Almost Bi-Γ-Ideals and Fuzzy Almost Bi-Γ-Ideals of Γ-Semigroups

Anusorn Simuen¹, Saleem Abdullah², Winita Yonthanthum¹, Ronnason Chinram¹,³,∗

¹ Algebra and Applications Research Unit, Prince of Songkla University, Hat Yai, Songkhla 90110, Thailand
² Department of Mathematics, Abdul Wali Khan University, Mardan 23200, Pakistan
³ Centre of Excellence in Mathematics, Si Ayuthaya Road, Bangkok 10400, Thailand

Abstract. In this paper, we introduce the notions of almost bi-Γ-ideals and fuzzy almost bi-Γ-ideals of Γ-semigroups and give properties of them. Moreover, we investigate relationships between almost bi-Γ-ideals and fuzzy almost bi-Γ-ideals.

2020 Mathematics Subject Classifications: 20M99
Key Words and Phrases: bi-Γ-ideals, almost bi-Γ-ideals, fuzzy almost bi-Γ-ideals

1. Introduction and Preliminaries

Ideal theory in semigroups, like all other algebraic structures, plays an important role in studying them. Good and Hughes [8] introduced the notion of bi-ideals of semigroups in 1952. An introductory definition of left, right, two-sided almost ideals of semigroups was launched by Grosek and Satko [9] in 1980. They gave the characterization of these ideals when a semigroup S contains no proper left, right, two-sided almost ideals in [9], and afterwards, they discovered the minimal almost ideals and the smallest almost ideals of semigroups in [10] and [11], respectively. In 1981, Bogdanovic [3] introduced the definition of almost bi-ideals in semigroups by using the definitions of almost ideals and bi-ideals in semigroups. In [5], Wattanatripop, Chinram and Changphas gave the properties of quasi-almost-ideals and first defined the concept of fuzzy almost ideals in semigroups. Moreover, they provided the relationships between almost ideals and their fuzzification. Furthermore, they investigated fuzzification of almost bi-ideals in semigroups in [4]. Almost (m,n)-ideals and their fuzzification in semigroups were studied by Suebsung, Wattanatripop and Chinram in [23]. Moreover, the idea of almost ideals and their fuzzification were extended to n-ary semigroups in [21].

∗Corresponding author.

DOI: https://doi.org/10.29020/nybg.ejpam.v13i3.3759

Email addresses: asimuen96@gmail.com (A. Simuen), saleemabdullah@awkum.edu.pk (S. Abdullah), winita.m@psu.ac.th (W. Yonthanthum), roonnason.c@psu.ac.th (R. Chinram)
The notion of Γ-semigroups has been first studied by Sen [18] in 1981. In 1986, Sen and Saha [19] improved more general definition as follows:

Definition 1. ([19]) Let \(M \) and \(\Gamma \) be non-empty sets. \((M, \Gamma)\) is called a **Γ-semigroup** if it satisfies the following laws:

1. \(a \alpha b \in M \) for all \(a, b \in M \) and \(\alpha \in \Gamma \).
2. \(M \) is associative under \(\Gamma \), that is

\[(a \alpha b) \beta c = a \alpha (b \beta c)\]

for all \(a, b, c \in M \) and all \(\alpha, \beta \in \Gamma \).

Every semigroup \((S, \cdot)\) can be considered as a Γ-semigroup \(S \) by choosing \(\Gamma = \{\cdot\} \). Then a Γ-semigroup is one of the generalizations of semigroups. The investigation on Γ-semigroups was done by certain mathematicians which are parallel to some results of semigroups, for example, one may see [6, 7, 17–19]. Similar to semigroups, ideal theory in Γ-semigroups plays an important role (for example, we can see in [1, 6, 7, 12–14, 20]).

Let \(M \) be a Γ-semigroup. For nonempty subsets \(A \) and \(B \) of \(M \), let

\[A \Gamma B = \{a \alpha b \mid a \in A, b \in B, \alpha \in \Gamma\}\]

If \(m \in M \), we let \(A \Gamma m = A \Gamma \{m\} \) and \(m \Gamma A = \{m\} \Gamma A \). If \(\alpha \in \Gamma \), we let

\[A \alpha B = \{a \alpha b \mid a \in A, b \in B\}\]

Definition 2. (see [7]) Let \(M \) be a Γ-semigroup.

1. A nonempty subset \(T \) of \(M \) is called a **sub Γ-semigroup** of \(M \) if \(T \Gamma T \subseteq T \).
2. A sub Γ-semigroup \(B \) of \(M \) is called a **bi-Γ-ideal** of \(M \) if \(B \Gamma M \Gamma B \subseteq B \).

A bi-Γ-ideal in Γ-semigroups was sometimes called a bi-ideal (see [14]). Some generalizations of this ideal were studied in [2] and [16]. Recently, Wattanatripop and Changphas first studied the concept of almost ideals in Γ-semigroups. In [22], they defined the definitions of left [right] almost ideals in Γ-semigroups. Moreover, a Γ-semigroup containing no proper left [right] almost ideals was characterized.

In 1965, Zadeh [24] introduced the concept of fundamental fuzzy sets. Since then, fuzzy sets have been studied in various fields. A function from a set \(M \) into the closed unit interval \([0, 1]\) is called a fuzzy subset of \(M \). Let \(f \) and \(g \) be any two fuzzy subsets of a set \(M \).

1. A fuzzy subset \(f \cap g \) of \(M \) is defined by

\[(f \cap g)(m) = \min\{f(m), g(m)\}\]

for all \(m \in M \).
(2) A fuzzy subset \(f \cup g \) of \(M \) is defined by
\[
(f \cup g)(m) = \max\{f(m), g(m)\}
\]
for all \(m \in M \).

(3) If \(f(m) \leq g(m) \) for all \(m \in M \), we say that \(f \) is a subset of \(g \), and use the notation \(f \subseteq g \) and sometimes we will say that \(f \) is contained in \(g \).

For a fuzzy subset \(f \) of any set \(M \), the support of \(f \) is the set of points in \(M \) defined by
\[
\text{supp}(f) = \{ m \in M \mid f(m) \neq 0 \}.
\]
For a subset \(A \) of any set \(M \), the characteristic function \(\chi_A \) of \(A \) is a fuzzy subset of \(M \) defined by
\[
\chi_A(m) = \begin{cases}
1 & m \in A, \\
0 & m \notin A.
\end{cases}
\]
For any element \(m \) of any set \(M \) and \(t \in (0, 1] \), a fuzzy point \(m_t \) of \(M \) is a fuzzy subset of \(M \) defined by
\[
m_t(x) = \begin{cases}
t & x = m, \\
0 & x \neq m
\end{cases}
\]
(see [15]).

2. Almost bi-\(\Gamma \)-ideals

First, we define almost bi-\(\Gamma \)-ideals of \(\Gamma \)-semigroups as follows:

Definition 3. A non-empty subset \(B \) of a \(\Gamma \)-semigroup \(M \) is called an almost bi-\(\Gamma \)-ideal of \(S \) if
\[
B \Gamma m \Gamma B \cap B \neq \emptyset
\]
for all \(m \in M \).

Example 1. Let \(B \) be any bi-\(\Gamma \)-ideal of a \(\Gamma \)-semigroup \(M \). Then \(B \Gamma M \Gamma B \subseteq B \). This implies that for any \(m \in M \), \(B \Gamma m \Gamma B \subseteq B \Gamma M \Gamma B \subseteq B \). So \(B \Gamma m \Gamma B \cap B = B \Gamma m \Gamma B \neq \emptyset \) for all \(m \in M \). Then \(B \) is an almost bi-\(\Gamma \)-ideal of \(M \).

By Example 1, we conclude that every bi-\(\Gamma \)-ideal of a \(\Gamma \)-semigroup \(M \) is an almost bi-\(\Gamma \)-ideal of \(M \).

Example 2. Consider the \(\Gamma \)-semigroup \(\mathbb{Z}_8 \) with \(\Gamma = \{0, 1, 2\} \) under the usual addition. Let \(B = \{4, 6\} \). We see that
\[(B + \Gamma + \Gamma + \Gamma + B) \cap B = \mathbb{Z}_8 \cap \{4, 5\} \neq \emptyset,\]
\[(B + \Gamma + \Gamma + \Gamma + B) \cap B = \mathbb{Z}_8 \cap \{4, 5\} \neq \emptyset,\]
\[(B + \Gamma + \Gamma + \Gamma + B) \cap B = \mathbb{Z}_8 \cap \{4, 5\} \neq \emptyset,\]
\[(B + \Gamma + \Gamma + \Gamma + B) \cap B = \mathbb{Z}_8 \cap \{4, 5\} \neq \emptyset,\]
\[(B + \Gamma + \Gamma + \Gamma + B) \cap B = \mathbb{Z}_8 \cap \{4, 5\} \neq \emptyset,\]
\[(B + \Gamma + \Gamma + \Gamma + B) \cap B = \mathbb{Z}_8 \cap \{4, 5\} \neq \emptyset,\]

Therefore, \(B\) is an almost bi-\(\Gamma\)-ideal of \(\mathbb{Z}_8\). However, \(B\) is not a bi-\(\Gamma\)-ideal of \(\mathbb{Z}_8\) because \(B + \Gamma + \mathbb{Z}_8 + \Gamma + B = \mathbb{Z}_8 \not\subseteq B\).

From Example 2, we see that an almost bi-\(\Gamma\)-ideal of \(\Gamma\)-semigroup \(S\) need not be a bi-\(\Gamma\)-ideal of \(S\).

Example 3. Consider the \(\Gamma\)-semigroup \(M = \{a, b, c, d\}\) with \(\Gamma = \{\alpha, \beta\}\) and the multiplication table:

<table>
<thead>
<tr>
<th></th>
<th>(a)</th>
<th>(b)</th>
<th>(c)</th>
<th>(d)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(a)</td>
<td>(a)</td>
<td>(c)</td>
<td>(c)</td>
<td>(a)</td>
</tr>
<tr>
<td>(b)</td>
<td>(c)</td>
<td>(a)</td>
<td>(a)</td>
<td>(c)</td>
</tr>
<tr>
<td>(c)</td>
<td>(c)</td>
<td>(a)</td>
<td>(a)</td>
<td>(c)</td>
</tr>
<tr>
<td>(d)</td>
<td>(a)</td>
<td>(c)</td>
<td>(a)</td>
<td>(a)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>(a)</th>
<th>(b)</th>
<th>(c)</th>
<th>(d)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(a)</td>
<td>(a)</td>
<td>(a)</td>
<td>(a)</td>
<td>(c)</td>
</tr>
<tr>
<td>(b)</td>
<td>(a)</td>
<td>(c)</td>
<td>(c)</td>
<td>(a)</td>
</tr>
<tr>
<td>(c)</td>
<td>(a)</td>
<td>(c)</td>
<td>(a)</td>
<td>(c)</td>
</tr>
<tr>
<td>(d)</td>
<td>(c)</td>
<td>(a)</td>
<td>(a)</td>
<td>(c)</td>
</tr>
</tbody>
</table>

Let \(B = \{a, c\}\). Then

\[B \Gamma a \Gamma B \cap B = \{a, c\} \cap \{a, c\} = \{a, c\} \neq \emptyset,\]
\[B \Gamma b \Gamma B \cap B = \{a, c\} \cap \{a, c\} = \{a, c\} \neq \emptyset,\]
\[B \Gamma c \Gamma B \cap B = \{a, c\} \cap \{a, c\} = \{a, c\} \neq \emptyset,\]
\[B \Gamma d \Gamma B \cap B = \{a, c\} \cap \{a, c\} = \{a, c\} \neq \emptyset.\]

Therefore, \(B\) is an almost bi-\(\Gamma\)-ideal of \(M\).

Theorem 1. Assume that \(B\) is an almost bi-\(\Gamma\)-ideal of a \(\Gamma\)-semigroup \(M\). If \(A\) is any subset of \(M\) containing \(B\), then \(A\) is also an almost bi-\(\Gamma\)-ideal of \(M\).

Proof. Since \(B\) is an almost bi-\(\Gamma\)-ideal of \(M\) and \(B \subseteq A\), we have \(B \Gamma m \Gamma B \cap B \neq \emptyset\) and \(B \Gamma m \Gamma B \cap B \subseteq A \Gamma m \Gamma A \cap A\) for all \(m \in M\), respectively. This implies that \(A \Gamma m \Gamma A \cap A \neq \emptyset\) for all \(m \in M\). Therefore, \(A\) is an almost bi-\(\Gamma\)-ideal of \(M\).

Corollary 1. The union of any two almost bi-\(\Gamma\)-ideals of a \(\Gamma\)-semigroup \(M\) is also an almost bi-\(\Gamma\)-ideal of \(M\).

Proof. Let \(A\) and \(B\) be any two almost bi-\(\Gamma\)-ideals of \(M\). Since \(A \subseteq A \cup B \subseteq M\), it follows from Theorem 1 that \(A \cup B\) is an almost bi-\(\Gamma\)-ideal of \(M\).
Example 4. Consider the Γ-semigroup \mathbb{Z}_8 with $\Gamma = \{0, 1, 2\}$ under the usual addition. Let $A = \{2, 3\}$ and $B = \{4, 6\}$. Clearly, A and B are almost bi-Γ-ideals of \mathbb{Z}_8 but $A \cap B = \emptyset$, so it is not an almost bi-Γ-ideal of \mathbb{Z}_8.

By Example 4, we have the following remark.

Remark 1. The intersection of any two almost bi-Γ-ideals of a Γ-semigroup M need not be an almost bi-Γ-ideal of M.

Theorem 2. A Γ-semigroup M contains a proper almost bi-Γ-ideal if and only if there exists an element m of M such that $M \setminus \{m\}$ is an almost bi-Γ-ideal of M.

Proof. Assume that a Γ-semigroup M contains a proper almost bi-Γ-ideal B and let $m \in M \setminus B$. Then $B \subseteq M \setminus \{m\} \subseteq M$. By Theorem 1, $M \setminus \{m\}$ is an almost bi-Γ-ideal of M.

Conversely, let $m \in M$ be such that $M \setminus \{m\}$ is an almost bi-Γ-ideal of M. Since $M \setminus \{m\} \subseteq M$, we get $M \setminus \{m\}$ is a proper almost bi-Γ-ideal of M.

Theorem 3. Let M be a Γ-semigroup such that $|M| > 1$. Then M has no proper almost bi-Γ-ideals if and only if for all $m \in M$ there exists $a \in M$ such that

$$(M \setminus \{m\})\Gamma_a \Gamma (M \setminus \{m\}) = \{m\}.$$

Proof. Assume that M has no proper almost bi-Γ-ideals and let $m \in M$. By Theorem 2, $M \setminus \{m\}$ is not an almost bi-Γ-ideal of M. Thus there exists an element a of M such that $(M \setminus \{m\})\Gamma_a \Gamma (M \setminus \{m\}) \cap (M \setminus \{m\}) = \emptyset$. Hence, $(M \setminus \{m\})\Gamma_a \Gamma (M \setminus \{m\}) = \{m\}$.

Conversely, suppose M contains a proper almost bi-Γ-ideal B. Let $m \in M \setminus B$. By assumption, we have $(M \setminus \{m\})\Gamma_a \Gamma (M \setminus \{m\}) = \{m\}$ for some element a in M. Since $B \subseteq M \setminus \{m\} \subseteq M$, we get $M \setminus \{m\}$ is an almost bi-Γ-ideal of M by Theorem 1. This implies that $\emptyset = \{m\} \cap (M \setminus \{m\}) = (M \setminus \{m\})\Gamma_a \Gamma (M \setminus \{m\}) \cap (M \setminus \{m\}) \neq \emptyset$, which is a contradiction. Therefore, M has no proper almost bi-Γ-ideals.

3. Fuzzy almost bi-Γ-ideals

For a Γ-semigroup M, let $\mathcal{F}(M)$ be the set of all fuzzy subsets of M. For each $\alpha \in \Gamma$, define a binary operation \circ_α on $\mathcal{F}(M)$ by

$$(f \circ_\alpha g)(m) = \begin{cases} \sup_{m = \alpha a b} \{\min\{f(a), g(b)\}\} & \text{if } m \in M\alpha M, \\ 0 & \text{otherwise}. \end{cases}$$

Let $\Gamma^* := \{\circ_\alpha \mid \alpha \in \Gamma\}$. Then $(\mathcal{F}(M), \Gamma^*)$ is a Γ-semigroup.

Proposition 1. For fuzzy subsets f and g of a Γ-semigroup M such that $f \subseteq g$ and $\alpha \in \Gamma$, if h is any fuzzy subset of M, then $h \circ_\alpha f \subseteq h \circ_\alpha g$ and $f \circ_\alpha h \subseteq g \circ_\alpha h$.
We define fuzzification of almost bi-Γ-ideals in Γ-semigroups as follows:

Definition 4. A fuzzy subset f of a Γ-semigroup M is called a fuzzy almost bi-Γ-ideal of M if for all fuzzy points m_t of M, there exist $\alpha, \beta \in \Gamma$ such that $(f \circ \alpha m_t \circ \beta f) \cap f \neq 0$.

Theorem 4. Assume that f and g are fuzzy subsets of a Γ-semigroup M such that $f \subseteq g$. If f is a fuzzy almost bi-Γ-ideal of M, then g is also a fuzzy almost bi-Γ-ideal of M.

Proof. Since f is a fuzzy almost bi-Γ-ideal of M, for each fuzzy point m_t of M, there exist $\alpha, \beta \in \Gamma$ such that $(f \circ \alpha m_t \circ \beta f) \cap f \neq 0$. We have that $(f \circ \alpha m_t \circ \beta f) \cap f \subseteq (g \circ \alpha m_t \circ \beta g) \cap g$, this implies that $(g \circ \alpha m_t \circ \beta g) \cap g \neq 0$. Hence, g is also a fuzzy almost bi-Γ-ideal of M.

Corollary 2. If f and g are fuzzy almost bi-Γ-ideals of a Γ-semigroup M, then $f \cup g$ is also a fuzzy almost bi-Γ-ideal of M.

Proof. It follows by Theorem 4 because of $f \subseteq f \cup g$.

Example 5. Consider the Γ-semigroup \mathbb{Z}_5 where $\Gamma = \{\overline{0}\}$ and $\overline{\pi \gamma \delta} := \pi + \gamma + \delta$. Let f and g be fuzzy subsets of \mathbb{Z}_5 defined by

$$f(\overline{0}) = 0, f(\overline{1}) = 0.5, f(\overline{2}) = 0, f(\overline{3}) = 0.1, f(\overline{4}) = 0.4$$

and

$$g(\overline{0}) = 0, g(\overline{1}) = 0.3, g(\overline{2}) = 0.7, g(\overline{3}) = 0, g(\overline{4}) = 0.2.$$

It is easy to check that $[(f \circ \alpha m_t \circ \beta f) \cap f] (\overline{4}) \neq 0$ and $[(g \circ \alpha m_t \circ \beta g) \cap g] (\overline{4}) \neq 0$ for all $\alpha, \beta \in \Gamma, m \in \mathbb{Z}_5$ and $t \in (0, 1]$. So f and g are fuzzy almost bi-Γ-ideals of \mathbb{Z}_5.

From the definition of the intersection of two fuzzy subsets, we have

$$(f \cap g)(\overline{0}) = 0, (f \cap g)(\overline{1}) = 0.3, (f \cap g)(\overline{2}) = 0, (f \cap g)(\overline{3}) = 0, (f \cap g)(\overline{4}) = 0.2.$$

We can easily to check that $[(f \cap g) \circ \alpha m_t \circ \beta (f \cap g)](a) \cap (f \cap g)](a) = 0$ for all $\alpha, \beta \in \Gamma, t \in (0, 1]$ and $a \in \mathbb{Z}_5$, so $f \cap g$ is not a fuzzy almost bi-Γ-ideal of \mathbb{Z}_5.

The following remark follows from Example 5.

Remark 2. The intersection of two fuzzy almost bi-Γ-ideals of a Γ-semigroup M need not be a fuzzy almost bi-Γ-ideal of M.

4. Relationships between almost bi-Γ-ideals and their fuzzification

Theorem 5. A non-empty subset B of a Γ-semigroup M is an almost bi-Γ-ideal of M if and only if χ_B is a fuzzy almost bi-Γ-ideal of M.
Proof. Assume that B is an almost bi-Γ-ideal of a Γ-semigroup M and let m_t be any fuzzy point of M. Then $B\Gamma m\Gamma B \cap B \neq \emptyset$. Thus there exists $b \in B$ such that $b \in B\alpha m\beta B$ for some $\alpha, \beta \in \Gamma$. This implies that $(\chi_B \circ \alpha m_t \circ \beta \chi_B)(b) \neq 0$ and $\chi_B(b) \neq 0$. Hence, $(\chi_B \circ \alpha m_t \circ \beta \chi_B) \cap \chi_B \neq 0$. Therefore, χ_B is a fuzzy almost bi-Γ-ideal of M.

To prove the converse, we assume that χ_B is a fuzzy almost bi-Γ-ideal of M and let $m \in M$. Then there exist $\alpha, \beta \in \Gamma$ such that $(\chi_B \circ \alpha m_t \circ \beta \chi_B) \cap \chi_B \neq 0$, so $[(\chi_B \circ \alpha m_t \circ \beta \chi_B) \cap \chi_B](y) \neq 0$ for some $y \in M$. Hence, $y \in B$ and $y = a\alpha m\beta b$ for some $a,b \in B$ and $\alpha, \beta \in \Gamma$. Therefore, $y \in B\Gamma m\Gamma B \cap B$. So $B\Gamma m\Gamma B \cap B \neq \emptyset$. Consequently, B is an almost bi-Γ-ideal of M.

Theorem 6. A fuzzy subset f of a Γ-semigroup M is a fuzzy almost bi-Γ-ideal of M if and only if $\supp(f)$ is an almost bi-Γ-ideal of M.

Proof. Assume that f is a fuzzy almost bi-Γ-ideal of a Γ-semigroup M and let $m \in M$ and $t \in (0,1]$. Then there exist $\alpha, \beta \in \Gamma$ such that $(f \circ \alpha m_t \circ \beta f) \cap f \neq 0$. Hence, $[(f \circ \alpha m_t \circ \beta f) \cap f](x) \neq 0$ for some $x \in M$. So there exist $y_1, y_2 \in S$ such that $x = y_1 \alpha m_t \beta y_2, f(x) \neq 0, f(y_1) \neq 0$ and $f(y_2) \neq 0$. That is, if $x \in \supp(f)$. Thus $(\chi_{\supp(f)} \circ \alpha m_t \circ \beta \chi_{\supp(f)})(x) \neq 0$ and $\chi_{\supp(f)}(x) \neq 0$. Therefore, $(\chi_{\supp(f)} \circ \alpha m_t \circ \beta \chi_{\supp(f)}) \cap \chi_{\supp(f)} \neq 0$. Hence, $\chi_{\supp(f)}$ is a fuzzy almost bi-Γ-ideal of M. By Theorem 5, $\supp(f)$ is an almost bi-Γ-ideal of M.

On the other hand, we assume that $\supp(f)$ is an almost bi-Γ-ideal of M. It follows from Theorem 5 that $\chi_{\supp(f)}$ is a fuzzy almost bi-Γ-ideal of M. Let m_t be any fuzzy point of M. Thus, $(\chi_{\supp(f)} \circ \alpha m_t \circ \beta \chi_{\supp(f)}) \cap \chi_{\supp(f)} \neq 0$ for some $\alpha, \beta \in \Gamma$. Then there exists an element $x \in M$ such that $[(\chi_{\supp(f)} \circ \alpha m_t \circ \beta \chi_{\supp(f)}) \cap \chi_{\supp(f)}](x) \neq 0$. Therefore, $(\chi_{\supp(f)} \circ \alpha m_t \circ \beta \chi_{\supp(f)})(x) \neq 0$ and $\chi_{\supp(f)}(x) \neq 0$. Then there exist $y_1, y_2 \in M$ such that $x = y_1 \alpha m_t \beta y_2, f(x) \neq 0, f(y_1) \neq 0$ and $f(y_2) \neq 0$. This means that $(f \circ \alpha m_t \circ \beta f) \cap f \neq 0$.

We conclude that f is a fuzzy almost bi-Γ-ideal of M.

Next, we will study the minimality of fuzzy almost bi-Γ-ideals.

Definition 5. A fuzzy almost bi-Γ-ideal f of a Γ-semigroup M is called minimal if for all fuzzy almost bi-Γ-ideal g of M contained in f, we must have $\supp(g) = \supp(f)$.

Now, we provide the relationship between minimal almost bi-Γ-ideals and their fuzzification.

Theorem 7. A non-empty subset A of a Γ-semigroup M is a minimal almost bi-Γ-ideal of M if and only if χ_A is a minimal fuzzy almost bi-Γ-ideal of M.

Proof. Let A be a minimal almost bi-Γ-ideal of a Γ-semigroup M. By Theorem 5, we have that χ_A is a fuzzy almost bi-Γ-ideal of M. Assume that g is a fuzzy almost bi-Γ-ideal of M contained in χ_A. Thus, $\supp(g) \subseteq \supp(\chi_A) = A$. Because of $g \subseteq \chi_{\supp(g)}$, we have $(g \circ \alpha m_t \circ \beta g) \cap g \subseteq (\chi_{\supp(g)} \circ \alpha m_t \circ \beta \chi_{\supp(g)}) \cap \chi_{\supp(g)}$ for all fuzzy points m_t of M. Thus $\chi_{\supp(g)}$ is a fuzzy almost bi-Γ-ideal of M. By Theorem 5, $\supp(g)$ is an almost bi-Γ-ideal of M. Because of A is a minimal, then $\supp(g) = A = \supp(\chi_A)$. Therefore, χ_A is minimal.

To prove the converse, assume that χ_A is a minimal fuzzy almost bi-Γ-ideal of M and B is an almost bi-Γ-ideal of M contained in A. Then χ_B is a fuzzy almost bi-Γ-ideal of M and $\chi_B \subseteq \chi_A$. Thus, $B = \supp(\chi_B) = \supp(\chi_A) = A$. We conclude that A is minimal.
Corollary 3. A \(\Gamma \)-semigroup \(M \) has no proper almost bi-\(\Gamma \)-ideals if and only if for all fuzzy almost bi-\(\Gamma \)-ideal \(f \) of \(M \), \(\text{supp}(f) = M \).

Proof. Assume that \(M \) has no proper almost bi-\(\Gamma \)-ideals and let \(f \) be a fuzzy almost bi-\(\Gamma \)-ideal of \(M \). By Theorem 6, we have \(\text{supp}(f) \) is almost bi-\(\Gamma \)-ideal of \(M \). Thus \(\text{supp}(f) = M \).

To prove the converse, we let \(B \) be any almost bi-\(\Gamma \)-ideal of \(M \). Follow by Theorem 5, we have that \(\chi_B \) is a fuzzy almost bi-\(\Gamma \)-ideal of \(M \). By assumption, we get \(B = \text{supp}(\chi_B) = M \). This implies that \(M \) has no proper almost bi-\(\Gamma \)-ideals.

Definition 6. Let \(M \) be a \(\Gamma \)-semigroup and \(\alpha \in \Gamma \).

(1) An almost bi-\(\Gamma \)-ideal \(B \) of \(M \) is called \(\alpha \)-prime if

\[
x \alpha y \in B \Rightarrow x \in B \text{ or } y \in B
\]

for any \(x, y \in M \).

(2) A fuzzy almost bi-\(\Gamma \)-ideal \(f \) of \(M \) is called \(\alpha \)-prime if

\[
f(x \alpha y) \leq \max\{f(x), f(y)\}
\]

for any \(x, y \in M \).

Next, we investigate relationship between \(\alpha \)-prime almost bi-\(\Gamma \)-ideals and their fuzzification.

Theorem 8. A nonempty subset \(A \) of a \(\Gamma \)-semigroup \(M \) is an \(\alpha \)-prime almost bi-\(\Gamma \)-ideal of \(M \) if and only if \(\chi_A \) is an \(\alpha \)-prime fuzzy almost bi-\(\Gamma \)-ideal of \(M \).

Proof. Let \(A \) be any \(\alpha \)-prime almost bi-\(\Gamma \)-ideal of \(M \). Then \(\chi_A \) is a fuzzy almost bi-\(\Gamma \)-ideal of \(M \) by Theorem 5. Let \(x \) and \(y \) be elements in \(M \). If \(x \alpha y \in A \), then \(x \in A \) or \(y \in A \). This implies that

\[
\chi_A(x \alpha y) = 1 \leq \max\{\chi_A(x), \chi_A(y)\}.
\]

If \(x \alpha y \notin A \), then

\[
\chi_A(x \alpha y) = 0 \leq \max\{\chi_A(x), \chi_A(y)\}.
\]

We conclude that \(\chi_A(x \alpha y) \leq \max\{\chi_A(x), \chi_A(y)\} \) for all \(x, y \in M \). Therefore, \(\chi_A \) is an \(\alpha \)-prime fuzzy almost bi-\(\Gamma \)-ideal of \(M \).

To prove the converse, suppose that \(\chi_A \) is an \(\alpha \)-prime fuzzy almost bi-\(\Gamma \)-ideal of \(M \). By Theorem 5, we have that \(A \) is an almost bi-\(\Gamma \)-ideal of \(M \). Let \(x \) and \(y \) be elements in \(M \) such that \(x \alpha y \in A \). Thus, \(\chi_A(x \alpha y) = 1 \). By assumption, we have that \(\chi_A(x \alpha y) \leq \max\{\chi_A(x), \chi_A(y)\} \). Therefore, \(\max\{\chi_A(x), \chi_A(y)\} = 1 \). We can conclude that \(x \in A \) or \(y \in A \). Hence, \(A \) is an \(\alpha \)-prime almost bi-\(\Gamma \)-ideal of \(M \).
Definition 7. Let M be a Γ-semigroup and $\alpha \in \Gamma$.

(1) An almost bi-Γ-ideal A of M is called α-semiprime if

$$m\alpha m \in A \Rightarrow m \in A$$

for all $m \in M$.

(2) A fuzzy almost bi-Γ-ideal f of M is called α-semiprime if

$$f(m\alpha m) \leq f(m)$$

for all $m \in M$.

Finally, we give relationship between α-semiprime almost bi-Γ-ideals and their fuzzification.

Theorem 9. A nonempty subset A of a Γ-semigroup M is an α-semiprime almost bi-Γ-ideal of M if and only if χ_A is an α-semiprime fuzzy almost bi-Γ-ideal of M.

Proof. Let A be an α-semiprime almost bi-Γ-ideal of M. By Theorem 5, χ_A is a fuzzy almost bi-Γ-ideal of M. Let $m \in M$. If $m\alpha m \in A$, then $m \in A$. So, $\chi_A(m) = 1$. Hence, $\chi_A(m\alpha m) \leq \chi_A(m)$. If $m\alpha m \notin A$, then $\chi_A(m\alpha m) = 0 \leq \chi_A(m)$. By both cases, we conclude that $\chi_A(m\alpha m) \leq \chi_A(m)$ for all $m \in M$. Thus, χ_A is an α-semiprime fuzzy almost bi-Γ-ideal of M.

Conversely, assume that χ_A is an α-semiprime fuzzy almost bi-Γ-ideal of M. By Theorem 5, we have that A is an almost bi-Γ-ideal of M. Let $m \in M$ be such that $m\alpha m \in A$. Thus $\chi_A(m\alpha m) = 1$. By assumption, we have that $\chi_A(m\alpha m) \leq \chi_A(m)$. Since $\chi_A(m\alpha m) = 1$, it follows that $\chi_A(m) = 1$. Therefore, $m \in A$. Consequently, A is an α-semiprime almost bi-Γ-ideal of M.

5. Conclusion

In this paper, we define almost bi-Γ-ideals and their fuzzification of Γ-semigroups. Every bi-Γ-ideal is an almost bi-Γ-ideal but the converse is not true in general. We show that the union of two almost bi-Γ-ideals is also an almost bi-Γ-ideal. However, it is not generally true in case the intersection. Similarly, we have that the union of two fuzzy almost bi-Γ-ideals is also a fuzzy almost bi-Γ-ideal but it is not generally true in case the intersection. Moreover, the relationships between almost bi-Γ-ideals and their fuzzification were shown in Section 4.

Acknowledgements

This work was supported by the Faculty of Sciences Research Fund, Prince of Songkla University, Contract no. 1-2562-02-013.

We would like to thank the reviewers for their comments and suggestions.
References

REFERENCES

