in y\}$ is called the *congruence class* determined by x.

3. Regular Congruence Relations and Hyper Homomorphisms on Hyper UP-algebras

All throughout, H, H', H'' are hyper UP-algebras.

Proposition 2. If $f : H \longrightarrow H'$ is a hyper homomorphism, then for all nonempty subsets $A, B \subseteq H$ we have $f(A \circledast B) = f(A) \circledast' f(B)$.

Proof. Let $f : H \longrightarrow H'$ be a hyper homomorphism and $\emptyset \neq A, B \subseteq H$. Let $x \in f(A \circledast B) = f\left(\bigcup_{a \in A, b \in B} a \circledast b\right)$. Then there exist $a \in A$ and $b \in B$ such that $x \in f(a \circledast b)$. Since f is a hyper homomorphism

Since f is a hyper homomorphism,

$$x \in f(a) \circledast' f(b) \subseteq \bigcup_{f(a) \in f(A), f(b) \in f(B)} f(a) \circledast' f(b) = f(A) \circledast' f(B).$$

Thus, $f(A \circledast B) \subseteq f(A) \circledast' f(B)$. Now, let

$$y \in f(A) \circledast' f(B) = \bigcup_{f(a) \in f(A), f(b) \in f(B)} f(a) \circledast' f(b).$$

Then there exist $f(a) \in f(A)$ and $f(b) \in f(B)$ such that $y \in f(a) \circledast' f(b)$. Since f is a hyper homomorphism,

$$y \in f(a \circledast b) \in f\left(\bigcup_{a \in A, b \in B} a \circledast b\right) = f(A \circledast B).$$

Thus, $f(A) \circledast' f(B) \subseteq f(A \circledast B)$. Therefore, $f(A \circledast B) = f(A) \circledast' f(B)$.

Definition 4. Let $f : H \longrightarrow H'$ be a hyper homomorphism. We say that f is a hyper monomorphism if f is one-to-one, and f is a hyper epimorphism if f is onto; f is a hyper isomorphism, denoted by $\cong_{\mathcal{H}}$, if f is both one-to-one and onto.

Lemma 1. Suppose $f : H \longrightarrow H'$ and $g : H' \longrightarrow H''$ are both hyper homomorphisms (epimorphisms) of hyper UP-algebras. Then $g \circ f$ is a hyper homomorphism (epimorphism) of hyper UP-algebras.

The following result establishes the transitivity of the relation θ on H.

Lemma 2. Let θ be an equivalence relation on H and $A, B \subseteq H$. If $A\bar{\theta}B$ and $B\bar{\theta}C$, then $A\bar{\theta}C$.

Proof. Suppose that $A\bar{\theta}B$ and $B\bar{\theta}C$. Since $A\bar{\theta}B$, by Definition 3(*ii*), for each $a \in A$ (respectively $b \in B$), there exists $b \in B$ (respectively $a \in A$) such that $a\theta b$. Similarly, since $B\bar{\theta}C$, for all $b \in B$ (respectively $c \in C$), there exists $c \in C$ (respectively $b \in B$) such that $b\theta c$. Since by assumption θ is an equivalence relation for each $a \in A$ (respectively $c \in C$), there exists $c \in C$ (respectively $a \in A$) such that $a\theta c$. Therefore, $A\bar{\theta}C$. \Box

Lemma 3. Let θ be an equivalence relation on H. Then the following are equivalent:

- (i) θ is a congruence relation on H;
- (*ii*) if $x\theta y$, then $(x \circledast a)\overline{\theta}(y \circledast a)$ and $(a \circledast x)\overline{\theta}(a \circledast y)$ for all $a, x, y \in H$.

Proof. (i) \Longrightarrow (ii) Let θ be a congruence relation on H and $a, x, y \in H$. Suppose $x\theta y$. Since θ is a congruence relation on H and $a\theta a, (x \otimes a)\overline{\theta}(y \otimes a)$ and $(a \otimes x)\overline{\theta}(a \otimes y)$, by Definition 3(*iii*).

 $(ii) \Longrightarrow (i)$ Assume $x\theta y$. Let $x, y, x', y' \in H$. Suppose that $x\theta y$ and $x'\theta y'$. By $(ii), (x \circledast x')\overline{\theta}(y \circledast x')$ and $(y \circledast x')\overline{\theta}(y \circledast y')$, so that by Lemma 2, $(x \circledast x')\overline{\theta}(y \circledast y')$. By Definition $3(iii), \theta$ is a congruence relation on H.

486

Theorem 1. Suppose that θ and θ' are regular congruence relations on H with $[0]_{\theta} = [0]_{\theta'}$. Then $\theta = \theta'$.

Proof. Let θ and θ' be regular conguence relations on H with $[0]_{\theta} = [0]_{\theta'}$. Since θ and θ' are both equivalence relations on H, it suffices to show that $x\theta y$ if and only if $x\theta' y$ for all $x, y \in H$. Let $x\theta y$. Since θ is a congruence relation on H, by Lemma 3, $(x \otimes x)\overline{\theta}(x \otimes y)$. Note that $0 \in x \otimes x$ by Proposition 1(iii). Thus by Definition 3(ii), there exists an element $s \in x \otimes y$ such that $0\theta s$. It follows that $s \in [0]_{\theta} = [0]_{\theta'}$. Hence, $(x \otimes y)\theta'\{0\}$.

In a similar manner, since $x\theta y$, $(y \circledast x)\overline{\theta}(y \circledast y)$. Also, $0 \in y \circledast y$ implies that there exists $t \in y \circledast x$ such that $0\theta t$. Hence, $t \in [0]_{\theta} = [0]_{\theta'}$. Thus, $(y \circledast x)\theta'\{0\}$. Now, since $(x \circledast y)\theta'\{0\}, (y \circledast x)\theta'\{0\}$, and θ' is a regular congruence relation, we have $x\theta'y$ by Definition 3(iv).

Similarly, let $x\theta' y$. Then $(x \otimes x)\overline{\theta'}(x \otimes y)$. Also, $0 \in x \otimes x$ implies that there exists an element $s \in x \otimes y$ such that $0\theta' s$. Furthermore, $s \in [0]_{\theta'} = [0]_{\theta}$. So, $(x \otimes y)\theta\{0\}$.

By similar argument, we will obtain $(y \circledast x)\theta'(y \circledast y)$. Since $0 \in y \circledast y$, there exists $v \in y \circledast x$ such that $0\theta'v$. So, $v \in [0]_{\theta'} = [0]_{\theta}$. Hence, $(y \circledast x)\theta\{0\}$. Since θ is a regular congruence relation, we have $x\theta y$.

We now reformulate the quotient structure of a hyper UP-algebra presented in [9] via regular congruence relation on a hyper UP-algebra H.

Theorem 2. [9] Let θ be a regular congruence relation on H, $I = I_0 = [0]_{\theta}$ and $H/I = \{I_x : x \in H\}$, where $I_x = [x]_{\theta}$ for all $x \in H$. Then H/I with the hyperoperation \circledast and hyperorder \ll which are defined as follows

$$I_x \circledast I_y = \{I_z : z \in x \circledast y\}$$
 and $I_x \ll I_y$ if and only if $I \in I_y \circledast I_x$

is a hyper UP-algebra which is called the quotient hyper UP-algebra.

Example 2. Let $H = \{0, 1, 2, 3\}$ be a set. Define the hyperoperation \circledast by the following Cayley table:

*	0	1	2	3
0	{0}	{1}	$\{2\}$	{3}
1	$\{0\}$	$\{0,\!1\}$	$\{0,\!2\}$	$\{1,3\}$
2	$\{0\}$	$\{1\}$	$\{0,\!2\}$	$\{3\}$
3	$\{0\}$	$\{0,\!1\}$	$\{0,\!2\}$	$\{0,\!1,\!3\}$

By routine calculations, $(H; \circledast, 0)$ is a hyper UP-algebra. Define a relation θ on H by $\theta = \{(0,0), (1,1), (0,2), (2,0), (2,2), (3,3)\}$. By Lemma 3, it can be verified that θ is a congruence relation on H. Moreover, by routine calculations, θ is a regular congruence relation. Consider $I_0 = I = [0]_{\theta} = \{0,2\}, I_1 = \{1\}$, and $I_3 = \{3\}$. Then $H/I = \{I, I_1, I_3\}$. Thus, our Cayley table is as follows:

*	Ι	I_1	I_3
Ι	$\{I\}$	$\{I_1\}$	$\{I_3\}$
I_1	$\{I\}$	$\{I, I_1\}$	$\{I_1, I_3\}$
I_3	$\{I\}$	$\{I, I_1\}$	$\{I, I_1, I_3\}$

By routine calculations, H/I is a hyper UP-algebra.

To establish the First Hyper Isomorphism Theorem on hyper UP-algebras, we first reformulate some results on hyper homomorphisms of hyper UP- algebras.

Lemma 4. [9] Let θ be a regular congruence relation on H and $I = [0]_{\theta}$. Then the mapping $\pi : H \longrightarrow H/I$ which is defined by $\pi(x) = I_x$, for all $x \in H$, is a hyper epimorphism which is called the canonical epimorphism.

Theorem 3. [9] (Hyper Homomorphism Theorem) Let θ be a regular congruence on H and $I = [0]_{\theta}$. If $f : H \longrightarrow H'$ is a hyper homomorphism of hyper UP-algebras such that I is contained in the kernel of f, then $\overline{f} : H/I \longrightarrow H'$, which is defined by $\overline{f}(I_x) = f(x)$, for all $x \in H$, is a unique hyper homomorphism such that $\overline{f} \circ \pi = f$, where π denotes the canonical epimorphism and \circ is the composition map.

Theorem 4. (First Hyper Isomorphism Theorem) Let θ be a regular congruence relation on H and $I = [0]_{\theta}$. If $f : H \longrightarrow H'$ is a hyper homomorphism of hyper UPalgebras such that ker f = I, then $H/\ker f \cong_{\mathcal{H}} Imf$.

Proof. Define $\overline{f} : H/I \longrightarrow H'$ by $\overline{f}(I_x) = f(x)$ for all $x \in H$. Let $x, y \in H$. Then $I_x, I_y \in H/I$. From Theorem 3, \overline{f} is a hyper homomorphism. Thus, $\overline{f}(I_x \circledast I_y) = \overline{f}(I_x) \circledast' \overline{f}(I_y)$ and $\overline{f}(I) = 0'$.

Suppose that $\bar{f}(I_x) = \bar{f}(I_y)$ with $x, y \in H$. Then f(x) = f(y). Since f is a hyper homomorphism, $0' = f(0) \in f(x \circledast x) = f(x) \circledast' f(x) = f(x) \circledast' f(y) = f(x \circledast y)$. So, there exists an element $u \in x \circledast y$ such that f(u) = 0', that is, $u \in \ker f = I = [0]_{\theta}$. Thus, $u\theta 0$ and $(x \circledast y)\theta\{0\}$. Also, $0' = f(0) \in f(x \circledast x) = f(x) \circledast' f(x) = f(y) \circledast' f(x) = f(y \circledast x)$. Thus, there exists an element $v \in y \circledast x$ such that f(v) = 0'. Moreover, $v \in \ker f = I = [0]_{\theta}$ and $v\theta 0$. Thus, $(y \circledast x)\theta\{0\}$. Since θ is a regular congruence relation, it follows that $x\theta y$. Thus, $I_x = I_y$. Hence, \bar{f} is one-to-one, thus $\ker \bar{f} = (\ker f)/I \subseteq H/I$ is trivial, which occurs if and only if $\ker f = I$. Clearly, $Im \bar{f} = Im f$ and $\bar{f} : H/I \longrightarrow Im f$ is onto. Therefore, $H/\ker f \cong_{\mathcal{H}} Imf$.

Lemma 5. Let $f : H \longrightarrow H'$ be a hyper homomorphism on hyper UP-algebras with $I = [0]_{\theta}$ and $J = [0']_{\theta'}$ where θ and θ' are regular congruence relations on H and H', respectively. Suppose that $I \subseteq \ker f$. Then for all $x, y \in H, x\theta y$ implies that $f(x)\theta'f(y)$.

Proof. Let $f : H \longrightarrow H'$ be a hyper homomorphism with $I = [0]_{\theta} \subseteq \ker f$ and $J = [0']_{\theta'}$ where θ and θ' are regular congruence relations on H and H', respectively. Let $x, y \in H$ such that $x\theta y$. Since θ is a regular congruence relation, we have $x\theta x$ and $(x \circledast x)\overline{\theta}(x \circledast y)$ by Definition 3(iii). Since $0 \in x \circledast x$ by Proposition 1(iii), there exists an element $u \in x \circledast y$ such that $0\theta u$. Thus, $u \in I \subseteq \ker f$, that is, f(u) = 0'. It follows that $f(u) \in H'$ and $f(u)\theta'0'$. Since f is a hyper homomorphism, $f(u) \in f(x \circledast y) = f(x) \circledast' f(y)$, thus $(f(x) \circledast' f(y))\overline{\theta'}\{0'\}$.

Using similar argument, with $y\theta y$, we have $(f(y) \otimes' f(x))\overline{\theta'}\{0'\}$. Since θ' is a regular congruence relation, by Definition 3(iv) we have $f(x)\theta'f(y)$.

Theorem 5. Let θ and θ' be regular congruence relations on hyper UP-algebras H and H', respectively, such that $I = [0]_{\theta}$ and $J = [0']_{\theta'}$. If $f : H \longrightarrow H'$ is a hyper homomorphism of hyper UP-algebras such that $x\theta y$ if and only if $f(x)\theta'f(y)$, for all $x, y \in H$, then there exists a unique hyper homomorphism $f^* : H/I \longrightarrow H'/J$ such that $\pi' \circ f = f^* \circ \pi$ where π and π' are the canonical epimorphisms and \circ is the composition map.

$$\begin{array}{cccc} H & \stackrel{f}{\longrightarrow} & H' \\ \downarrow_{\pi} & & \downarrow_{\pi'} \\ H/I & \stackrel{f^*}{\longrightarrow} & H'/J \end{array}$$

Proof. Consider the mapping $f^* : H/I \longrightarrow H'/J$ defined by $f^*(I_x) = J_{f(x)}$, for all $x \in H$. Let $x, y \in H$ such that $I_x = I_y$. Then $x \theta y$ and so $f(x)\theta'f(y)$ by assumption. Hence, $f^*(I_x) = J_{f(x)} = J_{f(y)} = f^*(I_y)$ and f^* is well-defined.

Let $I_x, I_y \in H/I$ and $J_t \in f^*(I_x \circledast I_y)$. Then there exists an element $t' \in x \circledast y$ such that $J_{f(t')} = f^*(I_{t'}) = J_t$. Now, $t' \in x \circledast y$ implies $f(t') \in f(x \circledast y) = f(x) \circledast' f(y)$. So, $J_t = J_{f(t')} \in J_{f(x)} \circledast' J_{f(y)} = f^*(I_x) \circledast' f^*(I_y)$. Hence, $f^*(I_x \circledast I_y) \subseteq f^*(I_x) \circledast' f^*(I_y)$.

Next, let $J_s \in f^*(I_x) \circledast' f^*(I_y) = J_{f(x)} \circledast' J_{f(y)}$. Then $s \in f(x) \circledast' f(y) = f(x \circledast y)$. Now, $s \in f(x \circledast y)$ implies there exists $w \in x \circledast y$ such that f(w) = s, that is, $I_w \in I_x \circledast I_y$ and $J_s = J_{f(w)} = f^*(I_w) \in f^*(I_x \circledast I_y)$. Therefore, $f^*(I_x) \circledast' f^*(I_y) \subseteq f^*(I_x \circledast I_y)$ and so $f^*(I_x \circledast I_y) = f^*(I_x) \circledast' f^*(I_y)$. Moreover, $f^*(I) = J_{f(0)} = J_{0'} = J$. Also, $dom(\pi' \circ f) = H = dom(f^* \circ \pi)$. Let $x \in H$. Then

$$(\pi' \circ f)(x) = \pi'(f(x)) = J_{f(x)} = f^*(I_x) = f^*(\pi(x)) = (f^* \circ \pi)(x).$$

Thus, $\pi' \circ f = f^* \circ \pi$. Next, we let $\phi : H/I \longrightarrow H'/J$ be a homomorphism such that $\pi' \circ f = \phi \circ \pi$. Note that $dom(\pi' \circ f) = H = dom(\phi \circ \pi)$. Then $\phi = f^*$ since for all $x \in H$, we have $\phi(I_x) = \phi(\pi(x)) = J_{\pi(x)} = \pi'(f(x)) = (\pi' \circ f)(x) = (f^* \circ \pi)(x) = f^*(I_x)$. \Box

Theorem 6. Suppose $f : H \longrightarrow H'$ is a hyper epimorphism of hyper UP-algebras, θ' is a regular conruence relation on H' and $J = [0']_{\theta'}$. Then there exists a regular congruence relation θ on H such that $H/I \cong_{\mathcal{H}} H'/J$, where $I = [0]_{\theta}$.

Proof. Define θ on H by $x\theta y$ if and only if $f(x)\theta'f(y)$, for all $x, y \in H$. Let $x \in H$. Then $f(x) \in H'$ and so, by reflexivity of θ' on H', we have $f(x)\theta'f(x)$. It follows that $x\theta x$ and θ is a reflexive relation on H. Assume that $x\theta y$, where $x, y \in H$. So, $f(x), f(y) \in H'$ and $f(x)\theta'f(y)$. Hence, $f(y)\theta'f(x)$ which will imply that $y\theta x$. Thus, θ is a symmetric relation on H. Suppose $x\theta y$ and $y\theta z$, where $x, y, z \in H$. Then $f(x)\theta'f(y)$ and $f(y)\theta'f(z)$, for all $x, y, z \in H$. Note that $f(x), f(y), f(z) \in H'$ and by transitivity of θ' on H', we have $f(x)\theta'f(z)$. Thus, $x\theta z$ on H and θ is a transitive relation on H. Therefore, θ is an equivalence relation on H.

Next, we will show that θ is a congruence relation. Let $a, x, y \in H$ such that $x\theta y$. Then $f(x)\theta'f(y)$. Since $f(a), f(x), f(y) \in H'$ and θ' is a congruence relation on H', from

Lemma 3 it follows that $(f(x) \otimes f(a))\overline{\theta'}(f(y) \otimes f(a))$ and $(f(a) \otimes f(x))\overline{\theta'}(f(a) \otimes f(y))$. Thus, $(x \otimes a)\overline{\theta}(y \otimes a)$ and $(a \otimes x)\overline{\theta}(a \otimes y)$. Therefore, by Lemma 3, θ is a congruence relation on H.

Let $x, y \in H$ such that $(x \circledast y)\theta\{0\}$ and $(y \circledast x)\theta\{0\}$. Then $f(x), f(y) \in H'$ and there exist $a \in (x \circledast y)$ and $b \in (y \circledast x)$ such that $a\theta 0$ and $b\theta 0$. Since f is a hyper homomorphism and $f(0) = 0', f(a) \in f(x \circledast y) = f(x) \circledast' f(y)$ and $f(b) \in f(y \circledast x) = f(y) \circledast' f(x)$ such that $f(a)\theta'0'$ and $f(b)\theta'0'$. Thus, $(f(x) \circledast' f(y))\theta'\{0'\}$ and $(f(y) \circledast' f(x))\theta'\{0'\}$. Since θ' is a regular congruence relation on $H', f(x)\theta'f(y)$, implying that $x\theta y$. Therefore, θ is a regular congruence relation on H.

Next, let $x \in I = [0]_{\theta}$. Since $x\theta 0$ and f(0) = 0', $f(x)\theta'0'$. It follows that $f(x) \in [0']_{\theta'} = J$, so $x \in f^{-1}(J)$. Thus, $I \subseteq f^{-1}(J)$. On the other hand, let $y \in f^{-1}(J)$. Then $f(y) \in J = [0']_{\theta'}$ and $f(y)\theta'0'$. Hence, $y\theta 0$ and $y \in [0]_{\theta} = I$, implying that $f^{-1}(J) \subseteq I$. Thus, $I = f^{-1}(J)$.

Now, let $\pi : H' \longrightarrow H'/J$ be the canonical hyper epimorphism and define $\bar{f} : H \longrightarrow H'/J$ by $\bar{f} = \pi \circ f$. Since π and f are both hyper epimorphisms of hyper UP-algebras, by Lemma 1, \bar{f} is a hyper epimorphism. Observe that

$$ker \ \bar{f} = \{x \in H : \bar{f}(x) = J\} \\ = \{x \in H : \pi(f(x)) = J\} \\ = \{x \in H : J_{f(x)} = J\} \\ = \{x \in H : f(x) \in J\} \\ = \{x \in H : x \in f^{-1}(J)\} \\ = \{x \in H : x \in I\} \\ = I.$$

Therefore, by the First Hyper Isomorphism Theorem, $H/I \cong_{\mathcal{H}} H'/J$.

Theorem 7. Let $f : H \longrightarrow H'$ be a hyper epimorphism on hyper UP-algebras and let Θ and Ω be relations on H and H', respectively, defined by $x\Theta y \iff f(x)\Omega f(y)$ for all $x, y \in H$. Then Θ is a regular congruence relation on H if and only if Ω is a regular congruence relation on H.

Proof. Utilizing the proof of Theorem 6, we only need to show that Θ is a regular congruence relation on H implies that Ω is a regular congruence relation on H'. Suppose Θ is a regular congruence relation on H. Let $u, v, w \in H'$. Then there exist $x, y, z \in H$ such that f(x) = u, f(y) = v, and f(z) = w. Since Θ is an equivalence relation on $H, x\Theta x$, thus $u = f(x)\Omega f(x) = u$ and Ω is a reflexive relation on H'. Suppose $u\Omega v$. Then $x\Theta y$ and since Θ is a symmetric relation on $H, y\Theta x$, so $v\Omega u$ and Ω is a symmetric relation on H'. Suppose $u\Omega v$ and $v\Omega w$. Then $x\Theta y$ and $y\Theta z$. Since Θ is a transitive relation on $H, x\Theta z$, that is, $u\Omega w$. Thus, Ω is an equivalence relation on H'.

Let $b, u, v \in H'$ and $u\Omega v$. Then there exist $a, x, y \in H$ such that b = f(a), u = f(x), v = f(y), and $x\Theta y$. Since Θ is a congruence relation on H and $a \in H, (a \circledast x)\overline{\Theta}(a \circledast y)$ by

Lemma 3. Hence, $f(a) \circledast' f(x) = f(a \circledast x)\overline{\Omega}f(a \circledast y) = f(a) \circledast' f(y)$, that is, $(b \circledast' u)\overline{\Omega}(b \circledast' v)$. Similarly, since Θ is a congruence relation on H and $a \in H$, $(x \circledast a)\overline{\Theta}(y \circledast a)$. So, $f(x) \circledast' f(a) = f(x \circledast a)\overline{\Omega}f(y \circledast a) = f(y) \circledast' f(a)$, that is, $(u \circledast' b)\overline{\Omega}(v \circledast' b)$. Hence, Ω is a congruence relation on H'.

Now, let $u, v \in H'$ such that $(u \circledast' v)\Omega\{0'\}$ and $(v \circledast' u)\Omega\{0'\}$. Since $(u \circledast' v)\Omega\{0'\}$ and f is a hyper epimorphism, it follows that there exist $s, t \in H$ such that $f(s) = u, f(t) = v, f(s \circledast t) = f(s) \circledast' f(t) = (u \circledast' v)\Omega\{0'\}$. Similarly, $(v \circledast' u)\Omega\{0'\}$ implies $f(t \circledast s) = f(t) \circledast' f(s) = (v \circledast' u)\Omega\{0'\}$. Hence, $(s \circledast t)\Theta\{0\}$ and $(t \circledast s)\Theta\{0\}$. Since Θ is a regular congruence relation on H, it follows that $s\Theta t$ and $u\Omega v$. Therefore, Ω is a regular congruence relation on H'.

Remark 1. Let $f : H \longrightarrow H'$ be a hyper epimorphism on hyper UP-algebras and let Θ and Ω be the relations on H and H', respectively, as defined in Theorem 7. Then

- (i) Ω is called the regular congruence relation induced by f and Θ , and
- (ii) Θ is called the regular congruence relation induced by f and Ω .

Theorem 8. Let $f : H \longrightarrow H'$ be a hyper epimorphism on hyper UP-algebras. Then there is a one-to-one correspondence between the regular congruence relations on H' and the regular congruence relations on H such that ker f is contained in the regular congruence class containing 0.

Proof. Let $f: H \longrightarrow H'$ be a hyper epimorphism of hyper UP-algebras and

 $\mathcal{A} = \{ \Theta : \Theta \text{ is a regular congruence relation on } H \text{ with } ker \ f \subseteq [0]_{\Theta} \}$ $\mathcal{B} = \{ \Omega : \Omega \text{ is a regular congruence relation on } H' \}.$

Define $\gamma : \mathcal{A} \longrightarrow \mathcal{B}$ by $\gamma(\Theta) = \Omega$, where Ω is the regular congruence relation on H' induced by f and Θ . Then $\Omega \in \mathcal{B}$. Let $\Theta_1, \Theta_2 \in \mathcal{A}$ such that $\Omega_1 = \gamma(\Theta_1) = \gamma(\Theta_2) = \Omega_2$. Then for all $x, y \in H, x\Theta_1 y \Leftrightarrow f(x)\Omega_1 f(y) \Leftrightarrow f(x)\Omega_2 f(y) \Leftrightarrow x\Theta_2 y$. Hence, $\Theta_1 = \Theta_2$ and γ is well-defined and one-to-one.

Now, let $\Omega \in \mathcal{B}$ and consider the induced regular congruence relation Θ on H. If $x \in \ker f$, then f(x) = f(0). So, $f(x)\Omega f(0)$ implies $x\Theta 0$. Thus, $\ker f \subseteq [0]_{\Theta}$ and so, $\Theta \in \mathcal{A}$. Lastly, we show that γ is onto, that is, $\gamma(\Theta) = \Omega$. Suppose $\gamma(\Theta) = \Omega'$ for some $\Omega' \in \mathcal{B}$. Then by the definitions of Ω and Θ , for each $t \in H'$,

$$t\Omega'0' \Leftrightarrow t = f(x)$$
 and $x\Theta 0$ for some $x \in H \Leftrightarrow f(x)\Omega f(0) \Leftrightarrow t\Omega 0'$.

Thus, $[0']_{\Omega} = [0']_{\Omega'}$ and by Theorem 1, $\Omega = \Omega'$. Hence, $\gamma(\Theta) = \Omega$. Therefore, γ is a bijection.

4. Hyper Product of Hyper UP-algebras

Throughout this section, H and K shall mean the hyper UP-algebras $(H, \circledast_H, 0_H)$ and $(K, \circledast_K, 0_k)$ with \ll_H and \ll_K as their hyper orders, respectively.

The following introduction of the hyper product of two hyper UP-algebras is influenced by the construction of the hyper product of two hyper BCK-algebras by Borzooei et al. [12], as cited in [1].

Suppose H and K are hyper UP-algebras. Then

 $H \times K = \{(a, b) | a \in H \text{ and } b \in K\}.$

Define the hyperoperation " \circledast " on $H\times K$ by

$$(a,b) \circledast (c,d) = (a \circledast_H c, b \circledast_K d)$$

and hyperorder " \ll " by $(a, b) \ll (c, d) \iff a \ll_H c$ and $b \ll_K d$ for all $(a, b), (c, d) \in H \times K$. *K*. For every $(A, B), (C, D) \subseteq H \times K, (A, B) \ll (C, D)$ if and only if for all $(a, b) \in (A, B)$, there exists $(c, d) \in (C, D)$ such that $(a, b) \ll (c, d)$. Then $(H \times K; \circledast, (0_H, 0_K))$ is called the hyper product of *H* and *K*.

Theorem 9. [9] Let H and K be hyper UP-algebras. Then $H \times K$ is a hyper UP-algebra.

Theorem 10. Let $\alpha_1 : H_1 \longrightarrow K_1$ and $\alpha_2 : H_2 \longrightarrow K_2$ be hyper homomorphisms of hyper UP-algebras. Define $\alpha : H_1 \times H_2 \longrightarrow K_1 \times K_2$ by $\alpha((a,b)) = (\alpha_1(a), \alpha_2(b))$ for all $(a,b) \in H_1 \times H_2$. Then

- (i) α is a hyper homomorphism;
- (*ii*) ker $\alpha = ker \ \alpha_1 \times ker \ \alpha_2$;
- (*iii*) $Im \ \alpha = Im \ \alpha_1 \times Im \ \alpha_2$; and
- (iv) α is a hyper monomorphism (respectively, hyper epimorphism) if and only if α_i is a hyper monomorphism (respectively, hyper epimorphism) for each i = 1, 2.

Proof. Define $\alpha : H_1 \times H_2 \longrightarrow K_1 \times K_2$ by $\alpha((a, b)) = (\alpha_1(a), \alpha_2(b))$ for all $(a, b) \in H_1 \times H_2$.

(i) Let $(a,b), (c,d) \in H_1 \times H_2$ such that (a,b) = (c,d). Then a = c and b = d. Now, since α_1 and α_2 are well-defined maps, it follows that

$$\alpha((a,b)) = (\alpha_1(a), \alpha_2(b))$$
$$= (\alpha_1(c), \alpha_2(d))$$
$$= \alpha((c,d)).$$

So, α is a well-defined map. Observe that $(0_{H_1}, 0_{H_2}) \in H_1 \times H_2$. Since α_1 and α_2 are hyper homomorphisms, by (HH1) we have

$$\alpha((0_{H_1}, 0_{H_2})) = (\alpha_1(0_{H_1}), \alpha_2(0_{H_2})) = (0_{K_1}, 0_{K_2})$$

and by (HH2),

$$\begin{aligned} \alpha((a,b) \circledast (c,d)) &= \alpha((a \circledast c, b \circledast d)) \\ &= \{\alpha((u,v)) | u \in a \circledast c, v \in b \circledast d\} \\ &= \{(\alpha_1(u), \alpha_2(v)) | u \in a \circledast c, v \in b \circledast d\} \\ &= (\alpha_1(a \circledast c), \alpha_2(b \circledast d)) \\ &= (\alpha_1(a) \circledast \alpha_1(c), \alpha_2(b) \circledast \alpha_2(d)) \\ &= \alpha(a,b) \circledast \alpha(c,d). \end{aligned}$$

Hence, α is a hyper homomorphism.

(*ii*) By definition,

$$ker \ \alpha = \{(a,b) \in H_1 \times H_2 | \alpha((a,b)) = (0_{K_1}, 0_{K_2}) \}$$

= $\{(a,b) \in H_1 \times H_2 | (\alpha_1(a), \alpha_2(b)) = (0_{K_1}, 0_{K_2}) \}$
= $\{(a,b) \in H_1 \times H_2 | \alpha_1(a) = 0_{K_1} \text{ and } \alpha_2(b) = 0_{K_2} \}$
= $\{(a,b) \in H_1 \times H_2 | a \in ker \ \alpha_1, b \in ker \ \alpha_2 \}$
= $ker \ \alpha_1 \times ker \ \alpha_2.$

(*iii*) By definition,

$$Im \ \alpha = \{ \alpha((a,b)) | (a,b) \in H_1 \times H_2 \} \\ = \{ (\alpha_1(a), \alpha_2(b)) | (a,b) \in H_1 \times H_2 \} \\ = \{ (\alpha_1(a), \alpha_2(b)) | \alpha_1(a) \in Im \ \alpha_1, \ \alpha_2(b) \in Im \ \alpha_2 \} \\ = Im \ \alpha_1 \times Im \ \alpha_2.$$

(*iv*) Suppose that α is one-to-one. Let $a, c \in H_1$ and $b, d \in H_2$ such that $\alpha_1(a) = \alpha_1(c)$ and $\alpha_2(b) = \alpha_2(d)$. Then

$$\alpha((a,b)) = (\alpha_1(a), \alpha_2(b)) = (\alpha_1(c), \alpha_2(d)) = \alpha((c,d)).$$

Since α is one-to-one, (a, b) = (c, d), that is, a = c and b = d. Thus, α_1 and α_2 are one-to-one maps.

Conversely, assume that α_1 and α_2 are one-to-one maps. Suppose $(a, b), (c, d) \in H_1 \times H_2$ such that $\alpha((a, b)) = \alpha((c, d))$. Then $(\alpha_1(a), \alpha_2(b)) = \alpha((a, b)) = \alpha((c, d)) = (\alpha_1(c), \alpha_2(d))$. This means that $\alpha_1(a) = \alpha_1(c)$ and $\alpha_2(b) = \alpha_2(d)$ and since α_1 and α_2 are both one-to-one, it follows that a = c and b = d. Hence, (a, b) = (c, d). Therefore, α is one-to-one.

Suppose α is onto. Let $x \in K_1$ and $y \in K_2$. It follows that $(x, y) \in K_1 \times K_2$. Since α is onto, there exists $(a, b) \in H_1 \times H_2$ such that $(\alpha_1(a), \alpha_2(b)) = \alpha((a, b)) = (x, y)$, that is, $\alpha_1(a) = x$ and $\alpha_2(b) = y$ for some $a \in H_1$ and $b \in H_2$. So, α_1 and α_2 are onto

maps. Next, suppose α_1 and α_2 are onto maps. Let $(x, y) \in K_1 \times K_2$. Then $x \in K_1$ and $y \in K_2$. Since α_1 and α_2 are onto maps, we can pick some elements $a \in H_1$ and $b \in H_2$ such that $\alpha_1(a) = x$ and $\alpha_2(b) = y$, that is, $\alpha((a, b)) = (\alpha_1(a), \alpha_2(b)) = (x, y)$ for some $(a, b) \in H_1 \times H_2$. Therefore, α is onto and (iv) holds. \Box

Recall that if $\{A_k : k \in \mathcal{I}\}$ is a family of sets, the Cartesian product $\prod_{k \in \mathcal{I}} A_k$ is the set of all functions $p : \mathcal{I} \longrightarrow \bigcup_{k \in \mathcal{I}} A_k$ such that $p(k) \in A_k$, for all $k \in \mathcal{I}$. If $p \in \prod_{k \in \mathcal{I}} A_k$ such that $p(i) = a_i \in A_i$ for all $i \in \mathcal{I}$, then we will denote p as $\{a_i\}$.

We now extend the hyper product $H \times K$ of H and K to the hyper product of an arbitrary family of hyper UP-algebras.

Let $\{H_k : k \in \mathcal{I}\}$ be a family of hyper UP-algebras. For each $k \in \mathcal{I}$, let $\circledast_k, 0_k$, and \ll_k be the hyperoperation, the zero element, and the hyperorder of H_k , respectively. Let $G = \prod_{k \in \mathcal{I}} H_k$ and define the hyperoperation \circledast as follows: for $\{x_k\}, \{y_k\} \in G, \{x_k\} \circledast$ $\{y_k\} = \prod_{k \in \mathcal{I}} (x_k \circledast y_k)$. Since $x_k \circledast y_k \neq \emptyset$ for each $k \in \mathcal{I}$, the Axiom of Choice ensures us that $\prod_{k \in \mathcal{I}} (x_k \circledast y_k) \neq \emptyset$, and so \circledast is indeed a hyperoperation. The zero element of G is $\{0_k\}$, and under the hyperoperation \circledast , the hyperorder \ll is established as follows: for $\{x_k\}, \{y_k\} \in G$,

$$\{x_k\} \ll \{y_k\} \iff \{0_k\} \in \{y_k\} \circledast \{x_k\}$$
$$\iff \{0_k\} \in \prod_{k \in \mathcal{I}} (y_k \circledast x_k)$$
$$\iff \text{for all } k \in \mathcal{I}, 0_k \in y_k \circledast x_k$$
$$\iff \text{for all } k \in \mathcal{I}, x_k \ll_k y_k,$$

and for all $\prod_{k \in \mathcal{I}} A_k$, $\prod_{k \in \mathcal{I}} B_k \subseteq \prod_{k \in \mathcal{I}} H_k$,

$$\prod_{k\in\mathcal{I}} A_k \ll \prod_{k\in\mathcal{I}} B_k \iff \forall \{a_k\} \in \prod_{k\in\mathcal{I}} A_k, \exists \{b_k\} \in \prod_{k\in\mathcal{I}} B_k \text{ such that } \{a_k\} \ll \{b_k\}$$
$$\iff \forall k\in\mathcal{I}, \forall a_k\in A_k, \exists b_k\in B_k \text{ such that } a_k\ll_k b_k$$
$$\iff \forall k\in\mathcal{I}, A_k\ll_k B_k.$$

Then $(G, \circledast, \{0_K\})$ is called the *hyper product* of $\{H_k : k \in \mathcal{I}\}$.

Lemma 6. Let $\{H_k : k \in \mathcal{I}\}$ be a nonempty family of hyper UP-algebras. Suppose that $A_k, B_k \subseteq H_k$, for all $k \in \mathcal{I}$. Then for each $k \in \mathcal{I}$,

$$\prod_{k \in \mathcal{I}} A_k \circledast \prod_{k \in \mathcal{I}} B_k = \prod_{k \in \mathcal{I}} (A_k \circledast B_k)$$

Theorem 11. Suppose that $\{H_k : k \in \mathcal{I}\}$ is a nonempty family of hyper UP-algebras. Then $\left(\prod_{k\in\mathcal{I}}H_k,\circledast,\{0_k\}\right)$ is a hyper UP-algebra.

Proof. Suppose $\{H_k : k \in \mathcal{I}\}$ is a nonempty family of hyper UP-algebras. Let $\{a_k\}, \{b_k\}, \{c_k\}, \{d_k\} \in \prod_{k \in \mathcal{I}} H_k$. Then $a_k, b_k, c_k, d_k \in H_k$ for all $k \in \mathcal{I}$. We will show

first that \circledast is a well-defined hyperoperation on $\prod H_k$.

Assume that $\{a_k\} = \{b_k\}$ and $\{c_k\} = \{d_k\}$, for all $k \in \mathcal{I}$. Then $a_k = b_k$ and $c_k = d_k$ for all $k \in \mathcal{I}$. So,

$$\{a_k\} \circledast \{c_k\} = \prod_{k \in \mathcal{I}} (a_k \circledast_k c_k) = \prod_{k \in \mathcal{I}} (b_k \circledast_k d_k) = \{b_k\} \circledast \{d_k\}$$

for all $k \in \mathcal{I}$. Thus, \circledast is a well-defined hyperoperation on $\prod_{k \in \mathcal{I}} H_k$. Let $\{x_k\}, \{y_k\}, \{z_k\} \in \mathcal{I}$ $\prod_{k \in \mathcal{I}} H_k. \text{ Then } x_k, y_k, z_k \in H_k \text{ for all } k \in \mathcal{I}. \text{ Now, for each } k \in \mathcal{I}, \text{ we have } k \in \mathcal{I}.$ $k \in \mathcal{I}$

$$\begin{aligned} (\{x_k\} \circledast \{y_k\}) \circledast (\{x_k\} \circledast \{z_k\}) &= \left(\prod_{k \in \mathcal{I}} (x_k \circledast_k y_k)\right) \circledast \left(\prod_{k \in \mathcal{I}} (x_k \circledast_k z_k)\right) \\ &= \left(\prod_{k \in \mathcal{I}} (x_k \circledast_k y_k) \circledast (x_k \circledast_k z_k)\right). \end{aligned}$$

Since for each $k \in \mathcal{I}$, $(x_k \otimes_k y_k) \otimes (x_k \otimes_k z_k) \ll_k y_k \otimes_k z_k$, it follows that

$$\prod_{k\in\mathcal{I}} (x_k \circledast_k y_k) \circledast (x_k \circledast_k z_k) \ll \prod_{k\in\mathcal{I}} (y_k \circledast_k z_k),$$

that is,

$$(\{x_k \circledast y_k\}) \circledast (\{x_k \circledast z_k\}) \ll \{y_k\} \circledast \{z_k\}.$$

This means that (HUP1) holds on $\prod_{k \in \mathcal{I}} H_k$. Since for each $k \in \mathcal{I}, 0_k \circledast_k x_k = \{x_k\}$, it follows that

$$\{0_k\} \circledast \{x_k\} = \prod_{k \in \mathcal{I}} (0_k \circledast_k x_k) = \prod_{k \in \mathcal{I}} \{x_k\}.$$

REFERENCES

Thus, (HUP2) holds on $\prod_{k \in \mathcal{I}} H_k$. Moreover, since for each $k \in \mathcal{I}, x_k \circledast_k 0_k = \{0_k\}$, it follows that

$$\{x_k\} \circledast \{0_k\} = \prod_{k \in \mathcal{I}} (x_k \circledast_k 0_k) = \prod_{k \in \mathcal{I}} \{0_k\}.$$

Hence, (HUP3) holds on $\prod_{k \in \mathcal{I}} H_k$. Furthermore, suppose $\{x_k\} \ll \{y_k\}$ and $\{y_k\} \ll \{x_k\}$ for all $k \in \mathcal{I}$. Then $x_k \ll_k y_k$ and $y_k \ll_k x_k$ for all $k \in \mathcal{I}$. Hence, $x_k = y_k$ for all $k \in \mathcal{I}$ and so $\{x_k\} = \{y_k\}$. This means that (HUP4) holds on $\prod_{k \in \mathcal{I}} H_k$. Therefore, $\left(\prod_{k \in \mathcal{I}} H_k, \circledast, \{0_k\}\right)$ is a hyper UP-algebra. \Box

Acknowledgements

This research is funded by the Philippine Department of Science and Technology-Accelerated Science and Technology Human Resource Development Program (DOST-ASTHRDP) and the Mindanao State University-Iligan Institute of Technology. The authors wish to express their sincere thanks to the reviewers for their valuable suggestions for the improvement of this paper.

References

- [1] R. Borzooei and H. Harizavi. Regular congruence relations on hyper BCK-algebras. Scientiae Mathematicae Japonicae Online, pages 217–231, 2004.
- [2] G. Flores and G. Petalcorin. Some hyper isomorphism theorems on hyper BCIalgebra. Journal of Algebra and Applied Mathematics, 13(1):15–31, 2015.
- [3] D. Gomisong. On Fully UP-semigroups and Hyper UP-algebras. Mindanao State University-Iligan Institute of Technology, Philippines, 2019.
- [4] A. Iampan. A new branch of the logical algebra: UP-algebras. Journal of Algebra and Related Topics, 5(1):35–54, 2017.
- [5] S. Mostafa F. Kareem and B. Davvaz. Hyper structure theory applied to KU-algebra. Journal of Hyperstructures, 6(2):82–95, 2017.
- [6] X. Long. Hyper BCI-algebra. Discuss Math. Soc., 26:5–19, 2006.
- [7] F. Marty. Sur une generalisation de la notion de groupe. In 8th Congress des Mathematician Scandinaves, pages 45–49, Stockholm, 1934.
- [8] C. Prabpayak and U. Leerawat. On ideals and congruence in KU-algebras. Scientia Magna Journal, 5(1):54–57, 2009.

- [9] D. Romano. Quotient of hyper UP-algebras. Preprint.
- [10] D. Romano. Hyper UP-algebras. Journal of Hyperstructures online, 8(2):1–11, 2019.
- [11] Y. Jun M. Zahedi X. Xin and R. Borzooei. On hyper BCK-algebra. Italian Journal of Pure and Applied Mathematics, 10:127–136, 2000.
- [12] R. Borzooei A. Hasankhani M. Zahedi and Y. Jun. On hyper K-algebras. Mathematicae Japonicae, 52(1):113–121, 2000.