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1. Introduction and Preliminaries

Jensen’s inequality for convex functions is one of the most celebrated inequality in
Mathematics and Statistics. Due to its high importance there are given numerous variants,
generalizations and refinements of Jensen’s inequalities (for reference see [8, 9, 12, 13, 29)).
We also adduce to [25] and [28] for detailed discussion on Jensen’s inequality and for some
remarks on literature and history of the topic.

A variant of Jensen’s inequality named as Jensen-Mercer inequality was established by
Mercer [24] given as follows:

Theorem 1. Let 1 < xy < --- < xy, and let wy,wa, ..., w, be nonnegative real numbers
n

such that Zwi = 1. If ¢ is a convex function defined on an interval containing all x;’s

i=1
for 1 <i<mn. Then

¢ (-7;1 +$n szxz> < ¢(£C1 +¢ mn sz¢ xz . (1)

=1

Now, we recall a prerequisite concept of majorization from [23].
Let x = (Il,---,xm) and y = (y1,---,Ym) denote two m-tuples and z;; > --- >
Tlm]s Y[ = 2 Ym) be their ordered components.
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Definition 1. For x,y € R™,

k

k
Z%[Z}Szym ) k‘E{l,...,m—l},
=1 1=1

m

Z L = Z Y
i=1 i=1

when X <y, x is said to be majorized by y or y majorizes x.

x <y if

In the book [10] we find a very power result namely majorization theorem (see also
[23]).

Theorem 2. Let x,y € R™ then following inequality is true for all continuous convex

functions ¢ : R — R,
> plx) <D b (w)
i=1 i=1

if and only if x < y.

We now define an extension of Jensen-Mercer inequality which is referred as Niezgoda’s
inequality by Niezgoda [26]. For recent work on Niezgoda inequality we refer the reader
[1, 15-17, 27].

Theorem 3. Suppose that a be an m-tuple such that a; € J and a n X m matriz X =
(x5) = (z4j) with zi; € J for alli € {1,...,n} and j € {1,...,m}.
If a majorizes each row of X, that is,

Xi. = (Ti1y -y Tim) < (a1,...,am) = @ for each i € {1,...,n},

then for a continuous convex function ¢ on J following inequality holds.

m m—1 n m m—1 n

¢ Zaj - Z Zwi%j < Z o(a;) — Z Zwi¢($ij)7 (2)
j=1 j=1 i=1 j=1 j=1 i=1

with w; > 0 such that > ;" w; = 1.
Especially, the inequality stated below is also valid for w; = %,i e{l,...,n}

m 1 m—1 n m 1 m—1 n

o> ai- - DD miy | <D dlay) - - P (xij)- (3)
j=1 j=1 i=1 j=1 j=1 i=1

The cyclic refinement of the Jensen’s inequality in paper [3] is given as follows:
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Theorem 4. Let ¢ : I — R be a convex function and I be an interval in R, x =
(x1,...,xn) € I™ and X = (A1, ..., \n) be a nonnegative n-tuple such that Zle Ai =1 for
some k, 2 <k <n. Then

1 I (& 1
¢<nzﬁfz> < Ezfﬁ Z/\j+1$i+j < gz¢(%)7 (4)
i=1 i=1 §=0 i=1
where i + j means i + j —n in case of i + j > n.
The cyclic refinement of Jensen-Mercer inequality in paper [5] is defined as follows:
Theorem 5. Let I C R be an interval, x = (x1,...,x,) € I"™ such that (c +d-— Z?;g )\j+1xi+j> €

I and A= (\1,...,\n) be a positive n-tuple such that Zle Ai =1 for some k, 2 < k <n,
then for convex function ¢ : I — R, [c,d] C I, following inequalities hold:

10} <c+d iwm)
i=1
n k—1
< Zwi¢ ct+d— Z)\Hlﬂﬁiﬂ
i=1 J=0

<o)+ o(d)—> wid(x), (5)
=1

where i + j means i + j —n in case of i + j > n.

In this article we are going to use some of the following assumptions:

e (C1): Let ¢ : J — R be a convex function.

e (C): Let a be a m-tuple such that a; € J" and a n x m matrix X = (x;;) € J",Vi €
{1,...,n} and Vj € {1,...,m} such that (zj4k,..., Tims+k) = (Ti1,. .., Tim), Vi €
{1,...,n}) and X : (A,...,A,) ba a n-tuple such that 22:1 e =1,1€e{2,...,n}.
Moreover, w;’s are non-negative real weights for 1 < i < n such that " ; w; =1

e (C3): Let ¢,1 : J — R be continuous and strictly monotone functions.

Under the assumptions stated above it should be noted that

m —-11-1
S-S S A | €
j=1 j=1 k=0

The aim of this paper is to present new refinement of Theorem 3. In main result
section, we will give refinement for weighted version of Niezgoda’s inequality, then we will
define its special case for equal weights. In application section, with the help of main
results we will give refinements of Ky Fan and arithmetic-geometric means inequalities
and their related results. We also define cyclic mixed symmetric means, power mean and
generalized quasi-arithmetic means and study their properties. We follow the techniques
given in [3]. The final section gives suggestions for further work and future ideas.
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2. Main Result

Theorem 6. Let the assumptions stated in Theorem 3 be true. In addition we suppose
that the assumptions given in (C1) and (C2) are also valid. Then we have

m m—1 n
D 4= ) > wiy
j=1 j=1 i=1
m m—11-1
< Z w; @ Z a; — Ak 1% 1k
j=1 7j=1 k=0
m m—1 n
<D dlag) =D Y wid(xy). (6)
j=1 j=1 i=1
Proof. To prove first inequality of (6), since ¢ is a convex function and
m m—11-1
Z(Ij - Z Ak+1%ijvk | €,
j=1 j=1 k=0

therefore by Jensen’s Inequality,

m

n m—11-1
Yowid | Doaj— Y MeriTijin
i=1 j=1 J=1 k=0
n m n m—11-1
> ¢ Zwi Zaj - Z Z Zwi)\k+1$ij+1c
i—1 =1 i=1 j=1 k=0
m l m—1
—o(Zu-(Xu) 3
j=1

n

Wi i
= j=1 i=1
m m—1 n
LI PITED ) ol
j=1 j=1 i=1
On the other hand, to prove second inequality of (6), we consider following expression
m m—11—1
D ai— D> > Meyrijix
j=1 j=1 k=0

for fixed i € {1,2,...,n} and proceed as follows:

m m—11—1
E a; — E § Ak+1Tij4+k
=1 j=1 k=0
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m m—11-1
=¢ Z aj — Akt 1Tij
j=1 j=1 k=0
m m—1 1
= ¢ Z a; — )\kxz]
j=1 j=1 k=1
m l m—1
o[ Za- (X)) T
j=1 k=1 j=1
m m—1
i DIEDIES
j=1 j=1
Using majorization property we have
m m—1 m m—1
doaj= > wiy | =6 (@m) <D dla) = Y ¢ (xy)
Jj=1 Jj=1 Jj=1 Jj=1
Or we can write,
m m—11-1 m m—1
Za] Z)\lﬁ—lmzﬁ—k < Z¢( ) Z Qb(xZ]) : (7)
j=1 j=1 k=0 J=1 J=1

Now multiplying inequality (7) with w; and summing over ¢ from 1 to n we get our required
result.

Corollary 1. Under the assumptions of Theorem 6 and for w; = %,i € {1,...,n}, we
have
m—1 n
Zaa PN
7j=1 =1

n m m—11-1
< %Zq& D ai = > Mepmijan
=1 \j=1 j=1 k=0
m m—1 n
EDICHEED B SEICH ML)
=1

j=1 i=1

Remark 1. If we set m = 2, a1 = ¢, ag = d and zyjy = z; for i € {1,...,n}, then
Theorem 5 will become special case of Theorem 6.
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3. Refinement of the Ky Fan inequality

Throughout this section, let the assumptions stated in Theorem 6 be valid with 0 <
¢ < d. We define generalized (or modified) arithmetic, geometric and harmonic mean
respectively as follow (for general discussion on mean and related inequalities we refer

[4]):

m m—1 n
Ay => aj - W;Tij,
j=1 j=1 i=1
m
[
& j=1
Gn = m—1 n ’
w.
[T i)™
j=11i=1
—1
m m—1 n
2 -1 —1
H, = (aj)" — wi(x45) .
J J
j=1 j=1 i=1
Also for z;; € (0, %], we define arithmetic, geometric and harmonic means as follows:
m m—1 n
= E (1—aj;)— E E w; (1 — x45)
7j=1 7j=1 =1
m
[T -ay)
Ay j=1
Gn T m—-1n ’
T =ai)™
j=1i=1
-1
m m—1 n
b = 1 N1 (1 N1
n = (1—a;)" - w; (1 — )
j=1 j=1 i=1

We also define new notations A(\;x) and G(\;x) as under:

m m—11-1
X) =Y aj— Y > Ae1@ijiks
=1 j=1 k=0
m
1o
~ j=1
G(\x) = N

m—1[—

k
ng—i—k +

j=1 k=0
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Also for z;; € (0, %], we define

m—11—1

m
B TR 35 3 TR
j=1 j=1 k=0
m
H(l — aj)
~ ]:1
G'(Nx) = T
(1 = @ijar) ™
7j=1 k=0

Now, we present the refinement of the Ky Fan type inequality. For Ky Fan inequality
and related results, see [2], [6] and [5] and references given therein.

Theorem 7. Let assumptions stated in Theorem 6 be true. Then following inequality

holds:
A o I1 A x)
A, A\, x)

Proof. By applying the convex function ¢(z) = In (ﬁ) for all x € (0, %], to the
inequality (6), we get,

ln< 21— i Z —1 Willij )
1- ZJ 1ag+Z DY 1wzf€m

l
<Zw ln< ] 195 Z Zk 0)‘k+1mw+k >
(3
E] 145 + Z Zk 0)\k+1$zg+k

Sj;hl(l ) mz:lzn:wzln<1fi‘;ij>

7j=1 =1

consequently,

N n m m—l l—1 w; ~
An A=) 0 Me+1Ti;

() <]y (- Zme - T e \" (G
Ay o \ 1= 220 a0+ 300 Zk o Me1Tij 4k G,

Finally, we obtain
A o Anx)\ (G
n < H M < " ,
A, ) S \A X Gy

which completes the proof.
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Remark 2. For w; = %, we obtain the special case of Theorem 7 as follows:

1
Ay AN\ Gy
< _— <
fn—i[ll(A/u,x)) <G

A
where
m m—1 n
1
An:E aj—;' Tij,
]:1 ]:1 =1
| J Y
_ j=1j
Gn = T
m—1 n "
1L
7j=11i=1
and
m—1 n

PR SRS o S

j=1 j=1 i=1
[[75 (1 —ay)
Gy = . -
m—1 n
H(l — Ty5)
7j=11i=1

Now, we present refinement of arithmetic-geometric mean type inequality as follows:

Corollary 2. Let the assumptions stated in Theorem 6 be true. Then following inequality

holds:

A= T (Aow)" =
=1

Proof. By applying the convex function ¢ (x) = —In(x),z € (0, %} to Theorem 6 we
obtain required result.

Now, we present refinement of harmonic and geometric means inequality as follows:

Corollary 3. Let the assumptions stated in Theorem 6 be true. Then following inequalities
hold:

() = 2w (@0) = ()



S. Chanan, A. R. Khan / Eur. J. Pure Appl. Math, 13 (4) (2020), 814-829 822

Proof. By applying the convex function ¢ (z) = exp (z),z € (0, 5] to Theorem 6 and

1
11—z

by replacing a; and z;; by In (ﬁ) and In < ij) respectively, we get

7=1 7=1 =1
n m 1 m—11-1 1
<Swew (X ) - X X van ()
i=1 j=1 J =1 k=0 J
m 1 m—1 n 1
SRS S )|
7j=1 j=1 i=0

Consequently,

exp <— In ( H;‘nzl(l — a;) ))
H?:l H;n:_ll (1- wij)wi

n
< Z w; exp | —In
=1

H}nzl(l - aj)

T et 1\

= zf: <(1 —1%‘)) _é_liwi (1 —1%‘) ’

which completes the proof.

We would also establish refinements related to arithmetic-harmonic means inequalities
as follows:
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Corollary 4. Let the assumptions stated in Theorem 6 be true. Then following inequalities

hold:
1 i 1 1
= S sz =~ S N (9)
An i=1 A()‘a X) Hn

n

1 1 1
TS (A@x)> <& (10)

=1

S~

Proof. By applying convex function f(z) = 1 « (O l] to Theorem 6 we get inequality

x?

(9). Similarly, by using convex function f(x) = .,z € (0,3] to Theorem 6 we get
inequality (10).

[\

We establish a refinement of the difference of the arithmetic and harmonic means.

Corollary 5. Let the assumptions stated in Theorem 6 be true. Then following inequalities
hold:

Proof. By applying convex function f(z) = % — L ze(0, %] to Theorem 6 we obtain
required result.

4. Cyclic mixed symmetric means

The Jensen’s inequality and Jensen-Mercer inequality are much fertile to study about
mixed means (see [11] and [21]). Let the assumptions stated in Theorem 6 be true. Then
we define power mean of the order r € R, for positive n-tuple x as follows:

Mr ([I},‘j, ceny xijﬂ,l; Al, ooy )\l)

) 1

m—11-1 v
'
Doy al — E MNe+1Ziieg | o TFO,
7j=1 k=0
m
= [Ta
i=1
m—1 -1 , 7=0,
H Lijn)

j=1 k=0
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and cyclic mixed symmetric means corresponding to (6) is given as:

n s
(Zwquf (l‘z]a )xij-‘rl—l?)‘lv"' a)‘l)> ) S#Ov
~ i=1
M, s(x,\) =

n Wi
(HMr(xija"'axij-i-l—la)\ly"'a/\l)) ,  s=0.

The standard power mean of order r € R for the positive n-tuple x are defined as

follows:
1
m—1 n T
Z?jn:1 aj — Z wﬂgj , r#0,
) =1 i=1
M, (x) = II521 0
, =0.
m—1 n
(23)""
Jj=11i=1

Corollary 6. For r < 1 and by considering the assumptions stated in (C1) for positive
m-tuple a and x, the following inequality hold.

M, (x) < M, (x,\) < A,. (11)
For r > 0, the inequality (11) is reversed.

Proof. For r < 1,7 # 0, by applying the convex function ¢(x) = 2+ to Theorem 6 and
replacing a; and z;; with aj and x7; respectively and for r = 0 applying convex function
¢(z) = exp(x) to the Theorem 6, replacing ajand z;; with Ina; and In zij respectively, we
obtain 11.

If r > 1, then the function ¢(x) = 2+ is concave, so the inequalities in (11) is reversed.

Now, we define the bounds for power mean and cyclic mixed symmetric means as
follows:

Corollary 7. Let r,s € R such that r < s and considering the assumption stated in (C1)
for positive n-tuple x, following inequalities hold.

M, (x) < Mns (x,M) < M, (x).
(12)

Proof. Let r,s # 0. By applying Theorem 6 for convex function ¢ (z) = zr, x>0 and
by replacing a; and positive n-tuple x by aj and (x") respectively, and then raising the
power % we get,

M, (x) < My (x,\) < M, (x).
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For s = 0 or r = 0, we obtain the required result by applying appropriate limits.

Let ¢ : [a,b] — R be a continuous and strictly monotone function then cyclic quasi-
arithmetic means are defined as

m m—1 n
My (x) := ¢! qu(aj) — Z Zwi¢($ij) (13)
j=1 j=1 i=1

Let ¢, : [a,b] — R be strictly monotonic and continuous functions and under the
assumptions stated in (A;) and (Asg), we define generalized means with respect to (6) as
follows:

M¢7w (X, )\)

m m—11—1

= ¢! | poy™! Zaj —Zwi (o) M1 (Tijar) | | - (14)
j 1=1

0

B
Il

J=1

Now, we establish the relation among generalized means and quasi-arithmetic means as
follows:

Corollary 8. Let assumptions (C1) and (Cs) be true. Then
My (%) < My (%, 3) < My (x)

if either ¢po ™" is convex and v is strictly increasing or o' is concave and 1 is strictly
decreasing.

Proof. By applying Theorem 6 to the convex function ¢oy~! and replacing a; by ¢ (a;)
and n-tuples x by ¥ (x), we get

m m—1 n
dop™ Y play) = Y 0D winh(aig)
j=1 j=1 i=1
n m -1 m—1
< Zwiqﬁow_l Zw(aj) — z Z Net19 (T4 k)
i=1 j=1 k=0 j=1
m m—1 n
<Y o (Wlag) = D> wigoy ! ((ay))
j=1 j=1 i=1
consequently,

m—1 n

poyp ! Zi/)(aj) - Z Zwﬂ/’(xij)
=1

j=1 i=1
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n m -1 m—1
<D wigop ™ | Y wbag) = YD Aerat(wijin)
i=1 j=1 k=0 j=1
m m—1 n
<Y dlag) = DD wid(wiy),
j=1 j=1 i=1
by applying ¢!, we get
m—1 n
¢ poy! Zw a;) = > > with(aiy)
- j=1 i=1
n m -1 m—1
Y wigop™ | > w(ag) =YD Akt (i)
i=1 j=1 k=0 j=1
m m—1 n
<o Y 6(ay) > wig(wij) |
7=1 7j=1 i=1

and after some simplification we obtained required result.

5. Further Results and Future Work

Under the assumptions of Theorem 6, we define two positive linear functionals as

m m—1 n
P16 0) = D bla) =YY wid(ay)
j=1 j=1 i=1
n m -1 m—1
= > wid | D a; =YD Meqamijrn
i=1 j=1 k=0 j=1
n m -1 m—1
P26 0) = D wid (D aj = > Aerimijik
i=1 j=1 k=0 j=1
m—1 n
- Z¢ aj) Z sz¢ ng
Jj=1 =1

We can state different results for these two functionals defined above which may be listed
as follows:

(i) We can state Lagrange type and Cauchy type mean value theorems and results
related to n—exponential and logarithmic convexity by using similar techniques as
stated in [3] and [14].
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(ii) We can also state number of applications by using method of article [22].

(iii) We can state further results using technique of index set function with series of refine-

ments and plenty of applications including Rado and Popovicu series of inequality
by using method of [18] and [19].

(iv) We can also prove all inequalities in reverse direction by considering concave function

instead of convex function by using simple relation: f is concave iff and — f is convex.

Here we state some future ideas for interested readers:

(i) One can also work on similar results as stated in this article for generalized convex

functions including functions with nondecreasing increments and functions with non-
decreasing increments of convex type see for example [1], [7] and [20].

(ii) One can also state similar results as stated in this article for arbitrary real numbers

(not only non-negative real numbers) for example by working with assumptions of
Jensen-Steffensen inequality.

(iii) Ome can also try its integral version as well.
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