EUROPEAN JOURNAL OF PURE AND APPLIED MATHEMATICS
Vol. 13, No. 3, 2020, 498-512
ISSN 1307-5543 - www.ejpam.com
Published by New York Business Global

The Structure of Pseudo- $B F / B F^{*}$-algebra

Hessah M. Al-Malki ${ }^{1}$, Deena S. Al-Kadi ${ }^{1, *}$
${ }^{1}$ Department of Mathematics and Statistics, Faculty of Science, Taif University, Taif, Saudi Arabia

Abstract

In this paper, we study the structure of pseudo- $B F / B F^{*}$-algebra as a generalization of $B F$-algebra. We show how pseudo- $B F / B F^{*}$-algebra and pseudo- $B C K$-algebra are related. We study some elementary properties related to pseudo- $B F$-algebra and pseudo- $B F^{*}$-algebra.

2020 Mathematics Subject Classifications: 06F35, 03G25
Key Words and Phrases: pseudo- $B F$-algebra, pseudo- $B F^{*}$-algebra, pseudo-ideal, pseudoatoms.

1. Introduction

Through the work of the Japanese mathematicians Imai and Iseki the notions of $B C K / B C I$-algebra were introduced (see [7] and [8]). Neggers and Sik introduced the concept of B-algebra, and obtained several results (we refer the reader to [13] for more details). In [17], Walendziak introduced a generalization of B-algebra named $B F$-algebra and investigated some properties of ideals and normal-ideals in $B F$-algebra and gave some characterization of them. In [6], Georgescu and Iorgulescu introduced an extension of $B C K$-algebra called pseudo- $B C K$-algebra. Moreover, they gave the connection of pseudo- $B C K$-algebra with pseudo- $M V$-algebra and with pseudo- $B L$-algebra. Dudek and Jun introduced the notion pseudo-BCI-algebra as a natural generalization of $B C I$ algebra and of pseudo- $B C K$-algebra and investigated some of their properties. They gave some conditions for a pseudo- $B C I$-algebra to be a pseudo- $B C K$-algebra (see [4] for more details). In [10], Jun, Kim and Neggers studied pseudo-atoms, pseudo-ideals and pseudo-homomorphisms in pseudo-BCI-algebra. In [12], Kim and So discussed minimality on elements in pseudo- $B C I$-algebra and concluded some of the properties in B-algebra. Walendziak in [18] introduced the notion of pseudo- $B C H$-algebra and investigated some properties and gave conditions to when a pseudo- $B C H$-algebra be a pseudo- $B C I$-algebra. The authors G. Georgescu and A. Iorgulescu in [5], and independently Rachunek in [15],

[^0]Email addresses: dak12le@hotmail.co.uk (Deena S. Al-Kadi), hhhmmm9999@hotmail.com (Hessah M. Al-Malki)
studied a non-commutative generalization of the $M V$-algebra named pseudo- $M V$-algebra. In [16], pseudo- $B L$-algebra was introduced as a generalization of $B L$-algebra and pseudo$M V$-algebra and basic properties, filters, normal-filters and congruences were given. Di Nola, Georgescu and Iorgulescu, in [14], investigated pseudo- $B L$-algebra including definition, basic properties, filters, normal-filters and congruences. Moreover, they gave some important classes of pseudo- $B L$-algebra and some results concerning the pseudo$B L$-chains. In [11], Jun, Kim and Neggers introduced the notion of pseudo- d-algebra as an extension of d-algebra and they showed that the class of pseudo- d-algebra can be included in the class of coupled d-algebra. In [1], the authors, introduced the concept of pseudo- $B E$-algebra. They studied the concepts of pseudo-subalgebra, pseudo-filter and pseudo-upper-set and proved that every pseudo-filter is a union of pseudo-upper-sets. In [9], Jun and Ahn studied some properties of pseudo- $B H$-algebra. Furthermore, they introduced the concept of pseudo-complicated- BH -algebra and got some related properties. In [3], Ciungu introduced and investigated pointed-pseudo- $B E$-algebra and commutative-pseudo- $B E$-algebra and proved that the class of commutative-pseudo- $B E$-algebra and the class of commutative-pseudo- $B C K$-algebra are equivalent.

In this paper, we study the structure of pseudo- $B F / B F^{*}$-algebra. We introduce,in the second section, the notion of pseudo- $B F / B F^{*}$-algebra and find the relation between pseudo- $B F / B F^{*}$-algebra with pseudo- $B C K$-algebra. In the third section, we study pseudosubalgebra, pseudo-ideal and pseudo-normal-ideal of pseudo- $B F$-algebra. We study pseudoatoms of pseudo- $B F / B F^{*}$-algebra in the last section.

We start by recalling the definitions and elementary properties related to the paper.
Definition 1. [17, Definition 2.1] An algebra $(E ; \bullet, 0)$ of type $(2,0)$ is called a BF-algebra if the following axioms are satisfies the following axiom, for all $a, b \in E$:
$(B F(\mathbf{1})) a \bullet a=0$,
(BF(2)) $a \bullet 0=a$,
$(B F(3)) 0 \bullet(a \bullet b)=b \bullet a$.
Definition 2. [2, Definition 2.3] In BF-algebra ($E ; \bullet, 0$), we can define a binary relation " \leq " on E as follows:

$$
a \leq b \text { if and only if } a \bullet b=0 \quad \text { for all } a, b \in E \text {. }
$$

Any $B F$-algebra, satisfies the properties given in the following Proposition.
Proposition 1. [17, Proposition 2.5] Let $(E ; \bullet, 0)$ be a BF-algebra, then,
(1) $0 \bullet(0 \bullet a)=a \quad$ for all $a \in E$,
(2) if $0 \bullet a=0 \bullet b$, then $a=b$ for all $a, b \in E$,
(3) if $a \bullet b=0$, then $b \bullet a=0 \quad$ for all $a, b \in E$.

We give next the definition of pseudo- $B C K$-algebra.
Definition 3. [6, Definition 3] An algebra $(E ; \leq, \bullet, \star, 0)$ of type $(2,2,0)$, where $" \leq "$ is a binary relation on a set E, "•" and " \star " are binary operations on E and " 0 " is a constant of E, is called a pseudo-BCK-algebra if the following are satisfied: $\forall a, b, c \in E$,
$(p B C K(1))(a \bullet b) \star(a \bullet c) \leq c \bullet b$ and $(a \star b) \bullet(a \star c) \leq c \star b$,
$(p B C K \mathbf{(2)}) a \star(a \bullet b) \leq b$ and $a \bullet(a \star b) \leq b$,
(p BCK (3)) $a \leq a$,
(p BCK (4)) $0 \leq a$,
($p B C K \mathbf{(5))} a \leq b$ and $b \leq a$ then $a=b$,
($p B C K(6)) a \leq b \Leftrightarrow a \bullet b=0$ if and only if $a \star b=0$.
Theorem 1. [6, Theorem 7] In a pseudo-BCK-algebra ($E ; \leq, \bullet, \star, 0)$, for all $a, b, c \in E$ we have

$$
(a \bullet b) \star c=(a \star c) \bullet b .
$$

Theorem 2. [6, Theorem 8] In any pseudo-BCK-algebra $(E ; \leq, \bullet, \star, 0)$ we have, for all $a, b, c \in E$:
(1) $a \bullet b \leq c$ if and only if $a \star c \leq b$,
(2) $a \bullet b \leq a$ and $a \star b \leq a$.

2. Pseudo- $B F / B F^{*}$-algebra

In this section, we give a generalization of $B F$-algebra named pseudo- $B F$-algebra and study its structure. Also, we will introduce pseudo- $B F^{*}$-algebra and find the relation between pseudo- $B F / B F^{*}$-algebra and pseudo- $B C K$-algebra.

Definition 4. An algebra $(E ; \bullet, \star, 0)$ of type $(2,2,0)$ is said to be a pseudo-BF-algebra, if the following axioms are satisfied for all $a, b \in E$:
($p B F(\mathbf{1})) a \bullet a=0$ and $a \star a=0$,
$(p B F \mathbf{(2)}) a \bullet 0=a$ and $a \star 0=a$,
$(p B F(3)) 0 \bullet(a \star b)=b \star a$ and $0 \star(a \bullet b)=b \bullet a$.
The following examples illustrates the definition.
Example 1. Consider the group $(G ;+, 0)$, where " + " is the usual addition. Define the operations "•" and " \star " on G by:

$$
a \bullet b=(-b)+a \text { and } a \star b=(-b)+a \text { for all } a, b \in G
$$

then $(G ; \bullet, \star, 0)$ is a pseudo-BF-algebra.
Note: It is obvious that in any pseudo- $B F$-algebra E if $a \bullet b=a \star b$ for all $a, b \in E$ then E is a $B F$-algebra.

Example 2. Define the operations "•" and " \star " on $E=\{0,1,2,3\}$, by the following Cayley tables:

Table 1

\bullet	0	1	2	3
0	0	1	2	3
1	1	0	3	0
2	2	3	0	2
3	3	0	2	0

Table 2

\star	0	1	2	3
0	0	1	2	3
1	1	0	1	1
2	2	1	0	1
3	3	1	1	0

Then $(E ; \bullet, 0)$ and $(E ; \star, 0)$ are BF-algebras (shown in [17]). It is obvious that $a \bullet a=0$ and $a \star a=0$. Moreover, $a \bullet 0=a$ and $a \star 0=a$. It is direct to check that $0 \bullet(a \star b)=b \star a$ and $0 \star(a \bullet b)=b \bullet a$ is satisfied for all $a, b \in E$. Thus $(E ; \bullet, \star, 0)$ is a pseudo-BF-algebra.

Corollary 1. Any two BF-algebras does not necessarily construct a pseudo-BF-algebra. Moreover, if $(\mathbb{R} ; \bullet, \star, 0)$ is a pseudo- $B F$-algebra then it is not necessary for both $(\mathbb{R} ; \bullet, 0)$ and $(\mathbb{R} ; \star, 0)$ to be a BF-algebra. The following two examples proves the Corollary.

Example 3. Define the operations "•" and " \star " on $E=\{0,1,2,3,4,5\}$, by the following Cayley tables:

Table 3

\bullet	0	1	2	3	4	5
0	0	2	1	3	4	5
1	1	0	2	4	5	3
2	2	1	0	5	3	4
3	3	4	5	0	2	1
4	4	5	3	1	0	2
5	5	3	4	2	1	0

Table 4

\star	0	1	2	3	4	5
0	0	1	2	3	4	5
1	1	0	3	2	1	0
2	2	3	0	0	0	2
3	3	2	0	0	3	1
4	4	1	0	3	0	0
5	5	0	2	1	0	0

Then $(E ; \bullet, 0),(E ; \star, 0)$ are BF-algebras but $(E ; \bullet, \star, 0)$ is not since $0 \bullet(0 \star 1)=0 \bullet 1=$ $2 \neq 1 \star 0=1$.

Example 4. Let \mathbb{R} be the set of real numbers. Define the operations "•" and " \star " on \mathbb{R} for all $a, b \in \mathbb{R}$ by:

$$
a \bullet b=\left\{\begin{array}{lll}
a & \text { if } b=0, \\
b & \text { if } a=0, \\
0 & \text { otherwise } .
\end{array} \quad a \star b= \begin{cases}a & \text { if } b=0, \\
0 & \text { if } a=0, a=b, \\
b \star a & \text { otherwise } .\end{cases}\right.
$$

Then $(\mathbb{R} ; \bullet, \star, 0)$ is a pseudo- $B F$-algebra. The algebra $(\mathbb{R} ; \bullet, 0)$ is $B F$-algebra [17], but the algebra $(\mathbb{R} ; \star, 0)$ is not.

Proposition 2. If $(E ; \bullet, \star, 0)$ is a pseudo-BF-algebra for all $a, b \in E$ then
(1) $0 \bullet(0 \bullet a)=a$ and $0 \star(0 \star a)=a$,
(2) $0 \star(0 \bullet a)=a$ and $0 \bullet(0 \star a)=a$,
(3) $0 \bullet a=0 \star b$, implies $a=b$.

Proof.
(1) By $(p B F(2)),(p B F(3))$ and let $a \in E$ then $0 \bullet(0 \bullet a)=0 \bullet[0 \star(a \bullet 0)]=0 \bullet(0 \star a)=$ $a \star 0=a$ and $0 \star(0 \star a)=0 \star[0 \bullet(a \star 0)]=0 \star(0 \bullet a)=a \bullet 0=a$.
(2) Let $a \in E$. By $(p B F(2))$ and $(p B F(3))$ we obtain $0 \star(0 \bullet a)=a \bullet 0=a$ and $0 \bullet(0 \star a)=a \star 0=a$, that is (2) holds.
(3) Let $0 \bullet a=0 \star b$, then it follows from (1) and (2) that $a=0 \star(0 \bullet a)=0 \star(0 \star b)=b$.

Corollary 2. In a pseudo-BF-algebra $(E ; \bullet, \star, 0), a \bullet b=0$ does not imply $b \star a=0$ and similarly $a \star b=0$ does not imply $b \bullet a=0 . \quad \forall a, b \in E$.

Proof. Let $a, b \in E$ and $a \bullet b=0$. Then $0=0 \star 0=0 \star(a \bullet b)=b \bullet a$. Then it is not necessary that $b \star a=0$. Similarly, if $a \star b=0$ then it is not necessary that $b \bullet a=0$.

Note: From the proof of (Corollary 2) we see that if $a \bullet b=0$, then $b \bullet a=0$ and if $a \star b=0$, then $b \star a=0$, for all $a, b \in E$.

As in $B F$-algebra, a binary relation $" \leq "$ could be defined in pseudo- $B F$-algebra as follows:

$$
a \leq b \Leftrightarrow a \bullet b=0 \Leftrightarrow a \star b=0 \quad \forall a, b \in E .
$$

Therefore we can rewrite the definition of a pseudo- $B F$-algebra with a binary relation $" \leq "$ as follows:

Definition 5. The algebra $(E ; \leq, \bullet, \star, 0)$ where $" \leq "$ is a binary relation on a set E, "•" and " \star " are binary operations on E and " 0 " is an element of E, is said to be a pseudo$B F$-algebra if for all $a, b, c \in E$ the following axioms are satisfied:
$\left(p B F\left(\mathbf{1}^{\prime}\right)\right) a \leq a$,
$\left(p B F\left(\mathbf{2}^{\prime}\right)\right) a \bullet 0 \leq a$ and $a \star 0 \leq a$,
$\left(p B F\left(\mathbf{3}^{\prime}\right)\right) 0 \bullet(a \star b) \leq b \star a$ and $0 \star(a \bullet b) \leq b \bullet a$,
$\left(p B F\left(4^{\prime}\right)\right) a \leq b \Leftrightarrow a \bullet b=0 \Leftrightarrow a \star b=0$.

Proposition 3. The following proposition holds in any pseudo-BF-algebra $(E ; \leq, \bullet, \star, 0)$,:

$$
0 \leq a \text { implies } a=0 \quad \forall a \in E .
$$

Proof. Since $0 \leq a$, we have $0 \bullet a=0 \star a=0$ from ($p B F\left(4^{\prime}\right)$). Using (Proposition 2 (1)), $\left(p B F\left(1^{\prime}\right)\right)$ and $\left(p B F\left(4^{\prime}\right)\right)$ we get $a=0 \bullet(0 \bullet a)=0 \bullet 0=0$.

Next we introduce pseudo- $B F^{*}$-algebra and we find some results.
Definition 6. A pseudo-BF-algebra $(E ; \bullet, \star, 0)$ is called a pseudo- $B F^{*}$-algebra, for all $a, b, c \in E$ if it satisfies the following identity:

$$
\left(p B F^{*}\right) \quad(a \bullet b) \star c=(a \star c) \bullet b .
$$

We can see that any pseudo- $B F^{*}$-algebra is a pseudo- $B F$-algebra and any pseudo- $B F$ algebra satisfying $\left(p B F^{*}\right)$ is a pseudo- $B F^{*}$-algebra.
Example 5. In Example 1, it is straight forward to see that $(G ; \bullet, \star, 0)$ is a pseudo- $B F^{*}$ algebra.

Example 6. In Example 2, $(E ; \bullet, \star, 0)$ is not a pseudo-BF*-algebra, as $(1 \bullet 1) \star 2=0 \star 2=$ $2 \neq(1 \star 2) \bullet 1=1 \bullet 1=0$.

Proposition 4. Let $(E ; \leq, \bullet, \star, 0)$ be a pseudo-BF*-algebra. The following axioms are satisfied for any $a, b, c \in E$:
(1) $a \leq 0$ implies $a=0$,
(2) $a \bullet(a \star b) \leq b$ and $a \star(a \bullet b) \leq b$,
(3) $a \bullet b \leq c$ if and only if $a \star c \leq b$,
(4) $0 \bullet(a \bullet b)=(0 \star a) \star(0 \bullet b)$,
(5) $0 \star(a \star b)=(0 \bullet a) \bullet(0 \star b)$,
(6) $0 \bullet a=0 \star a$.

Proof.
(1) Let $a \leq 0$. Then $a \bullet 0=a \star 0=0$ by $\left(p B F\left(4^{\prime}\right)\right)$. Multiplying by " a " from the right we have $0 \star a=(a \bullet 0) \star a=(a \star a) \bullet 0=0 \bullet 0=0$ and $0 \bullet a=(a \star 0) \bullet a=(a \bullet a) \star 0=0 \star 0=0$, using $\left(p B F^{*}\right)$ and $\left(p B F\left(1^{\prime}\right)\right)$. Now, using (Proposition $\left.2(1)\right)$ and $\left(p B F\left(1^{\prime}\right)\right)$, we get $a=0 \bullet(0 \bullet a)=0 \bullet 0=0$.
(2) From $\left(p B F^{*}\right),\left(p B F\left(1^{\prime}\right)\right)$ and $\left(p B F\left(4^{\prime}\right)\right)$, we have $[a \bullet(a \star b)] \star b=(a \star b) \bullet(a \star b)=0$ and $[a \star(a \bullet b)] \bullet b=(a \bullet b) \star(a \bullet b)=0$. Thus $a \bullet(a \star b) \leq b$ and $a \star(a \bullet b) \leq b$.
(3) By $\left(p B F^{*}\right)$ and $\left(p B F\left(4^{\prime}\right)\right)$ we have $a \bullet b \leq c \Leftrightarrow(a \bullet b) \star c=0 \Leftrightarrow(a \star c) \bullet b=0 \Leftrightarrow$ $a \star c \leq b$.
(4) Let $a, b \in E$. Then by using $\left(p B F\left(1^{\prime}\right)\right),\left(p B F\left(4^{\prime}\right)\right)$ and $\left(p B F^{*}\right)$ when needed we have $(0 \star a) \star(0 \bullet b)=([(a \bullet b) \bullet(a \bullet b)] \star a) \star(0 \bullet b)=([(a \bullet b) \star a] \bullet(a \bullet b)) \star(0 \bullet b)=$ $([(a \star a) \bullet b] \bullet(a \bullet b)) \star(0 \bullet b)=((0 \bullet b) \bullet(a \bullet b)) \star(0 \bullet b)=((0 \bullet b) \star(0 \bullet b)) \bullet(a \bullet b)=0 \bullet(a \bullet b)$.
(5) Can be proved as (4).
(6) Let $a \in E$. From $\left(p B F\left(1^{\prime}\right)\right),\left(p B F\left(4^{\prime}\right)\right)$ and $\left(p B F^{*}\right)$ we have $0 \bullet a=(a \star a) \bullet a=$ $(a \bullet a) \star a=0 \star a$.

Theorem 3. In a pseudo- $B F^{*}$-algebra $(E ; \leq, \bullet, \star, 0)$, we have:

$$
a \leq b \text { and } b \leq a \text { imply } a=b, \quad \text { for all } a, b \in E
$$

Proof. Let $a \leq b$ and $b \leq a$ then $a \bullet b=0, a \star b=0$ and $b \bullet a=0, b \star a=0$. By (Proposition $2(2)$), we have $a=0 \star(0 \bullet a)=0 \star[(a \star b) \bullet a]$. By using $\left(p B F^{*}\right),\left(p B F\left(1^{\prime}\right)\right)$ and $\left(p B F\left(4^{\prime}\right)\right)$ we get $0 \star[(a \star b) \bullet a]=0 \star[(a \bullet a) \star b]=0 \star(0 \star b)$. By (Proposition $\left.2(1)\right)$, we get $0 \star(0 \star b)=b$. The proof is complete.

The relation between pseudo- $B C K$-algebra and pseudo- $B F / B F^{*}$-algebra is given in the following theorems.

Theorem 4. Any pseudo-BCK-algebra is a pseudo-BF-algebra.
Proof. Let $(E ; \leq, \bullet, \star, 0)$ be a pseudo- $B C K$-algebra. The axioms $\left(p B F\left(1^{\prime}\right)\right),\left(p B F\left(4^{\prime}\right)\right)$ are clearly the axioms $(p B C K(3)),(p B C K(6))$. Put $b=0$ in (Theorem $2(2))$ we get $a \bullet 0 \leq a$ and $a \star 0 \leq a$. Then the axiom $\left(p B F\left(2^{\prime}\right)\right)$ holds. Now, we will show $\left(p B F\left(3^{\prime}\right)\right)$. By $(p B C K(4))$ and $(p B C K(6))$ we get $[0 \bullet(a \star b)] \bullet(b \star a)=0 \bullet(b \star a)=0$ and $[0 \star(a \bullet b)] \star(b \bullet a)=$ $0 \star(b \bullet a)=0$ and so $0 \bullet(a \star b) \leq b \star a$ and $0 \star(a \bullet b) \leq b \bullet a$. Thus E is a pseudo- $B F$-algebra.

Theorem 5. Any pseudo-BCK-algebra is a pseudo- $B F^{*}$-algebra.
Proof. It is obvious from (Theorem 4) above and by using (Theorem 1) that $(a \bullet b) \star c=$ $(a \star c) \bullet b$ (that is $\left.\left(p B F^{*}\right)\right)$. Therefore every pseudo- $B C K$-algebra is a pseudo- $B F^{*}$-algebra.

3. Pseudo-Ideal of Pseudo- $B F$-algebra

In this section, we start with the definition of pseudo-subalgebra of pseudo- $B F$-algebra. Then we study pseudo-ideal and pseudo-normal-ideal. We start with the following definition.

Definition 7. In a pseudo-BF-algebra $(E ; \bullet, \star, 0)$, let $\phi \neq S \subseteq E$. Then S is said to be a pseudo-subalgebra of E if:
$a \bullet b \in S$ and $a \star b \in S \quad$ for all $a, b \in S$.

Note: It is easy to see that if S is a pseudo-subalgebra of E, then $0 \in S$.
Lemma 1. In a pseudo-BF-algebra $(E ; \bullet, \star, 0)$, let S be a pseudo-subalgebra of E. Then for $a, b \in E$ we have:
(1) If $a \bullet b \in S$, then $b \bullet a \in S$,
(2) If $a \star b \in S$, then $b \star a \in S$.

Proof. For $a, b \in S$, let $a \bullet b \in S$ and $a \star b \in S$. By $(p B F(3)), b \bullet a=0 \star(a \bullet b)$. Since $0 \in S$ and $a \bullet b \in S$, we see that $0 \star(a \bullet b) \in S$ and so $b \bullet a \in S$ and $b \star a=0 \bullet(a \star b)$. Since $0 \in S$ and $a \star b \in S$, we see that $0 \bullet(a \star b) \in S$ and so $b \star a \in S$.

Definition 8. In a pseudo-BF-algebra $(E ; \bullet, \star, 0)$, let $\phi \neq I \subseteq E$. Then we say that I is a pseudo-ideal of E if it satisfies for all $a, b \in E$:
($p I 1$) $0 \in I$,
(pI2) $a \bullet b \in I, a \star b \in I$ and $b \in I$ implies $a \in I$.
Example 7. In Example 2, let $C=\{0,1\}, A=\{0,3\}$ and $F=\{0,1,2\}$ be subsets of E. Then C is a pseudo-subalgebra of E, whereas F is not, as $1 \bullet 2=3 \notin F$.
Also, A is a pseudo-ideal of E, but C is not, because $3 \bullet 1=0,3 \star 1=1 \in C, 1 \in C$, but $3 \notin C$.

Definition 9. In a pseudo-BF-algebra ($E ; \bullet, \star, 0)$, let I be a pseudo-ideal. We say that I is a pseudo-normal, if for any $a, b, c \in E$:

$$
a \bullet b, a \star b \in I \text { implies }(c \bullet a) \star(c \bullet b) \text { and }(c \star a) \bullet(c \star b) \in I
$$

Note: $\{0\}$ and E are always pseudo-ideals of E. Whereas if E is a pseudo-normal, $\{0\}$ is not a pseudo-normal in general.

Lemma 2. Let I be a pseudo-normal-ideal of a pseudo-BF-algebra $(E ; \bullet, \star, 0)$ and $a, b \in$ E. Then,
(1) $a \in I \Rightarrow 0 \bullet a \in I$ and $0 \star a \in I$,
(2) $a \bullet b, a \star b \in I \Rightarrow b \bullet a \in I$ and $b \star a \in I$.

Proof.
(1) Let $a \in I$. Then by $(p B F(2))$ we have $a=a \bullet 0 \in I$ and so $a=a \star 0 \in I$. Since I is a pseudo-normal-ideal, we get $(0 \bullet a) \star(0 \bullet 0)$ and $(0 \star a) \bullet(0 \star 0) \in I$. By $(p B F(1))$ then $(0 \bullet a) \star 0$ and $(0 \star a) \bullet 0 \in I$ and $0 \in I$ from $(p I 1)$. By $(p I 2)$ we get $(0 \bullet a)$, $(0 \star a) \in I$.
(2) Let $a \bullet b, a \star b \in I$. By (1) we get $0 \star(a \bullet b), 0 \bullet(a \star b) \in I$. Applying $(p B F(3))$ we have $b \bullet a, b \star a \in I$.

Proposition 5. In a pseudo-BF-algebra ($E ; \bullet, \star, 0$), let I be a pseudo-normal-ideal. Then I is a pseudo-subalgebra that satisfies the following condition:

$$
\text { (pNI) If } a \in E \text { and } b \in I \text {, then } a \star(a \bullet b), a \bullet(a \star b) \in I \text {. }
$$

Proof. Let $a \in E$ and $b \in I$. By (Lemma $2(1)), 0 \bullet b, 0 \star b \in I$. We have $(a \bullet 0) \star(a \bullet b)$ and $(a \star 0) \bullet(a \star b) \in I$ as I is a pseudo-normal-ideal. By $(p B F(2)), a \star(a \bullet b)$ and $a \bullet(a \star b) \in I$. Thus ($p N I$) holds.
Now let $a, b \in I$. Therefore $a \star(a \bullet b), a \bullet(a \star b) \in I$. By (Lemma $2(2)),(a \bullet b) \star a$, $(a \star b) \bullet a \in I ; a \in I$. From (pI2) we have $(a \bullet b),(a \star b) \in I$. Thus I is a pseudo-subalgebra satisfying ($p N I$).

Proposition 6. In a pseudo-BF-algebra ($E ; \bullet, \star, 0$), let I be a pseudo-ideal. Then for $a, b \in E$ where $b \leq a$, if $a \in I$, we have $b \in I$.

Proof.

Let $a \in I$ and $b \leq a$. Thus $b \bullet a=0, b \star a=0$. By ($p I 1$) and ($p I 2$), we have $0 \in I$ and so having $b \bullet a, b \star a \in I, a \in I$ we get $b \in I$.

Theorem 6. In a pseudo-BF-algebra $(E ; \bullet, \star, 0)$, let $\phi \neq I \subseteq E$. Then I is a pseudo-ideal of E if and only if the following hold:
(1) For all $a, b, c \in E, a, b \in I$ and $c \bullet b \leq a \Longrightarrow c \in I$.
(2) For all $a, b, c \in E, a, b \in I$ and $c \star b \leq a \Longrightarrow c \in I$.

Proof. Let I be a pseudo-ideal of E. Let $a, b, c \in E, a, b \in I$ and $c \bullet b \leq a$ we have $(c \bullet b) \star a=0 \in I$ from ($p I 1$). Since $a \in I$ then $c \bullet b \in I$ by ($p I 2$). Since $b \in I$ then $c \in I$ by ($p I 2$). Thus (1) is valid. Now, let $a, b, c \in E, a, b \in I$ and $c \star b \leq a$ we have $(c \star b) \bullet a=0 \in I$ from ($p I 1$). Since $a \in I$ then $c \star b \in I$ by ($p I 2$). Since $b \in I$ then $c \in I$ by ($p I 2$). Thus (2) is true.
Conversely, suppose that (1), (2) hold. Suppose that $b \in I$. By using (1), (2) we have $0 \bullet b \leq b$ and $0 \star b \leq b$, then $0 \in I$. Now, let $a \bullet b, a \star b \in I$ and $b \in I$. By using (1), (2) we have $a \bullet b \leq a \bullet b$ and $a \star b \leq a \star b$, then $a \in I$. Therefore I is a pseudo-ideal of E.

Theorem 7. In a pseudo-BF-algebra $(E ; \bullet, \star, 0)$, let I be a pseudo-subalgebra. Then I is a pseudo-ideal of E if and only if for $a, b \in E$ if $a \in I$ and $b \notin I$ then $b \bullet a$ and $b \star a \notin I$.

Proof. Let $a, b \in E$ and let I be a pseudo-ideal of E where $a \in I$ and $b \in E-I$. We prove by contradiction. Let $b \bullet a, b \star a \notin E-I$, we have $b \bullet a, b \star a \in I$. Since $a \in I$ then $b \in I$ by ($p I 2$). This contradicts the hypothesis $(b \in E-I$). Hence $b \bullet a, b \star a \in E-I$. Conversely, let $a \in I$ and $b \in E-I \Rightarrow b \bullet a, b \star a \in E-I$. Since I is a pseudo-subalgebra, we have $0 \in I$ (by Definition 7). Now, assume that $a, b \in E, a \in I$ and $b \bullet a, b \star a \in I$. We prove by contradiction. Let $b \notin I$, i.e. $b \in E-I$. Then $b \bullet a, b \star a \in E-I$ by hypothesis. This contradicts the hypothesis $(b \bullet a, b \star a \in I)$. Hence $b \in I$. Therefore I is a pseudo-ideal of E.

Proposition 7. In a pseudo-BF-algebra ($E ; \bullet, \star, 0$), let I be a pseudo-ideal. If J is a pseudo-ideal of I, then J is a pseudo-ideal of E as well.

Proof. Assume that J is a pseudo-ideal of I, then $0 \in J$. Let $b \in J$ and $a \bullet b, a \star b \in J$ for any $a \in E$. If $a \in I$, then $a \in J$ since J is a pseudo-ideal of I. If $a \notin I$,i.e. $a \in E-I$, then $b, a \bullet b, a \star b \in J \subseteq I$ and so $a \in I$. Hence $a \in J$. Thus J is a pseudo-ideal.

Proposition 8. In a pseudo-BF-algebra ($E ; \bullet, \star, 0$), let I be a pseudo-ideal. Then

$$
\forall a \in E, a \in I \text { we have } 0 \bullet(0 \star a), 0 \star(0 \bullet a) \in I .
$$

Proof. Let $a \in I$ and $0 \star a, 0 \bullet a \in I$, then $0 \in I$ from ($p I 1$) and (pI2). Since $a \in I$ and $0 \in I$, by using $(p B F(1))$ we have $0=a \star a, 0=a \bullet a \in I$. (By Proposition 2 (2)) we obtain $a \star a=[0 \bullet(0 \star a)] \star a, a \bullet a=[0 \star(0 \bullet a)] \bullet a \in I$. Thus $0 \bullet(0 \star a), 0 \star(0 \bullet a) \in I$ from ($p I 2$).

4. Pseudo-Atoms of Pseudo- $B F / B F^{*}$-algebra

In this section we introduce pseudo-atoms of pseudo- $B F / B F^{*}$-algebra and prove related properties. We start with the following definition.

Definition 10. In a pseudo-BF-algebra ($E ; \bullet, \star, 0$), let τ be an element in E. If $a \leq \tau$ implies $a=\tau \quad \forall a \in E$ then we call τ a pseudo-atom of E and the collection of all pseudo-atoms of E is called the center of E and denoted by $L_{p}(E)$.

Theorem 8. In a pseudo-BF*-algebra $(E ; \bullet, \star, 0)$ the following are equivalent for all $a, b, c, d, \tau \in E$:
(1) there exists a pseudo-atom τ,
(2) $\tau=a \star(a \bullet \tau)$ and $\tau=a \bullet(a \star \tau)$;
(3) $(a \bullet b) \star(a \bullet \tau)=\tau \bullet b$ and $(a \star b) \bullet(a \star \tau)=\tau \star b$;
(4) $\tau \bullet(a \star b)=b \star(a \bullet \tau)$ and $\tau \star(a \bullet b)=b \bullet(a \star \tau)$,
(5) $0 \star(b \bullet \tau)=\tau \bullet b$ and $0 \bullet(b \star \tau)=\tau \star b$,
(6) $0 \star(0 \bullet \tau)=\tau$ and $0 \bullet(0 \star \tau)=\tau$,
(7) $0 \star(0 \bullet(\tau \star c))=\tau \star c$ and $0 \bullet(0 \star(\tau \bullet c)=\tau \bullet c$,
(8) $c \star(c \bullet(\tau \star d))=\tau \star d$ and $c \bullet(c \star(\tau \bullet d))=\tau \bullet d$.

Proof.
(1) $\Rightarrow \mathbf{(2)}$. Assume that τ is a pseudo-atom of E. As $a \star(a \bullet \tau) \leq \tau$ and $a \bullet(a \star \tau) \leq \tau$ by (Proposition 4 (2)), we have $\tau=a \star(a \bullet \tau)$ and $\tau=a \bullet(a \star \tau)$.
(2) \Rightarrow (3). For all $a \in E$. By $\left(p B F^{*}\right)$ and (2), we have $(a \bullet b) \star(a \bullet \tau)=[a \star(a \bullet \tau)] \bullet b=\tau \bullet b$ and $(a \star b) \bullet(a \star \tau)=[a \bullet(a \star \tau)] \star b=\tau \star b$.
(3) \Rightarrow (4). Replacing b by $a \star b$ in (3), we get $\tau \bullet(a \star b)=[a \bullet(a \star b)] \star(a \bullet \tau)$. By ($\left.p B F^{*}\right)$ and (3), we have $[a \bullet(a \star b)] \star(a \bullet \tau)=[a \star(a \bullet \tau)] \bullet(a \star b)=b \star(a \bullet \tau)$. Also, replacing b by $a \bullet b$ in (3), we get $\tau \star(a \bullet b)=[a \star(a \bullet b)] \bullet(a \star \tau)$. By ($p B F^{*}$) and (3), we have $[a \star(a \bullet b)] \bullet(a \star \tau)=[a \bullet(a \star \tau)] \star(a \bullet b)=b \bullet(a \star \tau)$.
(4) \Rightarrow (5). Put $b=0$ and $a=b$ in (4). Hence $\tau \bullet(b \star 0)=0 \star(b \bullet \tau)$ and $\tau \star(b \bullet 0)=0 \bullet(b \star \tau)$. From $(p B F(3))$, then $0 \star(b \bullet \tau)=\tau \bullet b$ and $0 \bullet(b \star \tau)=\tau \star b$.
$\mathbf{(5)} \Rightarrow \mathbf{(6)}$. Put $b=0$ in (5). Then it is straightforward that $0 \star(0 \bullet \tau)=\tau \bullet 0=\tau$ and $0 \bullet(0 \star \tau)=\tau \star 0=\tau$ by $(p B F(2))$.
(6) $\Rightarrow \mathbf{(7)}$. For any $\tau, c \in E$. By (Proposition $4(6))$, we have $0 \star[0 \bullet(\tau \star c)]=0 \bullet[0 \bullet(\tau \star c)]=$ $0 \bullet[0 \star(\tau \star c)]$. By (Proposition $4(5))$, then $0 \bullet[0 \star(\tau \star c)]=0 \bullet[(0 \bullet \tau) \bullet(0 \star c)]$. By (Proposition $4(4))$, we get $0 \bullet[(0 \bullet \tau) \bullet(0 \star c)]=[0 \star(0 \bullet \tau)] \star[0 \bullet(0 \star c)]$. By (6), then $[0 \star(0 \bullet \tau)] \star[0 \bullet(0 \star c)]=\tau \star c$. Also, by (Proposition 4 (6),(4) and (5), respectively) and (6) we have $0 \bullet[0 \star(\tau \bullet c)]=0 \star[0 \star(\tau \bullet c)]=0 \star[0 \bullet(\tau \bullet c)]=$ $0 \star[(0 \star \tau) \star(0 \bullet c)]=[0 \bullet(0 \star \tau)] \bullet[0 \star(0 \bullet c)]=\tau \bullet c$. Thus (7) holds.
(7) \Rightarrow (8). For any $c, d, \tau \in E$, we have $\tau \star d=0 \star[0 \bullet(\tau \star d)]=0 \star[(c \star c) \bullet(\tau \star d)]=$ $0 \star([c \bullet(\tau \star d)] \star c)$ from (7), ($p B F(1))$ and $\left(p B F^{*}\right)$. By (Proposition 4 (5) and (6), respectively) then $0 \star([c \bullet(\tau \star d)] \star c)=(0 \bullet[c \bullet(\tau \star d)]) \bullet(0 \star c)=(0 \star[c \bullet(\tau \star d)]) \bullet(0 \star c)$. Using $\left(p B F^{*}\right),(0 \star[c \bullet(\tau \star d)]) \bullet(0 \star c)=(0 \bullet(0 \star c)) \star[c \bullet(\tau \star d)]$. By (Proposition 4 (6)), we get $(0 \bullet(0 \star c)) \star[c \bullet(\tau \star d)]=(0 \star(0 \star c)) \star[c \bullet(\tau \star d)]$. Using $(p B F(3))$, the hypothesis and $(p B F(2))$, respectively we have $(0 \star(0 \star c)) \star[c \bullet(\tau \star d)]=$ $(0 \star[0 \bullet(c \star 0)]) \star[c \bullet(\tau \star d)]=(c \star 0) \star[c \bullet(\tau \star d)]=c \star[c \bullet(\tau \star d)]$. Similarly $c \bullet[c \star(\tau \bullet d)]=\tau \bullet d$ is proved.
$\mathbf{(8)} \Rightarrow \mathbf{(1)}$. Let $c \leq \tau$ we have $c \bullet \tau=c \star \tau=0$. By $(p B F(2))$ we have $\tau=\tau \bullet 0$. Then by (8) with $d=0$ we obtain $\tau \bullet 0=c \bullet[c \star(\tau \bullet 0)]$. Using ($p B F(2)$) we have $c \bullet[c \star(\tau \bullet 0)]=c \bullet[c \star \tau]=c \bullet 0=c$. Thus τ is a pseudo-atom of E.

Corollary 3. In a pseudo-BF*-algebra $(E ; \bullet, \star, 0)$, let τ be a pseudo-atom of E. Then $\tau \bullet a$ and $\tau \star$ a are pseudo-atoms, for all $a \in E$. Hence $L_{p}(E)$ is a pseudo-subalgebra of E.

Proof. For $a, b \in E$, let $b \leq \tau \bullet a$ and $b \leq \tau \star a$ then $b \star(\tau \bullet a)=0$ and $b \bullet(\tau \star a)=0$. Multiplying by " b " from the right we have $(\tau \bullet a) \star b=0 \star(0 \bullet[(\tau \bullet a) \star b])$ and $(\tau \star a) \bullet b=$ $0 \bullet(0 \star[(\tau \star a) \bullet b])$ from (Theorem $8(7))$. By $(p B F(3))$ we get $0 \star(0 \bullet[(\tau \bullet a) \star b])=0 \star[b \star(\tau \bullet a)]$ and $0 \bullet(0 \star[(\tau \star a) \bullet b])=0 \bullet[b \bullet(\tau \star a)]$. By the hypothesis $(b \star(\tau \bullet a)=0$ and $b \bullet(\tau \star a)=0)$ and $(B F(1))$ we have $0 \star[b \star(\tau \bullet a)]=0 \star 0=0$ and $0 \bullet[b \bullet(\tau \star a)]=0 \bullet 0=0$. Then $\tau \bullet a \leq b$ and $\tau \star a \leq b$ and so $b=\tau \bullet a$ and $b=\tau \star a$, thus $\tau \bullet a$ and $\tau \star a$ are pseudoatoms. By (Definition 10) we have $L_{p}(E)$ is the set of all pseudo-atoms of E then $\tau \bullet a$ and $\tau \star a \in L(E)$. Therefore $L_{p}(E)$ is a pseudo-subalgebra of E.

Corollary 4. If pseudo-BF-algebra $(E ; \bullet, \star, 0)$ is generated by an element g then g is a pseudo-atom.

Proof. For $g \in E$, suppose that g generates E and let τ be a pseudo-atom of E. Thus we have $g \leq \tau$. Then $g \bullet \tau=0$ and $g \star \tau=0$. By (Corollary 2) we get $\tau \bullet g=0$ and $\tau \star g=0$. Therefore $\tau \leq g$ and so $\tau=g$. Hence g is a pseudo-atom.

Proposition 9. In a pseudo-BF-algebra $(E ; \bullet, \star, 0)$, let $\tau \in E$. If $\{0, \tau\}$ is a pseudo-ideal then $0 \neq \tau$ is a pseudo-atom.

Proof. Let $\{0, \tau\}$ be a pseudo-ideal of E and for all $a \in E$ let $a \leq \tau$ we have $a \bullet \tau=$ $a \star \tau=0 \in\{0, \tau\}$ from ($p I 1$). By ($p I 2$) we have $a \in\{0, \tau\}$, then $a=0$ or $a=\tau$. Since $\tau \neq 0$ and $(p B F(1))$, we get $a=\tau$. Thus τ is a pseudo-atom of E.

Proposition 10. In a pseudo-BF*-algebra ($E ; \bullet, \star, 0$), if a non-zero element is a pseudoatom of E, then any pseudo-subalgebra is a pseudo-ideal.

Proof. We prove ($p I 1$) and ($p I 2$). Let S be a pseudo-subalgebra of E, then $0 \in S$ from (Definition 7). For ($p I 2$), let $b \bullet a, b \star a \in S$ and $a \in S$. By (Theorem 8 (2) and (5), respectively) we have $b=a \bullet(a \star b)=a \bullet[0 \bullet(b \star a)]$. Since $0, b \star a \in S$ and S is a pseudo-subalgebra of E, we obtain $0 \bullet(b \star a) \in S$. So $a \bullet[0 \bullet(b \star a)] \in S$. Also, similarly we can show it if $b \bullet a \in S$. Then $b \in S$. Hence the proposition is proved.

For any pseudo- $B F$-algebra $(E ; \bullet, \star, 0)$, define the subsets $K(E), V(\tau)$ of E as follows:

$$
K(E)=\{a \in E: 0 \leq a\} \text { and } V(\tau)=\{a \in E: \tau \leq a\} .
$$

Theorem 9. In a pseudo-BF*-algebra $(E ; \bullet, \star, 0)$ if τ and ω is pseudo-atoms then the following hold:
(1) $a \in V(\tau), b \in V(\omega)$, imply $a \bullet b \in V(\tau \bullet \omega)$ and $a \star b \in V(\tau \star \omega)$,
(2) $a, b \in V(\tau)$, implies $a \star b, a \bullet b \in K(E)$,
(3) If $\tau \neq \omega$, then we have $a \bullet b, a \star b \in K(E)$, for all $a \in V(\tau), b \in V(\omega)$,
(4) $a \in V(\omega)$, implies $\tau \bullet a=\tau \bullet \omega$ and $\tau \star a=\tau \star \omega$,
(5) If $\tau \neq \omega$, then $V(\tau) \cap V(\omega)=\phi$.

Proof.
(1) Let $a \in V(\tau), b \in V(\omega)$. Then $\tau \leq a$ we have $\tau \bullet a=\tau \star a=0$ and $\omega \leq b$ we have $\omega \bullet b=\omega \star b=0$. From (Theorem $8(7))$ we obtain $(\tau \bullet \omega) \star(a \bullet b)=[0 \bullet(0 \star(\tau \bullet \omega))] \star(a \bullet b)$. Using $\left(p B F^{*}\right),[0 \bullet(0 \star(\tau \bullet \omega))] \star(a \bullet b)=[0 \star(a \bullet b)] \bullet[0 \star(\tau \bullet \omega)]$. By (Proposition $4(6)$ and (4), respectively) then $[0 \star(a \bullet b)] \bullet[0 \star(\tau \bullet \omega)]=[0 \bullet(a \bullet b)] \bullet[0 \star(\tau \bullet \omega)]=$ $[(0 \star a) \star(0 \bullet b)] \bullet[0 \star(\tau \bullet \omega)]$. By applying $\left(p B F^{*}\right)$, we get $[(0 \star a) \star(0 \bullet b)] \bullet[0 \star(\tau \bullet \omega)]=$
$[(0 \star a) \bullet[0 \star(\tau \bullet \omega)]] \star(0 \bullet b)=[(0 \bullet[0 \star(\tau \bullet \omega)]) \star a] \star(0 \bullet b)$. By (Theorem $8(7))$ we have $[(0 \bullet[0 \star(\tau \bullet \omega)]) \star a] \star(0 \bullet b)=[(\tau \bullet \omega) \star a] \star(0 \bullet b)$. Using $\left(p B F^{*}\right)$ we get $[(\tau \bullet \omega) \star a] \star(0 \bullet b)=[(\tau \star a) \bullet \omega] \star(0 \bullet b)$. From the hypothesis we have $[(\tau \star a) \bullet \omega] \star(0 \bullet b)=(0 \bullet \omega) \star(0 \bullet b)$. By (Proposition 4 (6) and (4), respectively) we get $(0 \bullet \omega) \star(0 \bullet b)=(0 \star \omega) \star(0 \bullet b)=0 \bullet(\omega \bullet b)$. Using the hypothesis and $(p B F(1))$, respectively we get $0 \bullet(\omega \bullet b)=0 \bullet 0=0$, and so $\tau \bullet \omega \leq a \bullet b$. Thus $a \bullet b \in V(\tau \bullet \omega)$ and similarly $a \star b \in V(\tau \star \omega)$.
(2) Let $a, b \in V(\tau)$, by (1) we have $a \bullet b \in V(\tau \bullet \tau)$, $a \star b \in V(\tau \star \tau)$. Using $(p B F(1))$ then $a \bullet b \in V(0), a \star b \in V(0)$. We get $0 \leq a \bullet b, 0 \leq a \star b$. Then $a \bullet b, a \star b \in K(E)$.
(3) Let 0 be a pseudo-atom from (Definition 10) we get $a \bullet b \leq 0$ then $a \bullet b=0$. By (Corollary 2) we get $b \bullet a=0$. Using $(p B F(3))$ then $0 \star(a \bullet b)=0$ and so $0 \leq a \bullet b$. Therefore $a \bullet b \in V(0)$ and so $a \bullet b \in K(E)$. Similarly we can show that $a \star b \in K(E)$.
(4) Let $a \in V(\omega)$, then $\omega \leq a$ we have $\omega \bullet a=0$ and $\omega \star a=0$. By (Theorem 8 (3)) we get $(\tau \bullet a) \star(\tau \bullet \omega)=\omega \bullet a=0$. So $\tau \bullet a \leq \tau \bullet \omega$. Moreover, $\tau \bullet \omega$ is a pseudo-atom by (Corollary 3). Therefore $\tau \bullet a=\tau \bullet \omega$. Similarly $\tau \star a=\tau \star \omega$.
(5) We prove by contradiction. Let $\tau \neq \omega$ and let $V(\tau) \cap V(\omega) \neq \phi$ then there exists $c \in V(\tau) \cap V(\omega)$. From (1), we have $c \bullet c \in V(\tau \bullet \omega), c \star c \in V(\tau \star \omega)$. Using $(p B F(1))$ then $c \bullet c=0=c \star c$ and so $0 \in V(\tau \bullet \omega), V(\tau \star \omega)$. Hence $\tau \bullet \omega \leq 0$ and $\tau \star \omega \leq 0$. That is $\tau \bullet \omega, \tau \star \omega$ are pseudo-atoms from (1), then $\tau \bullet \omega=0=\tau \star \omega$ we have $\tau \leq \omega$. That is ω is a pseudo-atom then $\tau=\omega$ this is a contradiction with hypothesis $(\tau \neq \omega)$. Thus $V(\tau) \cap V(\omega)=\phi$.

Proposition 11. In a pseudo-BF*-algebra $(E ; \bullet, \star, 0)$, let $\tau \in E$. Then τ is a pseudoatom if and only if there is $a \in E$ such that $\tau=0 \bullet a$.

Proof. Let τ be a pseudo-atom of E. Then $\tau=0 \bullet(0 \star \tau)$, from (Theorem 8 (6)). Set $a=0 \star \tau$, we get $\tau=0 \bullet a$.
Conversely, let $\tau=0 \bullet a$ for some $a \in E$. We use (Proposition $2(2))$ to have $0 \bullet(0 \star \tau)=$ $0 \bullet(0 \star(0 \bullet a))=0 \bullet a=\tau$. By (Theorem 8 (6) and (1)) we conclude that τ is a pseudo-atom.

Proposition 12. In a pseudo-BF*-algebra $(E ; \bullet, \star, 0)$, the following properties hold for any $a, b, c \in E$:
(1) if $a \leq b$ then $c \bullet b \leq c \bullet a$ and $c \star b \leq c \star a$,
(2) if $a \leq b, b \leq c$ then $a \leq c$,
(3) if $a \bullet b=c=a \star b$ then $c \bullet a=c \star a$,
(4) $(a \bullet b) \bullet(c \bullet b) \leq a \bullet c$ and $(a \star b) \star(c \star b) \leq a \star c$,
(5) if $a \leq b$ then $a \bullet c \leq b \bullet c$ and $a \star c \leq b \star c$.

Proof.
(1) Let $a, b \in E, a \leq b$ then $a \bullet b=0$ and $a \star b=0$. By (Theorem 8 (3)) then $(c \bullet b) \star(c \bullet a)=a \bullet b=0$ and $(c \star b) \bullet(c \star a)=a \star b=0$ we get $c \bullet b \leq c \bullet a$ and $c \star b \leq c \star a$.
(2) Let $a, b, c \in E, a \leq b$ and $b \leq c$ we have $a \bullet b=0, a \star b=0$ and $b \bullet c=0, b \star c=0$. Also, by (1) since $b \leq c$ then $a \bullet c \leq a \bullet b \Rightarrow a \bullet c \leq 0$. By (Proposition 4 (1)) we get $a \bullet c=0$ and so $a \leq c$.
(3) Let $a \bullet b=c=a \star b$. By using $(p B F(1))$ and $\left(p B F^{*}\right)$ we obtain $c \star a=(a \bullet b) \star a=$ $(a \star a) \bullet b=0 \bullet b$. By (Proposition $4(6)), 0 \bullet b=0 \star b$. Using $(p B F(1))$ and $\left(p B F^{*}\right)$ we have $0 \star b=(a \bullet a) \star b=(a \star b) \bullet a=c \bullet a$.
(4) By $\left(p B F^{*}\right)$, (Theorem $\left.8(3)\right)$ and $(p B F(1))$, respectively we have $[(a \bullet b) \bullet(c \bullet b)] \star$ $(a \bullet c)=[(a \bullet b) \star(a \bullet c)] \bullet(c \bullet b)=(c \bullet b) \bullet(c \bullet b)=0$. Then $(a \bullet b) \bullet(c \bullet b) \leq a \bullet c$. Similarly, $(a \star b) \star(c \star b) \leq a \star c$.
(5) Suppose that $a, b \in E, a \leq b$ we have $a \bullet b=0, a \star b=0$. Using (4), we have $(a \bullet c) \bullet(b \bullet c) \leq a \bullet b$ but $a \bullet b=0$. By (Proposition $4(1))$ then $(a \bullet c) \bullet(b \bullet c)=0$ and so $a \bullet c \leq b \bullet c$. By a similar way, we can show that $a \star c \leq b \star c$.

Theorem 10. In a pseudo-BF*-algebra $(E ; \bullet, \star, 0)$, the set $K(E)$ is a pseudo-subalgebra.
Proof. For $a, b \in K(E)$, we have $0 \leq a, 0 \leq b$, then $0 \bullet a=0,0 \star a=0$ and $0 \bullet b=0$, $0 \star b=0$. By using (Proposition 12 (5)) since $0 \leq a$ we get $0 \bullet b \leq a \bullet b$ and $0 \star b \leq a \star b$. Hence $0 \leq a \bullet b$ and $0 \leq a \star b$ and so $a \bullet b, a \star b \in K(E)$. Thus $K(E)$ is a pseudo-subalgebra of E.

References

[1] R. A. Borzooei, A. B. Saeid, A. Rezaei, A. Radfar, and R. Ameri. On pseudo bealgebras. Discussiones Mathematicae General Algebra and Applications, 33(1):95-108, 2013.
[2] M. Chandramouleeswaran and P. Muralikrishna. The intuitionistic l-fuzzy bf_subalgebras. Global Journal Pure and Applied Mathematics, 6(1):1-6, 2010.
[3] L. C. Ciungu. Commutative pseudo-be-algebras. Iranian Journal of Fuzzy Systems, 13(1):131-144, 2016.
[4] W. A. Dudek and Y. B. Jun. Pseudo-bci algebras. East Asian Mathematical Journal, 24(2):187-190, 2008.
[5] G. Georgescu. Pseudo-mv algebras: a noncommutative extension of mv algebras. In In The Proceedings of the Fourth International Symposium on Economic Informatics, Bucharest, Romania, 1999.
[6] G. Georgescu and A. Iorgulescu. Pseudo-BCK algebras: an extension of BCK algebras, In Combinatorics, computability and logic. Springer, London, 2001.
[7] Y. Imai. On axiom systems of propositional calculi xiv. Proc. Japan Academy, 42:1922, 1966.
[8] K. Iski. An algebra related with a propositional calculus. Proceedings of the Japan Academy, 42(1):26-29, 1966.
[9] Y. B. Jun, , and S. S. Ahn. On pseudo bh-algebras. Honam Mathematical Journal, $37(2): 207-219,2015$.
[10] Y. B. Jun, , H. S. Kim, and J. Neggers. On pseudo-bci ideals of pseudo bci-algebras. Mat. Vesnik, 58(1-2):39-46, 2006.
[11] Y. B. Jun, H. S. Kim, and J. Neggers. Pseudo d-algebras. Information Sciences, 179(11):1751-1759, 2009.
[12] Y. H. Kim and K. S. So. On minimality in pseudo-bci-algebras. Communications of the Korean Mathematical Society, 27(1):7-13, 2012.
[13] J. Neggers and K. Sik. On b-algebras. Matematicki vesnik, 54(1-2):21-29, 2002.
[14] A. Di Nola, G. Georgescu, and A. Iorgulescu. Pseudo-bl algebras: part i. Multiple Valued Logic, 8(5/6):673-716, 2002.
[15] J. Rachunek. A non-commutative generalization of mv-algebras. Czechoslovak Mathematical Journal, 52(2):255-273, 2002.
[16] E. Turunen and S. Sessa. Local bl-algebras. Multiple Valued Logic, 6(1-2):229-249, 2001.
[17] A. Walendziak. On bf-algebras. Mathematica Slovaca, 57(2):119-128, 2007.
[18] A. Walendziak. Pseudo-bch-algebras. Discussiones Mathematicae General Algebra and Applications, 35(1):5-19, 2015.

[^0]: *Corresponding author.
 DOI: https://doi.org/10.29020/nybg.ejpam.v13i3.3735

