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1. Introduction and preliminary notes

It is well known that the existence and uniqueness of Dirichlet problem for p-harmonic
equations

div (\vuyH Vu) = divf, (1)

ulye =0 (2)
in Sobolev and grand Sobolev spaces were studied, e.g., in [1, 2] see also [4-7, 10-13].
Namely, in these papers the different problems for p-harmonic equations were considered.
Similar and various problems of partial differential equations in grand Sobolev, Besov
and Morrey type spaces were studied in [8, 9, 14-16, 18-23] and others. Most of these
papers were used the variational methods. Evidently, in the above-mentioned papers only
p-harmonic equations (1) was considered.
In this paper we consider Dirichlet problem for p-harmonic type equation has a form

div (|[Vu|P™Vu) = divf, (3)
ulpe = ¢lag (4)
where 1 <p<oo; 2<¢g<o0o; @€ WI})(G), fe€Lpey(G), (p—e) = % and

G in R™ is a bounded domain.
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Definition 1. (6, 17, 23]) Denote by W (G) the grand Sobolev space of locally summable

D)

functions u on G having the weak partial derivatives Di,iu (i=1,2,...,n) with the finite
norm

HUHW;)(G) = llullz, @ + 1Vullr, @)
where )

p—e
fullyie = sw | o [ uo)l<ds
Lp)(@) 0<e<p—1 ‘G| 2

and |G| is the Lebesgue measure of G.

We note that the correct choice of space for problem (3)-(4) is the grand Lebesgue
space (or grand Sobolev space).

In this paper using the variational method an existence and uniqueness of solution
to Dirichlet problem for p— harmonic type equations (3)- (4) in grand Sobolev spaces is
studied.

A weak solution for the problem (3)-(4) on G is a function u (z) € Wpl) (G),iffu—pe€
ol
W) (G) such that

> /G IVulP™ g, Vg, do = / f 0., d, (5)
=1

=1
ol
for every ¥ € W, (G).

2. Main results

In this section we prove the existence and uniqueness of weak solution (5) for the
problem (3)-(4).

Theorem 1. Let G C R" is bounded domain, 1 < p < 0o;2 < q < o00; g,h € Wpl_(q_z)(G),
p e Wpl)(G) and f € L%p_a),. Then the Dirichlet problem for pharmonic type equation (3)

has a unique weak solutions in Wpl)(G).

Proof. Since functions g and h € W[}_
as the form

(4-2) (G), then we consider the bilinear functional

Flouh) = 3 [ Vel 0 oy do= 30 [ e =
i=1 =1

= Ia.h) =3 [ f hey do=Tg.0) = (1), (6)
=1
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/

since f € L(p_E)/(G), (p—e) = pf;fl. Consequently, we have

| ( | = |I |Vg|p 1 9z; Gx; dz| <

n n
- - 2
<y /G VP ga] 02| dz=3" /G Vel g2 do =
i=1 =1

:/ VeglP~4"?  dr < oo,
G

—(g—2
1) < IVl 2

Consequently, for every ¢ — 2 < e < p — 1 function g € Wpl) (G) and

lgllwy ) =C1 llgllwr (o)
and, note that
I9al,? (¢ <Ca 11 (9)] (@)

where C] and (5 are constants independents on function g.

The variational problem is stated as follows. Find a function g € Wpl) (G) such that
which gives the minimum value to the integral F'(g) and is unique. The Euler-Lagrange
equation for the variational problem (6) under consideration is the equation (3). With the
help of the inequality (7), we have

F(g,9)| = |F(g) Z/f gr, dz| > |1 (g)]

zlG

Z/ o, dz| > |1 (g Z/fg%dx>]l i/fgxldx>
=1 =g

2@ =3 [ 11l0elde = Co ol )~ Vol

W7z, () 19811,y = Cillsluy o) = Mo,

C3 and Cy are constants independent on the function g ().
This means that F'(g) is lower bounded on Wpl)(G) show that there exists go € W (G)

p)
such that F'(go) = min F (g). Fix some sequence {g,,} € Wl) (G) (m=1,2,...)such
9EW,(G) ?
that lim F(g,) = ro . Let ¢ > 0 choose my so for m > m, and s = 1,2,...
m—0o0

it holds F( gmts) < 7o + 0. Then noting that 3 (gm+s+gm) € WI})(G) we have
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F <7gm+52+g7” ) > ro. By direct calculations we show that I ( w> < 4o, and we

1
have ||gm+s + gmHyypl)(G) < 2(&) P~ This means that the sequence {g,, } is fundamental

in the spaces Wz}) (G), consequently in view of completeness the spaces Wpl) (G) there exist

. 1 . o .
a function go € Wy, (G) such that mlgnoO | gm — QOHWPI>(G) = 0 . By theorem on trace in

Wy (G), ([3, p.143]), we get

Wy (G) =W,y . (G) = Li- (Gi), Ge=G[|RF,p<t<oo, 1<k<n.

So
|E' (gm) — F (90)| < Cllgm — gol| wi(@)
and hence it follows that ro = 11_131 F(gm) = F(go). Show that the function delivering

minimum to the functional F'(g) is unique and satisfies equation (3) in the space WI}) (GQ).
Since g € Wpl) (G) and F' (go) = 7o, we have

_ 1 1
0g1<9 29°> :2F(g)+2F(go)—F<g +g°> <D0 0 =0,

I(g—go)=0.
By |lgm — gOHI/Vl)(G) — 0, m — oo, it follows that the function g coincides with gy as an
p

element of the space Wpl) (G) . Again from the theorem on trace in space W;) (G), we have

1(gm = g90) lacllL, . oc) < C'llgm — gOHWZ})(G) — 0, m — oo.

Since
lgmlag — ¥loc HLt_E(aG) — 0, m — o0,
therefore
l90loc — ¢lac HLt—s(@G) — 0 m — oo.
Taking into account the condition % (£ (90 + pw)),—o = 0, show that the function

go € Wpl) (G), minimizing the integral F (g) satisfies the following equation

(g0, w) = (f,w) = 0. (8)

Now prove that the function gy € Wpl) (G) minimizing the integral F'(g) is the weak
solution of the problem (3)-(4). By 6 (t) we denote some monotonically decreasing function
on the segment % <t <1 and having the following properties

9<;+0> =1,0(1-0)=—1, 4% <;+0> =0 (1-0)=0,s=1,2,... .
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’YU)—-{ 95?7

is infinitely differentiable and finite on the real line. Note that the function v satisfy
condition

The function
<t<1,

—o<t<3z, 1 <t<oo

N[

N0 <;+0> —y(1-0), (s=1,2,..).

Let 6 > 0 and let G5 = {y : p(y, R*"\G) > 0} be arbitrary point of the domain G, and
r = p(x,x0). There p(x,xzg) is the Euclidean distance between z and xg, where = € G
and zo be a fixed point in G. Following Sobolev [24], we introduce the function

() 2)

for 0 <y <ly < 0. It is obvious that w(x) is a infinitely differentiable finite function with
a support lying on a annular domain % < 1 < lg. Therefore w € C§°(G) and D(S)w|8G =0
for all s =1,2,.... Then from (8) by definition of the weak derivative it follows that

/GK<£>g(x)d:p:/GK<l2>g(x)dx, )
K(Z)zdi@('V7<2)p_qV7<l:))—divf, i=1,2.

Note that the function K (%) having all properties of kernel. Namely, the following

where

properties hold:
1) K is infinitely differentiable function with support in the ball r < [;;
2) The function K and all its derivatives on sphere R = h are zero;

3)
L / K <T> dr =1,
Tn l? G ll
where N )
2m2 / 1
Tn = =7m " K(€) d€.
r'(5) Jo

Then for the function go(x) we can constructed Sobolev’s averaging go, (), i = 1,2
on the ball ; (¢ =1,2) with centered at the point x as

1 Z—x )
90,1, ($) = T / K (l’> g0 (Z) dZ, 1= 1,2.

(2

The we can rewrite equality (9) in the form go;, (z) = go, (x) . Consequently, for I < ¢

gou () = go (z).
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Since the average functions go, (), i = 1,2 are continuous and has continuous derivatives
for any order, then go () also is a kernel. Integrating by parts in the equality I (go,w) —
(f,w) = 0, whence is the limit case

g /GW(a:)ai <|Vgo|p—qaiigo (z) ) de = é/Gw(x)aif(x) de .

Hence by the arbitrariness of the functions w(x) it follows that

9 4 0 "0
> o (Vo g ) = s

=1

ie
div (|Vgo|p_quo) = dz’vf.

Thus, solution of the variational problem (5) from the class W}

) (G) is also solution of

Dirichlet problem (3)-(4) and this solution is unique.

3. Conclusion

In conclusion, we note that for a p-harmonic type equation in the grand Sobolev space,
a result is obtained on the existence and uniqueness of a weak solution.
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