EUROPEAN JOURNAL OF PURE AND APPLIED MATHEMATICS

Vol. 13, No. 3, 2020, 498-512 ISSN 1307-5543 – www.ejpam.com Published by New York Business Global

The Structure of Pseudo- BF/BF^* -algebra

Hessah M. Al-Malki¹, Deena S. Al-Kadi^{1,*}

¹ Department of Mathematics and Statistics, Faculty of Science, Taif University, Taif, Saudi Arabia

Abstract. In this paper, we study the structure of pseudo- BF/BF^* -algebra as a generalization of BF-algebra. We show how pseudo- BF/BF^* -algebra and pseudo-BCK-algebra are related. We study some elementary properties related to pseudo-BF-algebra and pseudo- BF^* -algebra.

2020 Mathematics Subject Classifications: 06F35, 03G25Key Words and Phrases: pseudo-BF-algebra, pseudo- BF^* -algebra, pseudo-ideal, pseudo-atoms.

1. Introduction

Through the work of the Japanese mathematicians Imai and Iseki the notions of BCK/BCI-algebra were introduced (see [7] and [8]). Neggers and Sik introduced the concept of B-algebra, and obtained several results (we refer the reader to [13] for more details). In [17], Walendziak introduced a generalization of B-algebra named BF-algebra and investigated some properties of ideals and normal-ideals in BF-algebra and gave some characterization of them. In [6], Georgescu and Iorgulescu introduced an extension of BCK-algebra called pseudo-BCK-algebra. Moreover, they gave the connection of pseudo-BCK-algebra with pseudo-MV-algebra and with pseudo-BL-algebra. Dudek and Jun introduced the notion pseudo-BCI-algebra as a natural generalization of BCIalgebra and of pseudo-BCK-algebra and investigated some of their properties. They gave some conditions for a pseudo-BCI-algebra to be a pseudo-BCK-algebra (see [4] for more details). In [10], Jun, Kim and Neggers studied pseudo-atoms, pseudo-ideals and pseudo-homomorphisms in pseudo-BCI-algebra. In [12], Kim and So discussed minimality on elements in pseudo-BCI-algebra and concluded some of the properties in B-algebra. Walendziak in [18] introduced the notion of pseudo-BCH-algebra and investigated some properties and gave conditions to when a pseudo-BCH-algebra be a pseudo-BCI-algebra. The authors G. Georgescu and A. Iorgulescu in [5], and independently Rachunek in [15],

https://www.ejpam.com

© 2020 EJPAM All rights reserved.

^{*}Corresponding author.

DOI: https://doi.org/10.29020/nybg.ejpam.v13i3.3735

Email addresses: dak121e@hotmail.co.uk (Deena S. Al-Kadi), hhhmmm9999@hotmail.com (Hessah M. Al-Malki)

studied a non-commutative generalization of the MV-algebra named pseudo-MV-algebra. In [16], pseudo-BL-algebra was introduced as a generalization of BL-algebra and pseudo-MV-algebra and basic properties, filters, normal-filters and congruences were given. Di Nola, Georgescu and Iorgulescu, in [14], investigated pseudo-*BL*-algebra including definition, basic properties, filters, normal-filters and congruences. Moreover, they gave some important classes of pseudo-BL-algebra and some results concerning the pseudo-BL-chains. In [11], Jun, Kim and Neggers introduced the notion of pseudo-d-algebra as an extension of d-algebra and they showed that the class of pseudo-d-algebra can be included in the class of coupled d-algebra. In [1], the authors, introduced the concept of pseudo-BE-algebra. They studied the concepts of pseudo-subalgebra, pseudo-filter and pseudo-upper-set and proved that every pseudo-filter is a union of pseudo-upper-sets. In [9], Jun and Ahn studied some properties of pseudo-BH-algebra. Furthermore, they introduced the concept of pseudo-complicated-BH-algebra and got some related properties. In [3], Ciungu introduced and investigated pointed-pseudo-BE-algebra and commutativepseudo-BE-algebra and proved that the class of commutative-pseudo-BE-algebra and the class of commutative-pseudo-BCK-algebra are equivalent.

In this paper, we study the structure of pseudo- BF/BF^* -algebra. We introduce, in the second section, the notion of pseudo- BF/BF^* -algebra and find the relation between pseudo- BF/BF^* -algebra with pseudo-BCK-algebra. In the third section, we study pseudosubalgebra, pseudo-ideal and pseudo-normal-ideal of pseudo-BF-algebra. We study pseudoatoms of pseudo- BF/BF^* -algebra in the last section.

We start by recalling the definitions and elementary properties related to the paper.

Definition 1. [17, Definition 2.1] An algebra $(E; \bullet, 0)$ of type (2, 0) is called a BF-algebra if the following axioms are satisfies the following axiom, for all $a, b \in E$:

- $(BF(\mathbf{1})) \ a \bullet a = 0,$
- $(BF(\mathbf{2})) \ a \bullet 0 = a,$
- $(BF(3)) \quad 0 \bullet (a \bullet b) = b \bullet a.$

Definition 2. [2, Definition 2.3] In BF-algebra $(E; \bullet, 0)$, we can define a binary relation " \leq " on E as follows:

 $a \leq b$ if and only if $a \bullet b = 0$ for all $a, b \in E$.

Any BF-algebra, satisfies the properties given in the following Proposition.

Proposition 1. [17, Proposition 2.5] Let $(E; \bullet, 0)$ be a BF-algebra, then,

- (1) $0 \bullet (0 \bullet a) = a$ for all $a \in E$,
- (2) if $0 \bullet a = 0 \bullet b$, then a = b for all $a, b \in E$,
- (3) if $a \bullet b = 0$, then $b \bullet a = 0$ for all $a, b \in E$.

We give next the definition of pseudo-BCK-algebra.

Definition 3. [6, Definition 3] An algebra $(E; \leq, \bullet, \star, 0)$ of type (2, 2, 0), where " \leq " is a binary relation on a set E, " \bullet " and " \star " are binary operations on E and "0" is a constant of E, is called a pseudo-BCK-algebra if the following are satisfied: $\forall a, b, c \in E$,

(pBCK(1)) $(a \bullet b) \star (a \bullet c) \le c \bullet b$ and $(a \star b) \bullet (a \star c) \le c \star b$,

(pBCK(2)) $a \star (a \bullet b) \leq b$ and $a \bullet (a \star b) \leq b$,

 $(pBCK(3)) a \leq a,$

 $(pBCK(4)) \quad 0 \leq a,$

(pBCK(5)) $a \leq b$ and $b \leq a$ then a = b,

(pBCK(6)) $a \leq b \Leftrightarrow a \bullet b = 0$ if and only if $a \star b = 0$.

Theorem 1. [6, Theorem 7] In a pseudo-BCK-algebra $(E; \leq, \bullet, \star, 0)$, for all $a, b, c \in E$ we have

$$(a \bullet b) \star c = (a \star c) \bullet b.$$

Theorem 2. [6, Theorem 8] In any pseudo-BCK-algebra $(E; \leq, \bullet, \star, 0)$ we have, for all $a, b, c \in E$:

- (1) $a \bullet b \leq c$ if and only if $a \star c \leq b$,
- (2) $a \bullet b \leq a \text{ and } a \star b \leq a$.

2. Pseudo-BF/BF*-algebra

In this section, we give a generalization of BF-algebra named pseudo-BF-algebra and study its structure. Also, we will introduce pseudo- BF^* -algebra and find the relation between pseudo- BF/BF^* -algebra and pseudo-BCK-algebra.

Definition 4. An algebra $(E; \bullet, \star, 0)$ of type (2, 2, 0) is said to be a pseudo-BF-algebra, if the following axioms are satisfied for all $a, b \in E$:

(pBF(1)) $a \bullet a = 0$ and $a \star a = 0$,

(pBF(2)) $a \bullet 0 = a$ and $a \star 0 = a$,

 $(pBF(3)) \quad 0 \bullet (a \star b) = b \star a \text{ and } 0 \star (a \bullet b) = b \bullet a.$

The following examples illustrates the definition.

Example 1. Consider the group (G; +, 0), where "+" is the usual addition. Define the operations " \bullet " and " \star " on G by:

$$a \bullet b = (-b) + a \text{ and } a \star b = (-b) + a \text{ for all } a, b \in G$$

then $(G; \bullet, \star, 0)$ is a pseudo-BF-algebra.

Note: It is obvious that in any pseudo-*BF*-algebra *E* if $a \bullet b = a \star b$ for all $a, b \in E$ then *E* is a *BF*-algebra.

Example 2. Define the operations "•" and " \star " on $E = \{0, 1, 2, 3\}$, by the following Cayley tables:

	T a	ıble	: 1		Table 2						
•	0	1	2	3	*	0	1	2	3		
0	0	1	2	3	θ	θ	1	2	3		
1	1	0	3	0	1	1	0	1	1		
2	2	3	0	$\mathcal{2}$	2	2	1	0	1		
3	3	0	2	0	3	3	1	1	0		

Then $(E; \bullet, 0)$ and $(E; \star, 0)$ are BF-algebras (shown in [17]). It is obvious that $a \bullet a = 0$ and $a \star a = 0$. Moreover, $a \bullet 0 = a$ and $a \star 0 = a$. It is direct to check that $0 \bullet (a \star b) = b \star a$ and $0 \star (a \bullet b) = b \bullet a$ is satisfied for all $a, b \in E$. Thus $(E; \bullet, \star, 0)$ is a pseudo-BF-algebra.

Corollary 1. Any two BF-algebras does not necessarily construct a pseudo-BF-algebra. Moreover, if $(\mathbb{R}; \bullet, \star, 0)$ is a pseudo-BF-algebra then it is not necessary for both $(\mathbb{R}; \bullet, 0)$ and $(\mathbb{R}; \star, 0)$ to be a BF-algebra. The following two examples proves the Corollary.

Example 3. Define the operations "•" and " \star " on $E = \{0, 1, 2, 3, 4, 5\}$, by the following Cayley tables:

Table 3								Table 4						
•	0	1	2	3	4	5		*	0	1	2	3	4	5
0	0	2	1	3	4	5		0	0	1	2	3	4	5
1	1	0	$\mathcal{2}$	4	5	3		1	1	0	3	$\mathcal{2}$	1	0
2	$\mathcal{2}$	1	0	5	3	4		$\mathcal{2}$	2	\mathcal{B}	0	0	0	\mathcal{Z}
3	3	4	5	0	$\mathcal{2}$	1		3	3	$\mathcal{2}$	0	0	3	1
4	4	5	3	1	0	2		4	4	1	0	3	0	0
5	5	3	4	$\mathcal{2}$	1	0		5	5	0	$\mathcal{2}$	1	0	θ

Then $(E; \bullet, 0), (E; \star, 0)$ are BF-algebras but $(E; \bullet, \star, 0)$ is not since $0 \bullet (0 \star 1) = 0 \bullet 1 = 2 \neq 1 \star 0 = 1$.

Example 4. Let \mathbb{R} be the set of real numbers. Define the operations "•" and " \star " on \mathbb{R} for all $a, b \in \mathbb{R}$ by:

$$a \bullet b = \begin{cases} a & if \ b = 0, \\ b & if \ a = 0, \\ 0 & otherwise. \end{cases} \qquad a \star b = \begin{cases} a & if \ b = 0, \\ 0 & if \ a = 0, a = b, \\ b \star a & otherwise. \end{cases}$$

Then $(\mathbb{R}; \bullet, \star, 0)$ is a pseudo-*BF*-algebra. The algebra $(\mathbb{R}; \bullet, 0)$ is *BF*-algebra [17], but the algebra $(\mathbb{R}; \star, 0)$ is not.

Proposition 2. If $(E; \bullet, \star, 0)$ is a pseudo-BF-algebra for all $a, b \in E$ then

(1)
$$0 \bullet (0 \bullet a) = a \text{ and } 0 \star (0 \star a) = a,$$

- (2) $0 \star (0 \bullet a) = a$ and $0 \bullet (0 \star a) = a$,
- (3) $0 \bullet a = 0 \star b$, implies a = b.

Proof.

- (1) By (pBF(2)), (pBF(3)) and let $a \in E$ then $0 \bullet (0 \bullet a) = 0 \bullet [0 \star (a \bullet 0)] = 0 \bullet (0 \star a) = a \star 0 = a$ and $0 \star (0 \star a) = 0 \star [0 \bullet (a \star 0)] = 0 \star (0 \bullet a) = a \bullet 0 = a$.
- (2) Let $a \in E$. By (pBF(2)) and (pBF(3)) we obtain $0 \star (0 \bullet a) = a \bullet 0 = a$ and $0 \bullet (0 \star a) = a \star 0 = a$, that is (2) holds.
- (3) Let $0 \bullet a = 0 \star b$, then it follows from (1) and (2) that $a = 0 \star (0 \bullet a) = 0 \star (0 \star b) = b$.

Corollary 2. In a pseudo-BF-algebra $(E; \bullet, \star, 0)$, $a \bullet b = 0$ does not imply $b \star a = 0$ and similarly $a \star b = 0$ does not imply $b \bullet a = 0$. $\forall a, b \in E$.

Proof. Let $a, b \in E$ and $a \bullet b = 0$. Then $0 = 0 \star 0 = 0 \star (a \bullet b) = b \bullet a$. Then it is not necessary that $b \star a = 0$. Similarly, if $a \star b = 0$ then it is not necessary that $b \bullet a = 0$.

Note: From the proof of (Corollary 2) we see that if $a \bullet b = 0$, then $b \bullet a = 0$ and if $a \star b = 0$, then $b \star a = 0$, for all $a, b \in E$.

As in *BF*-algebra, a binary relation " \leq " could be defined in pseudo-*BF*-algebra as follows:

$$a \le b \Leftrightarrow a \bullet b = 0 \Leftrightarrow a \star b = 0 \quad \forall a, b \in E.$$

Therefore we can rewrite the definition of a pseudo-BF-algebra with a binary relation " \leq " as follows:

Definition 5. The algebra $(E; \leq, \bullet, \star, 0)$ where " \leq " is a binary relation on a set E, " \bullet " and " \star " are binary operations on E and "0" is an element of E, is said to be a pseudo-BF-algebra if for all $a, b, c \in E$ the following axioms are satisfied:

 $(pBF(1')) a \leq a,$

(pBF(2')) $a \bullet 0 \le a \text{ and } a \star 0 \le a$,

 $(pBF(3')) \quad 0 \bullet (a \star b) \leq b \star a \text{ and } 0 \star (a \bullet b) \leq b \bullet a,$

 $(pBF(4')) \ a \le b \Leftrightarrow a \bullet b = 0 \Leftrightarrow a \star b = 0.$

Proposition 3. The following proposition holds in any pseudo-BF-algebra $(E; \leq, \bullet, \star, 0)$,:

$$0 \le a \text{ implies } a = 0 \quad \forall a \in E.$$

Proof. Since $0 \le a$, we have $0 \bullet a = 0 \star a = 0$ from (pBF(4')). Using (Proposition 2 (1)), (pBF(1')) and (pBF(4')) we get $a = 0 \bullet (0 \bullet a) = 0 \bullet 0 = 0$.

Next we introduce pseudo- BF^* -algebra and we find some results.

Definition 6. A pseudo-BF-algebra $(E; \bullet, \star, 0)$ is called a pseudo-BF*-algebra, for all $a, b, c \in E$ if it satisfies the following identity:

$$(pBF^*)$$
 $(a \bullet b) \star c = (a \star c) \bullet b.$

We can see that any pseudo- BF^* -algebra is a pseudo-BF-algebra and any pseudo-BF-algebra satisfying (pBF^*) is a pseudo- BF^* -algebra.

Example 5. In Example 1, it is straight forward to see that $(G; \bullet, \star, 0)$ is a pseudo-BF*algebra.

Example 6. In Example 2, $(E; \bullet, \star, 0)$ is not a pseudo-BF*-algebra, as $(1 \bullet 1) \star 2 = 0 \star 2 = 2 \neq (1 \star 2) \bullet 1 = 1 \bullet 1 = 0$.

Proposition 4. Let $(E; \leq, \bullet, \star, 0)$ be a pseudo-BF*-algebra. The following axioms are satisfied for any $a, b, c \in E$:

- (1) $a \leq 0$ implies a = 0,
- (2) $a \bullet (a \star b) \leq b$ and $a \star (a \bullet b) \leq b$,
- (3) $a \bullet b \leq c$ if and only if $a \star c \leq b$,
- (4) $0 \bullet (a \bullet b) = (0 \star a) \star (0 \bullet b),$
- (5) $0 \star (a \star b) = (0 \bullet a) \bullet (0 \star b),$
- (6) $0 \bullet a = 0 \star a$.

Proof.

- (1) Let $a \leq 0$. Then $a \bullet 0 = a \star 0 = 0$ by (pBF(4')). Multiplying by "a" from the right we have $0 \star a = (a \bullet 0) \star a = (a \star a) \bullet 0 = 0 \bullet 0 = 0$ and $0 \bullet a = (a \star 0) \bullet a = (a \bullet a) \star 0 = 0 \star 0 = 0$, using (pBF^*) and (pBF(1')). Now, using (Proposition 2 (1)) and (pBF(1')), we get $a = 0 \bullet (0 \bullet a) = 0 \bullet 0 = 0$.
- (2) From (pBF^*) , (pBF(1')) and (pBF(4')), we have $[a \bullet (a \star b)] \star b = (a \star b) \bullet (a \star b) = 0$ and $[a \star (a \bullet b)] \bullet b = (a \bullet b) \star (a \bullet b) = 0$. Thus $a \bullet (a \star b) \le b$ and $a \star (a \bullet b) \le b$.
- (3) By (pBF^*) and (pBF(4')) we have $a \bullet b \le c \Leftrightarrow (a \bullet b) \star c = 0 \Leftrightarrow (a \star c) \bullet b = 0 \Leftrightarrow a \star c \le b$.

503

- (4) Let $a, b \in E$. Then by using (pBF(1')), (pBF(4')) and (pBF^*) when needed we have $(0 \star a) \star (0 \bullet b) = ([(a \bullet b) \bullet (a \bullet b)] \star a) \star (0 \bullet b) = ([(a \bullet b) \star a] \bullet (a \bullet b)) \star (0 \bullet b) = ([(a \star a) \bullet b] \bullet (a \bullet b)) \star (0 \bullet b) = ((0 \bullet b) \bullet (a \bullet b)) \star (0 \bullet b) = ((0 \bullet b) \star (0 \bullet b)) \bullet (a \bullet b) = 0 \bullet (a \bullet b).$
- (5) Can be proved as (4).
- (6) Let $a \in E$. From (pBF(1')), (pBF(4')) and (pBF^*) we have $0 \bullet a = (a \star a) \bullet a = (a \bullet a) \star a = 0 \star a$.

Theorem 3. In a pseudo-BF*-algebra $(E; \leq, \bullet, \star, 0)$, we have:

$$a \leq b \text{ and } b \leq a \text{ imply } a = b, \text{ for all } a, b \in E.$$

Proof. Let $a \leq b$ and $b \leq a$ then $a \bullet b = 0$, $a \star b = 0$ and $b \bullet a = 0$, $b \star a = 0$. By (Proposition 2 (2)), we have $a = 0 \star (0 \bullet a) = 0 \star [(a \star b) \bullet a]$. By using (pBF^*) , (pBF(1')) and (pBF(4')) we get $0 \star [(a \star b) \bullet a] = 0 \star [(a \bullet a) \star b] = 0 \star (0 \star b)$. By (Proposition 2 (1)), we get $0 \star (0 \star b) = b$. The proof is complete.

The relation between pseudo-BCK-algebra and pseudo- BF/BF^* -algebra is given in the following theorems.

Theorem 4. Any pseudo-BCK-algebra is a pseudo-BF-algebra.

Proof. Let $(E; \leq, \bullet, \star, 0)$ be a pseudo-*BCK*-algebra. The axioms (pBF(1')), (pBF(4')) are clearly the axioms (pBCK(3)), (pBCK(6)). Put b = 0 in (Theorem 2 (2)) we get $a \cdot 0 \leq a$ and $a \star 0 \leq a$. Then the axiom (pBF(2')) holds. Now, we will show (pBF(3')). By (pBCK(4)) and (pBCK(6)) we get $[0 \cdot (a \star b)] \cdot (b \star a) = 0 \cdot (b \star a) = 0$ and $[0 \cdot (a \cdot b)] \cdot (b \cdot a) = 0 \cdot (b \cdot a) = 0$ and so $0 \cdot (a \star b) \leq b \star a$ and $0 \cdot (a \cdot b) \leq b \cdot a$. Thus *E* is a pseudo-*BF*-algebra.

Theorem 5. Any pseudo-BCK-algebra is a pseudo-BF*-algebra.

Proof. It is obvious from (Theorem 4) above and by using (Theorem 1) that $(a \bullet b) \star c = (a \star c) \bullet b$ (that is (pBF^*)). Therefore every pseudo-*BCK*-algebra is a pseudo-*BF**-algebra.

3. Pseudo-Ideal of Pseudo-BF-algebra

In this section, we start with the definition of pseudo-subalgebra of pseudo-BF-algebra. Then we study pseudo-ideal and pseudo-normal-ideal. We start with the following definition.

Definition 7. In a pseudo-BF-algebra $(E; \bullet, \star, 0)$, let $\phi \neq S \subseteq E$. Then S is said to be a pseudo-subalgebra of E if:

$$a \bullet b \in S \text{ and } a \star b \in S \text{ for all } a, b \in S.$$

Note: It is easy to see that if S is a pseudo-subalgebra of E, then $0 \in S$.

Lemma 1. In a pseudo-BF-algebra $(E; \bullet, \star, 0)$, let S be a pseudo-subalgebra of E. Then for $a, b \in E$ we have:

- (1) If $a \bullet b \in S$, then $b \bullet a \in S$,
- (2) If $a \star b \in S$, then $b \star a \in S$.

Proof. For $a, b \in S$, let $a \bullet b \in S$ and $a \star b \in S$. By $(pBF(3)), b \bullet a = 0 \star (a \bullet b)$. Since $0 \in S$ and $a \bullet b \in S$, we see that $0 \star (a \bullet b) \in S$ and so $b \bullet a \in S$ and $b \star a = 0 \bullet (a \star b)$. Since $0 \in S$ and $a \star b \in S$, we see that $0 \bullet (a \star b) \in S$ and so $b \star a \in S$.

Definition 8. In a pseudo-BF-algebra $(E; \bullet, \star, 0)$, let $\phi \neq I \subseteq E$. Then we say that I is a pseudo-ideal of E if it satisfies for all $a, b \in E$:

 $(pI1) \ 0 \in I,$

(pI2) $a \bullet b \in I$, $a \star b \in I$ and $b \in I$ implies $a \in I$.

Example 7. In Example 2, let $C = \{0, 1\}$, $A = \{0, 3\}$ and $F = \{0, 1, 2\}$ be subsets of E. Then C is a pseudo-subalgebra of E, whereas F is not, as $1 \bullet 2 = 3 \notin F$. Also, A is a pseudo-ideal of E, but C is not, because $3 \bullet 1 = 0, 3 \star 1 = 1 \in C, 1 \in C$, but $3 \notin C$.

Definition 9. In a pseudo-BF-algebra $(E; \bullet, \star, 0)$, let I be a pseudo-ideal. We say that I is a pseudo-normal, if for any $a, b, c \in E$:

 $a \bullet b, a \star b \in I \text{ implies } (c \bullet a) \star (c \bullet b) \text{ and } (c \star a) \bullet (c \star b) \in I.$

Note: $\{0\}$ and E are always pseudo-ideals of E. Whereas if E is a pseudo-normal, $\{0\}$ is not a pseudo-normal in general.

Lemma 2. Let I be a pseudo-normal-ideal of a pseudo-BF-algebra $(E; \bullet, \star, 0)$ and $a, b \in E$. Then,

- (1) $a \in I \Rightarrow 0 \bullet a \in I$ and $0 \star a \in I$,
- (2) $a \bullet b$, $a \star b \in I \Rightarrow b \bullet a \in I$ and $b \star a \in I$.

Proof.

- (1) Let $a \in I$. Then by (pBF(2)) we have $a = a \bullet 0 \in I$ and so $a = a \star 0 \in I$. Since I is a pseudo-normal-ideal, we get $(0 \bullet a) \star (0 \bullet 0)$ and $(0 \star a) \bullet (0 \star 0) \in I$. By (pBF(1)) then $(0 \bullet a) \star 0$ and $(0 \star a) \bullet 0 \in I$ and $0 \in I$ from (pI1). By (pI2) we get $(0 \bullet a)$, $(0 \star a) \in I$.
- (2) Let a b , a ★ b ∈ I. By (1) we get 0 ★ (a b) , 0 (a ★ b) ∈ I. Applying (pBF(3)) we have b a , b ★ a ∈ I.

Proposition 5. In a pseudo-BF-algebra $(E; \bullet, \star, 0)$, let I be a pseudo-normal-ideal. Then I is a pseudo-subalgebra that satisfies the following condition:

(pNI) If
$$a \in E$$
 and $b \in I$, then $a \star (a \bullet b), a \bullet (a \star b) \in I$.

Proof. Let $a \in E$ and $b \in I$. By (Lemma 2 (1)), $0 \bullet b$, $0 \star b \in I$. We have $(a \bullet 0) \star (a \bullet b)$ and $(a \star 0) \bullet (a \star b) \in I$ as I is a pseudo-normal-ideal. By (pBF(2)), $a \star (a \bullet b)$ and $a \bullet (a \star b) \in I$. Thus (pNI) holds.

Now let $a, b \in I$. Therefore $a \star (a \bullet b)$, $a \bullet (a \star b) \in I$. By (Lemma 2 (2)), $(a \bullet b) \star a$, $(a \star b) \bullet a \in I$; $a \in I$. From (pI2) we have $(a \bullet b)$, $(a \star b) \in I$. Thus I is a pseudo-subalgebra satisfying (pNI).

Proposition 6. In a pseudo-BF-algebra $(E; \bullet, \star, 0)$, let I be a pseudo-ideal. Then for $a, b \in E$ where $b \leq a$, if $a \in I$, we have $b \in I$.

Proof.

Let $a \in I$ and $b \leq a$. Thus $b \bullet a = 0$, $b \star a = 0$. By (pI1) and (pI2), we have $0 \in I$ and so having $b \bullet a, b \star a \in I$, $a \in I$ we get $b \in I$.

Theorem 6. In a pseudo-BF-algebra $(E; \bullet, \star, 0)$, let $\phi \neq I \subseteq E$. Then I is a pseudo-ideal of E if and only if the following hold:

- (1) For all $a, b, c \in E$, $a, b \in I$ and $c \bullet b \leq a \Longrightarrow c \in I$.
- (2) For all $a, b, c \in E$, $a, b \in I$ and $c \star b \leq a \Longrightarrow c \in I$.

Proof. Let I be a pseudo-ideal of E. Let $a, b, c \in E$, $a, b \in I$ and $c \bullet b \leq a$ we have $(c \bullet b) \star a = 0 \in I$ from (pI1). Since $a \in I$ then $c \bullet b \in I$ by (pI2). Since $b \in I$ then $c \in I$ by (pI2). Thus (1) is valid. Now, let $a, b, c \in E$, $a, b \in I$ and $c \star b \leq a$ we have $(c \star b) \bullet a = 0 \in I$ from (pI1). Since $a \in I$ then $c \star b \in I$ by (pI2). Since $b \in I$ then $c \in I$ by (pI2). Thus (2) is true.

Conversely, suppose that (1), (2) hold. Suppose that $b \in I$. By using (1), (2) we have $0 \bullet b \leq b$ and $0 \star b \leq b$, then $0 \in I$. Now, let $a \bullet b, a \star b \in I$ and $b \in I$. By using (1), (2) we have $a \bullet b \leq a \bullet b$ and $a \star b \leq a \star b$, then $a \in I$. Therefore I is a pseudo-ideal of E.

Theorem 7. In a pseudo-BF-algebra $(E; \bullet, \star, 0)$, let I be a pseudo-subalgebra. Then I is a pseudo-ideal of E if and only if for $a, b \in E$ if $a \in I$ and $b \notin I$ then $b \bullet a$ and $b \star a \notin I$.

Proof. Let $a, b \in E$ and let I be a pseudo-ideal of E where $a \in I$ and $b \in E - I$. We prove by contradiction. Let $b \bullet a$, $b \star a \notin E - I$, we have $b \bullet a$, $b \star a \in I$. Since $a \in I$ then $b \in I$ by (pI2). This contradicts the hypothesis $(b \in E - I)$. Hence $b \bullet a$, $b \star a \in E - I$. Conversely, let $a \in I$ and $b \in E - I \Rightarrow b \bullet a$, $b \star a \in E - I$. Since I is a pseudo-subalgebra, we have $0 \in I$ (by Definition 7). Now, assume that $a, b \in E$, $a \in I$ and $b \bullet a$, $b \star a \in I$. We prove by contradicts the hypothesis $(b \bullet a , b \star a \in I - I)$. Then $b \bullet a , b \star a \in E - I$ by hypothesis. This contradicts the hypothesis $(b \bullet a , b \star a \in I)$. Hence $b \in I$. Therefore I is a pseudo-ideal of E.

Proposition 7. In a pseudo-BF-algebra $(E; \bullet, \star, 0)$, let I be a pseudo-ideal. If J is a pseudo-ideal of I, then J is a pseudo-ideal of E as well.

Proof. Assume that J is a pseudo-ideal of I, then $0 \in J$. Let $b \in J$ and $a \bullet b$, $a \star b \in J$ for any $a \in E$. If $a \in I$, then $a \in J$ since J is a pseudo-ideal of I. If $a \notin I$, i.e. $a \in E - I$, then $b, a \bullet b, a \star b \in J \subseteq I$ and so $a \in I$. Hence $a \in J$. Thus J is a pseudo-ideal.

Proposition 8. In a pseudo-BF-algebra $(E; \bullet, \star, 0)$, let I be a pseudo-ideal. Then

 $\forall a \in E$, $a \in I$ we have $0 \bullet (0 \star a), 0 \star (0 \bullet a) \in I$.

Proof. Let $a \in I$ and $0 \star a$, $0 \bullet a \in I$, then $0 \in I$ from (pI1) and (pI2). Since $a \in I$ and $0 \in I$, by using (pBF(1)) we have $0 = a \star a$, $0 = a \bullet a \in I$. (By Proposition 2 (2)) we obtain $a \star a = [0 \bullet (0 \star a)] \star a$, $a \bullet a = [0 \star (0 \bullet a)] \bullet a \in I$. Thus $0 \bullet (0 \star a)$, $0 \star (0 \bullet a) \in I$ from (pI2).

4. Pseudo-Atoms of Pseudo-BF/BF*-algebra

In this section we introduce pseudo-atoms of pseudo- BF/BF^* -algebra and prove related properties. We start with the following definition.

Definition 10. In a pseudo-BF-algebra $(E; \bullet, \star, 0)$, let τ be an element in E. If $a \leq \tau$ implies $a = \tau$ $\forall a \in E$ then we call τ a pseudo-atom of E and the collection of all pseudo-atoms of E is called the center of E and denoted by $L_p(E)$.

Theorem 8. In a pseudo-BF*-algebra $(E; \bullet, \star, 0)$ the following are equivalent for all $a, b, c, d, \tau \in E$:

- (1) there exists a pseudo-atom τ ,
- (2) $\tau = a \star (a \bullet \tau)$ and $\tau = a \bullet (a \star \tau)$;
- (3) $(a \bullet b) \star (a \bullet \tau) = \tau \bullet b$ and $(a \star b) \bullet (a \star \tau) = \tau \star b;$
- (4) $\tau \bullet (a \star b) = b \star (a \bullet \tau)$ and $\tau \star (a \bullet b) = b \bullet (a \star \tau)$,
- (5) $0 \star (b \bullet \tau) = \tau \bullet b$ and $0 \bullet (b \star \tau) = \tau \star b$,
- (6) $0 \star (0 \bullet \tau) = \tau$ and $0 \bullet (0 \star \tau) = \tau$,
- (7) $0 \star (0 \bullet (\tau \star c)) = \tau \star c$ and $0 \bullet (0 \star (\tau \bullet c) = \tau \bullet c$,
- (8) $c \star (c \bullet (\tau \star d)) = \tau \star d$ and $c \bullet (c \star (\tau \bullet d)) = \tau \bullet d$.

Proof.

(1) \Rightarrow (2). Assume that τ is a pseudo-atom of E. As $a \star (a \bullet \tau) \leq \tau$ and $a \bullet (a \star \tau) \leq \tau$ by (Proposition 4 (2)), we have $\tau = a \star (a \bullet \tau)$ and $\tau = a \bullet (a \star \tau)$.

- (2) \Rightarrow (3). For all $a \in E$. By (pBF^*) and (2), we have $(a \bullet b) \star (a \bullet \tau) = [a \star (a \bullet \tau)] \bullet b = \tau \bullet b$ and $(a \star b) \bullet (a \star \tau) = [a \bullet (a \star \tau)] \star b = \tau \star b$.
- (3) \Rightarrow (4). Replacing b by $a \star b$ in (3), we get $\tau \bullet (a \star b) = [a \bullet (a \star b)] \star (a \bullet \tau)$. By (pBF^*) and (3), we have $[a \bullet (a \star b)] \star (a \bullet \tau) = [a \star (a \bullet \tau)] \bullet (a \star b) = b \star (a \bullet \tau)$. Also, replacing b by $a \bullet b$ in (3), we get $\tau \star (a \bullet b) = [a \star (a \bullet b)] \bullet (a \star \tau)$. By (pBF^*) and (3), we have $[a \star (a \bullet b)] \bullet (a \star \tau) = [a \bullet (a \star \tau)] \star (a \bullet b) = b \bullet (a \star \tau)$.
- (4) \Rightarrow (5). Put b = 0 and a = b in (4). Hence $\tau \bullet (b \star 0) = 0 \star (b \bullet \tau)$ and $\tau \star (b \bullet 0) = 0 \bullet (b \star \tau)$. From (pBF(3)), then $0 \star (b \bullet \tau) = \tau \bullet b$ and $0 \bullet (b \star \tau) = \tau \star b$.
- (5) \Rightarrow (6). Put b = 0 in (5). Then it is straightforward that $0 \star (0 \bullet \tau) = \tau \bullet 0 = \tau$ and $0 \bullet (0 \star \tau) = \tau \star 0 = \tau$ by (pBF(2)).
- (6) \Rightarrow (7). For any $\tau, c \in E$. By (Proposition 4 (6)), we have $0 \star [0 \bullet (\tau \star c)] = 0 \bullet [0 \bullet (\tau \star c)] = 0 \bullet [0 \bullet (\tau \star c)]$. By (Proposition 4 (5)), then $0 \bullet [0 \star (\tau \star c)] = 0 \bullet [(0 \bullet \tau) \bullet (0 \star c)]$. By (Proposition 4 (4)), we get $0 \bullet [(0 \bullet \tau) \bullet (0 \star c)] = [0 \star (0 \bullet \tau)] \star [0 \bullet (0 \star c)]$. By (6), then $[0 \star (0 \bullet \tau)] \star [0 \bullet (0 \star c)] = \tau \star c$. Also, by (Proposition 4 (6),(4) and (5), respectively) and (6) we have $0 \bullet [0 \star (\tau \bullet c)] = 0 \star [0 \star (\tau \bullet c)] = 0 \star [0 \bullet (\tau \bullet c)] = 0 \star [(0 \bullet \tau) \star (0 \bullet c)] = [0 \bullet (0 \star \tau)] \star [0 \bullet (0 \star \tau)] \bullet [0 \star (0 \bullet c)] = \tau \bullet c$. Thus (7) holds.
- (7) \Rightarrow (8). For any $c, d, \tau \in E$, we have $\tau \star d = 0 \star [0 \bullet (\tau \star d)] = 0 \star [(c \star c) \bullet (\tau \star d)] = 0 \star ([c \bullet (\tau \star d)] \star c)$ from (7), (pBF(1)) and (pBF^*) . By (Proposition 4 (5) and (6), respectively) then $0 \star ([c \bullet (\tau \star d)] \star c) = (0 \bullet [c \bullet (\tau \star d)]) \bullet (0 \star c) = (0 \star [c \bullet (\tau \star d)]) \bullet (0 \star c)$. Using (pBF^*) , $(0 \star [c \bullet (\tau \star d)]) \bullet (0 \star c) = (0 \bullet (0 \star c)) \star [c \bullet (\tau \star d)]$. By (Proposition 4 (6)), we get $(0 \bullet (0 \star c)) \star [c \bullet (\tau \star d)] = (0 \star (0 \star c)) \star [c \bullet (\tau \star d)]$. Using (pBF(3)), the hypothesis and (pBF(2)), respectively we have $(0 \star (0 \star c)) \star [c \bullet (\tau \star d)] = (0 \star [0 \bullet (c \star 0)]) \star [c \bullet (\tau \star d)] = (c \star 0) \star [c \bullet (\tau \star d)] = c \star [c \bullet (\tau \star d)]$. Similarly $c \bullet [c \star (\tau \bullet d)] = \tau \bullet d$ is proved.
- (8) \Rightarrow (1). Let $c \leq \tau$ we have $c \bullet \tau = c \star \tau = 0$. By (pBF(2)) we have $\tau = \tau \bullet 0$. Then by (8) with d = 0 we obtain $\tau \bullet 0 = c \bullet [c \star (\tau \bullet 0)]$. Using (pBF(2)) we have $c \bullet [c \star (\tau \bullet 0)] = c \bullet [c \star \tau] = c \bullet 0 = c$. Thus τ is a pseudo-atom of E.

Corollary 3. In a pseudo-BF*-algebra $(E; \bullet, \star, 0)$, let τ be a pseudo-atom of E. Then $\tau \bullet a$ and $\tau \star a$ are pseudo-atoms, for all $a \in E$. Hence $L_p(E)$ is a pseudo-subalgebra of E.

Proof. For $a, b \in E$, let $b \leq \tau \bullet a$ and $b \leq \tau \star a$ then $b \star (\tau \bullet a) = 0$ and $b \bullet (\tau \star a) = 0$. Multiplying by "b" from the right we have $(\tau \bullet a) \star b = 0 \star (0 \bullet [(\tau \bullet a) \star b])$ and $(\tau \star a) \bullet b = 0 \bullet (0 \star [(\tau \star a) \bullet b])$ from (Theorem 8 (7)). By (pBF(3)) we get $0 \star (0 \bullet [(\tau \bullet a) \star b]) = 0 \star [b \star (\tau \bullet a)]$ and $0 \bullet (0 \star [(\tau \star a) \bullet b]) = 0 \bullet [b \bullet (\tau \star a)]$. By the hypothesis $(b \star (\tau \bullet a) = 0$ and $b \bullet (\tau \star a) = 0$) and (BF(1)) we have $0 \star [b \star (\tau \bullet a)] = 0 \star 0 = 0$ and $0 \bullet [b \bullet (\tau \star a)] = 0 \bullet 0 = 0$. Then $\tau \bullet a \leq b$ and $\tau \star a \leq b$ and so $b = \tau \bullet a$ and $b = \tau \star a$, thus $\tau \bullet a$ and $\tau \star a$ are pseudoatoms. By (Definition 10) we have $L_p(E)$ is the set of all pseudo-atoms of E then $\tau \bullet a$ and $\tau \star a \in L(E)$. Therefore $L_p(E)$ is a pseudo-subalgebra of E. **Corollary 4.** If pseudo-BF-algebra $(E; \bullet, \star, 0)$ is generated by an element g then g is a pseudo-atom.

Proof. For $g \in E$, suppose that g generates E and let τ be a pseudo-atom of E. Thus we have $g \leq \tau$. Then $g \bullet \tau = 0$ and $g \star \tau = 0$. By (Corollary 2) we get $\tau \bullet g = 0$ and $\tau \star g = 0$. Therefore $\tau \leq g$ and so $\tau = g$. Hence g is a pseudo-atom.

Proposition 9. In a pseudo-BF-algebra $(E; \bullet, \star, 0)$, let $\tau \in E$. If $\{0, \tau\}$ is a pseudo-ideal then $0 \neq \tau$ is a pseudo-atom.

Proof. Let $\{0, \tau\}$ be a pseudo-ideal of E and for all $a \in E$ let $a \leq \tau$ we have $a \bullet \tau = a \star \tau = 0 \in \{0, \tau\}$ from (pI1). By (pI2) we have $a \in \{0, \tau\}$, then a = 0 or $a = \tau$. Since $\tau \neq 0$ and (pBF(1)), we get $a = \tau$. Thus τ is a pseudo-atom of E.

Proposition 10. In a pseudo- BF^* -algebra $(E; \bullet, \star, 0)$, if a non-zero element is a pseudoatom of E, then any pseudo-subalgebra is a pseudo-ideal.

Proof. We prove (pI1) and (pI2). Let S be a pseudo-subalgebra of E, then $0 \in S$ from (Definition 7). For (pI2), let $b \bullet a$, $b \star a \in S$ and $a \in S$. By (Theorem 8 (2) and (5), respectively) we have $b = a \bullet (a \star b) = a \bullet [0 \bullet (b \star a)]$. Since $0, b \star a \in S$ and S is a pseudo-subalgebra of E, we obtain $0 \bullet (b \star a) \in S$. So $a \bullet [0 \bullet (b \star a)] \in S$. Also, similarly we can show it if $b \bullet a \in S$. Then $b \in S$. Hence the proposition is proved.

For any pseudo-BF-algebra $(E; \bullet, \star, 0)$, define the subsets K(E), $V(\tau)$ of E as follows:

$$K(E) = \{a \in E : 0 \le a\}$$
 and $V(\tau) = \{a \in E : \tau \le a\}$

Theorem 9. In a pseudo-BF*-algebra $(E; \bullet, \star, 0)$ if τ and ω is pseudo-atoms then the following hold:

- (1) $a \in V(\tau), b \in V(\omega)$, imply $a \bullet b \in V(\tau \bullet \omega)$ and $a \star b \in V(\tau \star \omega)$,
- (2) $a, b \in V(\tau)$, implies $a \star b$, $a \bullet b \in K(E)$,
- (3) If $\tau \neq \omega$, then we have $a \bullet b$, $a \star b \in K(E)$, for all $a \in V(\tau)$, $b \in V(\omega)$,
- (4) $a \in V(\omega)$, implies $\tau \bullet a = \tau \bullet \omega$ and $\tau \star a = \tau \star \omega$,
- (5) If $\tau \neq \omega$, then $V(\tau) \cap V(\omega) = \phi$.

Proof.

(1) Let $a \in V(\tau)$, $b \in V(\omega)$. Then $\tau \le a$ we have $\tau \bullet a = \tau \star a = 0$ and $\omega \le b$ we have $\omega \bullet b = \omega \star b = 0$. From (Theorem 8 (7)) we obtain $(\tau \bullet \omega) \star (a \bullet b) = [0 \bullet (0 \star (\tau \bullet \omega))] \star (a \bullet b)$. Using (pBF^*) , $[0 \bullet (0 \star (\tau \bullet \omega))] \star (a \bullet b) = [0 \star (a \bullet b)] \bullet [0 \star (\tau \bullet \omega)]$. By (Proposition 4 (6) and (4), respectively) then $[0 \star (a \bullet b)] \bullet [0 \star (\tau \bullet \omega)] = [0 \bullet (a \bullet b)] \bullet [0 \star (\tau \bullet \omega)] = [(0 \star a) \star (0 \bullet b)] \bullet [0 \star (\tau \bullet \omega)]$. By applying (pBF^*) , we get $[(0 \star a) \star (0 \bullet b)] \bullet [0 \star (\tau \bullet \omega)] = [0 \star (\tau \bullet \omega)]$

 $[(0 \star a) \bullet [0 \star (\tau \bullet \omega)]] \star (0 \bullet b) = [(0 \bullet [0 \star (\tau \bullet \omega)]) \star a] \star (0 \bullet b).$ By (Theorem 8 (7)) we have $[(0 \bullet [0 \star (\tau \bullet \omega)]) \star a] \star (0 \bullet b) = [(\tau \bullet \omega) \star a] \star (0 \bullet b).$ Using (pBF^*) we get $[(\tau \bullet \omega) \star a] \star (0 \bullet b) = [(\tau \star a) \bullet \omega] \star (0 \bullet b).$ From the hypothesis we have $[(\tau \star a) \bullet \omega] \star (0 \bullet b) = (0 \bullet \omega) \star (0 \bullet b).$ By (Proposition 4 (6) and (4), respectively) we get $(0 \bullet \omega) \star (0 \bullet b) = (0 \star \omega) \star (0 \bullet b) = 0 \bullet (\omega \bullet b).$ Using the hypothesis and (pBF(1)), respectively we get $0 \bullet (\omega \bullet b) = 0 \bullet 0 = 0$, and so $\tau \bullet \omega \leq a \bullet b.$ Thus $a \bullet b \in V(\tau \bullet \omega)$ and similarly $a \star b \in V(\tau \star \omega).$

- (2) Let $a, b \in V(\tau)$, by (1) we have $a \bullet b \in V(\tau \bullet \tau)$, $a \star b \in V(\tau \star \tau)$. Using (pBF(1)) then $a \bullet b \in V(0)$, $a \star b \in V(0)$. We get $0 \le a \bullet b$, $0 \le a \star b$. Then $a \bullet b$, $a \star b \in K(E)$.
- (3) Let 0 be a pseudo-atom from (Definition 10) we get $a \bullet b \le 0$ then $a \bullet b = 0$. By (Corollary 2) we get $b \bullet a = 0$. Using (pBF(3)) then $0 \star (a \bullet b) = 0$ and so $0 \le a \bullet b$. Therefore $a \bullet b \in V(0)$ and so $a \bullet b \in K(E)$. Similarly we can show that $a \star b \in K(E)$.
- (4) Let $a \in V(\omega)$, then $\omega \leq a$ we have $\omega \bullet a = 0$ and $\omega \star a = 0$. By (Theorem 8 (3)) we get $(\tau \bullet a) \star (\tau \bullet \omega) = \omega \bullet a = 0$. So $\tau \bullet a \leq \tau \bullet \omega$. Moreover, $\tau \bullet \omega$ is a pseudo-atom by (Corollary 3). Therefore $\tau \bullet a = \tau \bullet \omega$. Similarly $\tau \star a = \tau \star \omega$.
- (5) We prove by contradiction. Let $\tau \neq \omega$ and let $V(\tau) \cap V(\omega) \neq \phi$ then there exists $c \in V(\tau) \cap V(\omega)$. From (1), we have $c \bullet c \in V(\tau \bullet \omega)$, $c \star c \in V(\tau \star \omega)$. Using (pBF(1)) then $c \bullet c = 0 = c \star c$ and so $0 \in V(\tau \bullet \omega)$, $V(\tau \star \omega)$. Hence $\tau \bullet \omega \leq 0$ and $\tau \star \omega \leq 0$. That is $\tau \bullet \omega$, $\tau \star \omega$ are pseudo-atoms from (1), then $\tau \bullet \omega = 0 = \tau \star \omega$ we have $\tau \leq \omega$. That is ω is a pseudo-atom then $\tau = \omega$ this is a contradiction with hypothesis ($\tau \neq \omega$). Thus $V(\tau) \cap V(\omega) = \phi$.

Proposition 11. In a pseudo-BF*-algebra $(E; \bullet, \star, 0)$, let $\tau \in E$. Then τ is a pseudoatom if and only if there is $a \in E$ such that $\tau = 0 \bullet a$.

Proof. Let τ be a pseudo-atom of E. Then $\tau = 0 \bullet (0 \star \tau)$, from (Theorem 8 (6)). Set $a = 0 \star \tau$, we get $\tau = 0 \bullet a$.

Conversely, let $\tau = 0 \bullet a$ for some $a \in E$. We use (Proposition 2 (2)) to have $0 \bullet (0 \star \tau) = 0 \bullet (0 \star (0 \bullet a)) = 0 \bullet a = \tau$. By (Theorem 8 (6) and (1)) we conclude that τ is a pseudo-atom.

Proposition 12. In a pseudo- BF^* -algebra $(E; \bullet, \star, 0)$, the following properties hold for any $a, b, c \in E$:

- (1) if $a \leq b$ then $c \bullet b \leq c \bullet a$ and $c \star b \leq c \star a$,
- (2) if $a \leq b$, $b \leq c$ then $a \leq c$,
- (3) if $a \bullet b = c = a \star b$ then $c \bullet a = c \star a$,
- (4) $(a \bullet b) \bullet (c \bullet b) \leq a \bullet c$ and $(a \star b) \star (c \star b) \leq a \star c$,
- (5) if $a \leq b$ then $a \bullet c \leq b \bullet c$ and $a \star c \leq b \star c$.

Proof.

- (1) Let $a, b \in E$, $a \leq b$ then $a \bullet b = 0$ and $a \star b = 0$. By (Theorem 8 (3)) then $(c \bullet b) \star (c \bullet a) = a \bullet b = 0$ and $(c \star b) \bullet (c \star a) = a \star b = 0$ we get $c \bullet b \leq c \bullet a$ and $c \star b \leq c \star a$.
- (2) Let $a, b, c \in E$, $a \leq b$ and $b \leq c$ we have $a \bullet b = 0$, $a \star b = 0$ and $b \bullet c = 0$, $b \star c = 0$. Also, by (1) since $b \leq c$ then $a \bullet c \leq a \bullet b \Rightarrow a \bullet c \leq 0$. By (Proposition 4 (1)) we get $a \bullet c = 0$ and so $a \leq c$.
- (3) Let $a \bullet b = c = a \star b$. By using (pBF(1)) and (pBF^*) we obtain $c \star a = (a \bullet b) \star a = (a \star a) \bullet b = 0 \bullet b$. By (Proposition 4 (6)), $0 \bullet b = 0 \star b$. Using (pBF(1)) and (pBF^*) we have $0 \star b = (a \bullet a) \star b = (a \star b) \bullet a = c \bullet a$.
- (4) By (pBF^*) , (Theorem 8 (3)) and (pBF(1)), respectively we have $[(a \bullet b) \bullet (c \bullet b)] \star (a \bullet c) = [(a \bullet b) \star (a \bullet c)] \bullet (c \bullet b) = (c \bullet b) \bullet (c \bullet b) = 0$. Then $(a \bullet b) \bullet (c \bullet b) \leq a \bullet c$. Similarly, $(a \star b) \star (c \star b) \leq a \star c$.
- (5) Suppose that $a, b \in E$, $a \leq b$ we have $a \bullet b = 0$, $a \star b = 0$. Using (4), we have $(a \bullet c) \bullet (b \bullet c) \leq a \bullet b$ but $a \bullet b = 0$. By (Proposition 4 (1)) then $(a \bullet c) \bullet (b \bullet c) = 0$ and so $a \bullet c \leq b \bullet c$. By a similar way, we can show that $a \star c \leq b \star c$.

Theorem 10. In a pseudo-BF*-algebra $(E; \bullet, \star, 0)$, the set K(E) is a pseudo-subalgebra.

Proof. For $a, b \in K(E)$, we have $0 \le a, 0 \le b$, then $0 \bullet a = 0, 0 \star a = 0$ and $0 \bullet b = 0, 0 \star b = 0$. By using (Proposition 12 (5)) since $0 \le a$ we get $0 \bullet b \le a \bullet b$ and $0 \star b \le a \star b$. Hence $0 \le a \bullet b$ and $0 \le a \star b$ and so $a \bullet b, a \star b \in K(E)$. Thus K(E) is a pseudo-subalgebra of E.

References

- R. A. Borzooei, A. B. Saeid, A. Rezaei, A. Radfar, and R. Ameri. On pseudo bealgebras. Discussiones Mathematicae General Algebra and Applications, 33(1):95–108, 2013.
- [2] M. Chandramouleeswaran and P. Muralikrishna. The intuitionistic l-fuzzy bf_subalgebras. *Global Journal Pure and Applied Mathematics*, 6(1):1–6, 2010.
- [3] L. C. Ciungu. Commutative pseudo-be-algebras. Iranian Journal of Fuzzy Systems, 13(1):131-144, 2016.
- [4] W. A. Dudek and Y. B. Jun. Pseudo-bci algebras. *East Asian Mathematical Journal*, 24(2):187–190, 2008.
- [5] G. Georgescu. Pseudo-mv algebras: a noncommutative extension of mv algebras. In In The Proceedings of the Fourth International Symposium on Economic Informatics, Bucharest, Romania, 1999.

- [6] G. Georgescu and A. Iorgulescu. *Pseudo-BCK algebras: an extension of BCK algebras, In Combinatorics, computability and logic.* Springer, London, 2001.
- [7] Y. Imai. On axiom systems of propositional calculi xiv. Proc. Japan Academy, 42:19– 22, 1966.
- [8] K. Iski. An algebra related with a propositional calculus. Proceedings of the Japan Academy, 42(1):26–29, 1966.
- [9] Y. B. Jun, and S. S. Ahn. On pseudo bh-algebras. Honam Mathematical Journal, 37(2):207–219, 2015.
- [10] Y. B. Jun, H. S. Kim, and J. Neggers. On pseudo-bci ideals of pseudo bci-algebras. Mat. Vesnik, 58(1-2):39–46, 2006.
- [11] Y. B. Jun, H. S. Kim, and J. Neggers. Pseudo d-algebras. Information Sciences, 179(11):1751–1759, 2009.
- [12] Y. H. Kim and K. S. So. On minimality in pseudo-bci-algebras. Communications of the Korean Mathematical Society, 27(1):7–13, 2012.
- [13] J. Neggers and K. Sik. On b-algebras. Matematicki vesnik, 54(1-2):21-29, 2002.
- [14] A. Di Nola, G. Georgescu, and A. Iorgulescu. Pseudo-bl algebras: part i. Multiple Valued Logic, 8(5/6):673–716, 2002.
- [15] J. Rachunek. A non-commutative generalization of mv-algebras. Czechoslovak Mathematical Journal, 52(2):255–273, 2002.
- [16] E. Turunen and S. Sessa. Local bl-algebras. Multiple Valued Logic, 6(1-2):229–249, 2001.
- [17] A. Walendziak. On bf-algebras. Mathematica Slovaca, 57(2):119–128, 2007.
- [18] A. Walendziak. Pseudo-bch-algebras. Discussiones Mathematicae General Algebra and Applications, 35(1):5–19, 2015.