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Abstract. The transmission of a vertex u in a connected graph G is defined as the sum of the
distances between u and all other vertices of a graph G. The reciprocal transmission of a vertex
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indices, transmission and reciprocal transmission augmented Zagreb co-indices, and transmission
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1. Introduction

Topological indices are proved to be very useful in chemistry, biochemistry and nan-
otechnology in isomer discrimination, structure-property relationship, structure-activity
relationship and pharmaceutical drug design. According to the International Academy of
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Mathematical Chemistry, to identify whether any topological index is useful for prediction
of chemical properties, the correlation between the values of that topological index for dif-
ferent octane isomers and parameter values related to certain physicochemical property
of them should be considered. Generally octane isomers are convenient for such studies,
because the number of the structural isomers of octane is large enough to make the sta-
tistical conclusion reliable. Furtula and Gutman [5] showed that for octane isomers both
M1 and F yield correlation coefficient greater than 0.95 in case of entropy and acentric
factor. They also improved the predictive ability of these index by considering a simple
linear model in the form (M1 + λF ), where λ varies from −20 to 20.

For graph theoretical parameters, we refer the book [10]. Let G be a graph having
n vertices and m edges. Let V (G) be the vertex set and E(G) be the edge set of G.
The edge e joining the vertices u and v is denoted by e = uv. e is said to be incident
to u and v and u and v are called adjacent. The degree of a vertex u is the number of
edges incident to it and is denoted by d(u). The distance between the vertices u and v is
the length of the shortest path joining u and v and is denoted by d(u, v). The diameter
of G is the maximum distance between all pair of vertices of G and is denoted by diam(G).

A topological index is a numerical invariant of a given graph [13]. Particular topo-
logical indices include the Zagreb indices, ABC index, GA index, Balaban index, Harary
index, molecular topological index and Wiener index. Unless otherwise stated, hydrogen
atoms are usually ignored in the computation of such indices as organic chemists usually
do when they write a benzene ring as a hexagon.

In the literature, several degree based topological indices have been introduced and
studied [6]. The most studied degree based topological indices are the family of Zagreb
indices, [1–4, 7, 12, 17, 18, 20–24, 26–28]. The first and second Zagreb indices of a graph
G are defined by

M1(G) =
∑

uv∈E(G)

[d(u) + d(v)] and M2(G) =
∑

uv∈E(G)

d(u)d(v),

see [8].

The transmission (or status) of a vertex u ∈ V (G), [9, 16], denoted by σ(u), is defined
by

σ(u) =
∑

v∈V (G)

d(u, v).

The reciprocal transmission (or reciprocal status) of a vertex u ∈ V (G), denoted by
rs(u), is defined by

rs(u) =
∑

v∈V (G)

1

d(u, v)
.
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The oldest transmission based topological index is the Wiener index [25] defined by

W (G) =
∑

{u,v}⊆V (G)

d(u, v) =
1

2

∑
u∈V (G)

σ(u).

The Wiener index is also called as gross status or total status, [9].

The transmission sum-connectivity index of a graph G, [19], denoted by TSC(G), is
defined by

TSC(G) =
∑

uv∈E(G)

1√
σ(u) + σ(v)

.

The transmission geometric-arithmetic index of a graph G, [11], denoted by TGA(G),
is defined by

TGA(G) =
∑

uv∈E(G)

2
√
σ(u)σ(v)

σ(u) + σ(v)
.

The transmission arithmetic-geometric index of a graph G, [15], denoted by TAG(G),
is defined by

TAG(G) =
∑

uv∈E(G)

σ(u) + σ(v)

2
√
σ(u)σ(v)

.

The transmission atom-bond connectivity index of a graphG, [15], denoted by TABC(G),
is defined by

TABC(G) =
∑

uv∈E(G)

√
σ(u) + σ(v)− 2

σ(u)σ(v)
.

The transmission augmented Zagreb index of a graph G, [15], denoted by TAZ(G), is
defined by

TAZ(G) =
∑

uv∈E(G)

[
σ(u)σ(v)

σ(u) + σ(v)− 2

]3
.

The reciprocal transmission arithmetic-geometric index of a graph G, [14], is denoted
by RTAG(G) and it is defined by

RTAG(G) =
∑

uv∈E(G)

rs(u) + rs(v)

2
√
rs(u)rs(v)

. (1)

The reciprocal transmission geometric-arithmetic index of a graph G, [14], is denoted
by RTGA(G) and it is defined by

RTGA(G) =
∑

uv∈E(G)

2
√
rs(u)rs(v)

rs(u) + rs(v)
. (2)
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The reciprocal transmission sum-connectivity index of a graph G, [14], is denoted by
RTSC(G) and it is defined by

RTSC(G) =
∑

uv∈E(G)

1√
rs(u) + rs(v)

. (3)

The reciprocal transmission atom-bond connectivity index of a graphG, [14], is denoted
by RTABC(G) and it is defined by

RTABC(G) =
∑

uv∈E(G)

√
rs(u) + rs(v)− 2

rs(u)rs(v)
. (4)

The reciprocal transmission augmented Zagreb index of a graph G, [14], is denoted by
RTAZ(G) and it is defined by

RTAZ(G) =
∑

uv∈E(G)

[
rs(u)rs(v)

rs(u) + rs(v)− 2

]3
. (5)

In the next section, we obtain bounds for the other transmission and reciprocal transmission-
based topological co-indices.

Now we define the following transmission and reciprocal transmission based topological
co-indices of graphs.

The transmission sum-connectivity co-index of a graph G, denoted by TSC(G), is
defined by

TSC(G) =
∑

uv/∈E(G)

1√
σ(u) + σ(v)

.

The transmission geometric-arithmetic co-index of a graph G, denoted by TGA(G), is
defined by

TGA(G) =
∑

uv/∈E(G)

2
√
σ(u)σ(v)

σ(u) + σ(v)
.

The transmission arithmetic-geometric co-index of a graph G, denoted by TAG(G), is
defined by

TAG(G) =
∑

uv/∈E(G)

σ(u) + σ(v)

2
√
σ(u)σ(v)

.

The transmission atom-bond connectivity co-index of a graph G, denoted by TABC(G),
is defined by

TABC(G) =
∑

uv/∈E(G)

√
σ(u) + σ(v)− 2

σ(u)σ(v)
.
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The transmission augmented Zagreb co-index of a graph G, denoted by TAZ(G), is
defined by

TAZ(G) =
∑

uv/∈E(G)

[
σ(u)σ(v)

σ(u) + σ(v)− 2

]3
.

The reciprocal transmission arithmetic-geometric co-index of a graph G is denoted by
RTAG(G) and it is defined by

RTAG(G) =
∑

uv/∈E(G)

rs(u) + rs(v)

2
√
rs(u)rs(v)

. (6)

The reciprocal transmission geometric-arithmetic co-index of a graph G is denoted by
RTGA(G) and it is defined by

RTGA(G) =
∑

uv/∈E(G)

2
√
rs(u)rs(v)

rs(u) + rs(v)
. (7)

The reciprocal transmission sum-connectivity co-index of a graph G is denoted by
RTSC(G) and it is defined by

RTSC(G) =
∑

uv/∈E(G)

1√
rs(u) + rs(v)

. (8)

The reciprocal transmission atom-bond connectivity co-index of a graph G is denoted
by RTABC(G) and it is defined by

RTABC(G) =
∑

uv/∈E(G)

√
rs(u) + rs(v)− 2

rs(u)rs(v)
. (9)

The reciprocal transmission augmented Zagreb co-index of a graph G is denoted by
RTAZ(G) and it is defined by

RTAZ(G) =
∑

uv/∈E(G)

[
rs(u)rs(v)

rs(u) + rs(v)− 2

]3
. (10)

We have already obtained explicit formulae for transmission and reciprocal transmis-
sion based topological coindices in terms of order and size. In the following, we obtain
bounds for the above defined transmission and reciprocal transmission based topological
co-indices.
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2. Bounds for transmission and reciprocal transmission based
topological co-indices

Now we obtain inequalities for transmission and reciprocal transmission based topo-
logical coindices:

Theorem 1. Let G be a connected graph with n vertices and let D = diam(G). Then∑
uv/∈E(G)

1√
2D(n− 1)− (D − 1)(d(u) + d(v))

≤ TSC(G)

≤
∑

uv/∈E(G)

1√
4n− 4− (d(u) + d(v))

. (11)

Equality holds on both sides if and only if diam(G) ≤ 2.

Proof. For any vertex u of G, there are d(u) vertices which are at distance 1 from u.
Further, the distance between u and remaining n − 1 − d(u) vertices is at least 2 and at
most D. Therefore

σ(u) ≤ d(u) +D(n− 1− d(u)) = D(n− 1)− (D − 1)d(u)

and
σ(u) ≥ d(u) + 2(n− 1− d(u)) = 2n− 2− d(u)

with equality in both cases if and only if D = 2. Therefore,

4n− 4− (d(u) + d(v)) ≤ σ(u) + σ(v) ≤ 2D(n− 1)− (D − 1)(d(u) + d(v)).

Hence

TSC(G) =
∑

uv/∈E(G)

1√
σ(u) + σ(v)

≥
∑

uv/∈E(G)

1√
2D(n− 1)− (D − 1)(d(u) + d(v))

and

TSC(G) =
∑

uv/∈E(G)

1√
σ(u) + σ(v)

≤
∑

uv/∈E(G)

1√
4n− 4− (d(u) + d(v))

.

Equality holds in both cases if and only if D = 2.

Theorems 2, 3, 4 and 5 can be proved analogously to Theorem 1.

Theorem 2. Let G be a connected graph with n vertices and let D = diam(G). Then∑
uv/∈E(G)

√
2D(n− 1)− (D − 1)(d(u) + d(v))− 2

(D(n− 1))2 −D(n− 1)(D − 1)(d(u) + d(v)− (D − 1)2d(u)d(v)
≤ TABC(G)

≤
∑

uv/∈E(G)

√
4n− 6− (d(u) + d(v))

4n2 − 8n− 4 + (2− 2n)(d(u) + d(v)) + d(u)d(v)
. (12)
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Theorem 3. Let G be a connected graph with n vertices and let D = diam(G). Then∑
uv/∈E(G)

2D(n− 1)− (D − 1)(d(u) + d(v))

2
√

(D(n− 1))2 −D(n− 1)(D − 1)(d(u) + d(v)) + (D − 1)2d(u)d(v)
≤ TAG(G)

≤
∑

uv/∈E(G)

4n− 4− (d(u) + d(v))

2
√

(2n− 2− d(u))(2n− 2− d(v))
. (13)

Theorem 4. Let G be a connected graph with n vertices and let D = diam(G). Then

∑
uv/∈E(G)

[
(D(n− 1))2 −D(n− 1)(D − 1)(d(u) + d(v))− (D − 1)2d(u)d(v)

2D(n− 1) + (D − 1)(d(u) + d(v))− 2

]3
≤ TAZ(G)

≤
∑

uv/∈E(G)

[
4n2 − 8n− 4 + (2− 2n)(d(u) + d(v)) + d(u)d(v)

4n− 6− (d(u) + d(v))

]
. (14)

Theorem 5. Let G be a connected graph with n vertices and let D = diam(G). Then,

∑
uv/∈E(G)

2
√

(D(n− 1)− (D − 1)d(u)) (D(n− 1)− (D − 1)d(v))

2D(n− 1)− (D − 1)(d(u) + d(v))
≤ TGA

∑
uv/∈E(G)

2
√

(2n− 2− d(u)) (2n− 2− d(v))

4n− 4− (d(u) + d(v))
. (15)

Theorem 6. Let G be a connected graph with n vertices and let diam(G) = D. Then,∑
uv/∈E(G)

1√
(n− 1) + 1

2(d(u) + d(v))
≤ RTSC(G) ≤

∑
uv/∈E(G)

1√
2(n−1)

D +
(
1− 1

D

)
(d(u) + d(v))

. (16)

Proof. Lower bound: For any vertex u of G there are d(u) vertices which are at
distance 1 from u and remaining n− 1− d(u) vertices are at distance at least 2. Therefore
rs(u) ≤ 1

2(n− 1 + d(u)) and rs(u) + rs(v) ≤ (n− 1) + 1
2(d(u) + d(v)). We have

RTSC(G) =
∑

uv/∈E(G)

1√
rs(u) + rs(v)
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≥
∑

uv/∈E(G)

1√
(n− 1) + 1

2(d(u) + d(v))
.

Upper bound: For any vertex u of G there are d(u) vertices which are at distance 1
from u and remaining n− 1− d(u) vertices are at distance at most D. Therefore rs(u) ≥
1
D (n− 1) + (1− 1

D )d(u) and rs(u) + rs(v) ≥ 2(n−1)
D +

(
1− 1

D

)
(d(u) + d(v)). We have

RTSC(G) ≤
∑

uv/∈E(G)

1√
2(n−1)

D +
(
1− 1

D

)
(d(u) + d(v))

.

Theorems 7, 8, 9 and 10 can be proved analogously to Theorem 6:

Theorem 7. Let G be a connected graph with n vertices and let diam(G) = D. Then

∑
uv/∈E(G)

√
2 (2(n− 1) + d(u) + d(v)− 4)

(n− 1)2 + (n− 1)(d(u) + d(v)) + d(u)d(v)
≤ RTABC(G) ≤

∑
uv/∈E(G)

√√√√ 2(n−1)
D +

(
1− 1

D

)
(d(u) + d(v))− 2(

1
D (n− 1)

)2
+
(
1− 1

D

)
d(u)d(v) + (n−1)

D

(
1− 1

D

)
(d(u) + d(v))

. (17)

Theorem 8. Let G be a connected graph with n vertices and let diam(G) = D. Then

∑
uv/∈E(G)

[
(n− 1)2 + (n− 1)(d(u) + d(v)) + d(u)d(v)

2 (2(n− 1) + d(u) + d(v)− 4)

]3
≤ RTAZ(G) ≤

∑
uv/∈E(G)

[(
1
D (n− 1)

)2
+
(
1− 1

D

)
d(u)d(v) + n−1

D

(
1− 1

D

)
(d(u) + d(v))

2(n−1)
D +

(
1− 1

D

)
(d(u) + d(v))− 2

]3
. (18)

Theorem 9. Let G be a connected graph with n vertices and let diam(G) = D. Then∑
uv/∈E(G)

2(n− 1) + (d(u) + d(v))

2
√

(n− 1 + d(u))(n− 1 + d(v))
≤ RTAG(G) ≤

∑
uv/∈E(G)

2(n−1)
D +

(
1− 1

D

)
(d(u) + d(v))

2

√(
1
D (n− 1)

)2
+ 1

D (n− 1)
(
1− 1

D

)
(d(u) + d(v)) +

(
1− 1

D

)2
d(u)d(v)

. (19)
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Theorem 10. Let G be a connected graph with n vertices and let diam(G) = D. Then∑
uv/∈E(G)

2
√

(n− 1 + d(u))(n− 1 + d(v))

2(n− 1) + (d(u) + d(v))
≤ RTGA(G) ≤

∑
uv/∈E(G)

2

√(
1
D (n− 1)

)2
+ 1

D (n− 1)
(
1− 1

D

)
(d(u) + d(v)) +

(
1− 1

D

)2
d(u)d(v)

2(n−1)
D +

(
1− 1

D

)
(d(u) + d(v))

. (20)

3. Transmission and reciprocal transmission based topological co-indices
of some graphs

For any vertex u of a complete graph Kn, we have σ(u) = n − 1. Hence we get the
following result:

Proposition 1. For a complete graph Kn on n vertices,

TSC(Kn) = 0, TABC(Kn) = 0, TAG(Kn) = 0, TAZ(Kn) = 0,

TGA(Kn) = 0, RTSC(Kn) = 0, RTABC(Kn) = 0, RTAG(Kn) = 0,

RTAZ(Kn) = 0, RTGA(Kn) = 0.

The vertex set of a complete bipartite graph Kp,q can be partitioned into two sets V1
and V2 such that every edge of Kp,q has one end in V1 and other end in V2, where |V1| = p
and |V2| = q. If the vertex u ∈ V1 and v ∈ V2, then d(u) = p and d(v) = q. Recall that
the graph Kp,q has n = p+ q vertices and m = pq edges. Also diam(Kp,q) ≤ 2. Therefore
by the equality part of Theorems 1, 2, 3 and 4, we get the following result:

Proposition 2. For a complete bipartite graph Kp,q, we have

TSC(Kp,q) =

((
p+ q

2

)
− pq

)
1√

3(p+ q)− 4
,

TABC(Kp,q) =

((
p+ q

2

)
− pq

)√
3(p+ q)− 6

(p+ 2(q − 1))(q + 2(p− 1))
,

TAG(Kp,q) =

((
p+ q

2

)
− pq

)(
3(p+ q)− 4

2
√

(p+ 2(q − 1))(q + 2(p− 1))

)
,

TGA(Kp,q) =

((
p+ q

2

)
− pq

)(
2
√

(p+ 2(q − 1))(q + 2(p− 1))

3(p+ q)− 4

)
,

TAZ(Kp,q) =

((
p+ q

2

)
− pq

)(
(p+ 2(q − 1))(q + 2(p− 1))

3(p+ q)− 6

)3

,

RTSC(Kp,q) =

((
p+ q

2

)
− pq

) 1√
3
2(p+ q)− 1

 ,
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RTABC(Kp,q) =

((
p+ q

2

)
− pq

)√ 3
2(p+ q)− 3

(p+ 2(q − 1))(q + 2(p− 1))
,

TAG(Kp,q) =

((
p+ q

2

)
− pq

)( 3
2(p+ q)− 1

2
√

(p+ 2(q − 1))(q + 2(p− 1))

)
,

RTGA(Kp,q) =

((
p+ q

2

)
− pq

)(
2
√

(p+ 2(q − 1))(q + 2(p− 1))
3
2(p+ q)− 1

)
,

RTAZ(Kp,q) =

((
p+ q

2

)
− pq

)(
(p+ 2(q − 1))(q + 2(p− 1))

3
2(p+ q)− 3

)3

.

For any vertex u of a cycle Cn on n ≥ 3 vertices, we have

σ(u) =

 2
[
1 + 2 + · · ·+ n−1

2

]
+ n

2 = n2

4 , if n is even

2
[
1 + 2 + · · ·+ n−1

2

]
= n2−1

4 , if n is odd

and

rs(u) =


2
∑n−2

2
i=1

1
i + 2

n , if n is even

2
∑n−1

2
i=1

1
i , if n is odd.

Proposition 3. For a cycle Cn on n ≥ 3 vertices, we have

TSC(Cn) =


((

n
2

)
− n

)√
2
n2 , if n is even((

n
2

)
− n

)√
2

n2−1 , if n is odd

TABC(Cn) =


((

n
2

)
− n

)√8(n2−4)
n4 , if n is even((

n
2

)
− n

)√8(n2−5)
(n2−1)2 , if n is odd

TAZ(Cn) =


((

n
2

)
− n

) (
n4

8(n2−4)

)3
, if n is even((

n
2

)
− n

) ( (n2−1)2
8(n2−5)

)3
, if n is odd

TAG(Cn) =

((
n

2

)
− n

)
for any value of n.

TGA(Cn) =

((
n

2

)
− n

)
for any value of n.
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RTSC(Cn) =


((

n
2

)
− n

)
1

2

√∑n−2
2

i=1
1
i
+ 1

n

, if n is even((
n
2

)
− n

) (1)

2

√∑n−1
2

i=1
1
i

, if n is odd

RTABC(Cn) =



((
n
2

)
− n

)√√√√ ∑n−2
2

i=1
1
i
+ 1

n
−1(∑n−2

2
i=1

1
i
+ 1

n

)2 , if n is even

((
n
2

)
− n

)√√√√ 2
∑n−1

2
i=1

1
i
−1

2

(∑n−1
2

i=1
1
i

)2 , if n is odd

RTAZ(Cn) =



((
n
2

)
− n

) (∑n−2
2

i=1
1
i
+ 1

n

)2

(∑n−2
2

i=1
1
i
+ 1

n

)
−1

3

, if n is even

((
n
2

)
− n

)2

(∑n−1
2

i=1
1
i

)2

2
∑n−1

2
i=1

1
i
−1

3

, if n is odd

RTAG(Cn) =

((
n

2

)
− n

)
for any value of n

RTGA(Cn) =

((
n

2

)
− n

)
for any value of n

A wheel Wn+1 is a graph obtained from the cycle Cn, n ≥ 3, by adding a new vertex
and making it adjacent to all the vertices of Cn. The degree of a central vertex of Wn+1

is n and the degree of all other vertices is 3. Hence

Proposition 4. For a wheel Wn+1, n ≥ 3,

TSC (Wn+1) =

((
n+ 1

2

)
− 2n

)
1√

4n− 6
,

TABC (Wn+1) =

((
n+ 1

2

)
− 2n

)√
4n− 8

4n2 − 12n+ 9
,

TAZ (Wn+1) =

((
n+ 1

2

)
− 2n

)(
4n2 − 12n+ 9

4n− 8

)3

,
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TGA (Wn+1) =

((
n+ 1

2

)
− 2n

)(
2
√

4n2 − 12n+ 9

4n− 6

)
,

TAG (Wn+1) =

((
n+ 1

2

)
− 2n

)(
4n− 6

2
√

4n2 − 12n+ 9

)
,

RTAG (Wn+1) =

((
n+ 1

2

)
− 2n

) n+ 3

2

√(
3 + 1

2(n− 3)
)2
 ,

RTGA (Wn+1) =

((
n+ 1

2

)
− 2n

)2

√(
3 + 1

2(n− 3)
)2

n+ 3

 ,

RTSC (Wn+1) =

((
n+ 1

2

)
− 2n

)
1√
n+ 3

,

RTABC (Wn+1) =

((
n+ 1

2

)
− 2n

)√
n+ 1(

3 + 1
2(n− 3)

)2 ,

RTAZ (Wn+1) =

((
n+ 1

2

)
− 2n

)((
3 + 1

2(n− 3)2
)

n+ 1

)3

.

A friendship graph (or Dutch windmill graph) Fn, n ≥ 2, is a graph that can be
constructed by coalescence n copies of the cycle C3 of length 3 with a common vertex. It
has 2n+ 1 vertices and 3n edges. The degree of a coalescence vertex of Fn is 2n and the
degree of all other vertices is 2.

Proposition 5. For a friendship graph Fn, n ≥ 2,

TSC(Fn) =

((
2n+ 1

2

)
− 3n

)
1

2
√

2n− 1
,

TABC(Fn) =

((
2n+ 1

2

)
− 3n

)√
4n− 3

8n2 − 8n+ 2
,

TAZ(Fn) =

((
2n+ 1

2

)
− 3n

)(
8n2 − 8n+ 2

4n− 3

)3

,
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TGA(Fn) =

((
2n+ 1

2

)
− 3n

)(√
4n2 − 4n+ 1

2n− 1

)
,

TAG(Fn) =

((
2n+ 1

2

)
− 3n

)(
2n− 1√

4n2 − 4n+ 1

)
,

RTAG(Fn) =

(
2n+ 1

2

)
− 3n,

RTGA(Fn) =

(
2n+ 1

2

)
− 3n,

RTSC(Fn) =

((
2n+ 1

2

)
− 3n

)
1√

2(n+ 1)
,

RTABC(Fn) =

((
2n+ 1

2

)
− 3n

) √
2n

n+ 1
,

RTAZ(Fn) =

((
2n+ 1

2

)
− 3n

)(
(n+ 1)2

2n

)3

.
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[8] I Gutman and N Trinajstić. Graph theory and molecular orbitals, Total π-electron
energy of alternant hydrocarbons. Chem. Phys. Lett., 17:535–538, 1972.

[9] F Harary. Status and contrastatus. Sociometry, 22(1):23–43, 1959.

[10] F Harary. Graph Theory. Narosa Publishing House, New Delhi, 1999.

[11] K P Narayankar and D Selvan. Geometric arithmetic status index of graphs. Int. J.
Math. Arch., 8:230–233, 2017.
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