EUROPEAN JOURNAL OF PURE AND APPLIED MATHEMATICS

Vol. 14, No. 1, 2021, 126-134 ISSN 1307-5543 – ejpam.com Published by New York Business Global

Near ring Multiplications on a Modified Near Module Over a Near ring

A. V. Ramakrishna^{1,*}, T.V.N. Prasanna^{2,}, D.V. Lakshmi³

 ¹ Department of Mathematics, R.V.R and J.C College of Engineering, Chowdavaram, Guntur-522019, Andhra Pradesh, India
 ² Department of BS&H, Vignan's Nirula Institute of Technology& Science for Women, Guntur-522005, Andhra Pradesh, India
 ³ Bapatla Women's Engineering College, Bapatla, Andhra Pradesh, India

Abstract. We introduce the notion of a modified near module M over a near ring N and explain a method of obtaining near ring multiplications via a special type of maps from M into N called semilinear maps.

2020 Mathematics Subject Classifications: 16Y30

Key Words and Phrases: Near ring, near module, semilinear map

1. Introduction

An interesting question that has attracted the attention of a good number of near ring theorists includes J.R.Clay, R.E.Williams, C.J.Maxson, M.Johnson, K.D.Magill Jr.concerns with finding a near ring multiplication on an algebraic structure over an underlying group. In particular J.R. Clay (1992) [6] proved that a function π on a finite cyclic group $(\mathbb{Z}_{\ltimes}, +)$ generates a multiplication '* 'so that $(\mathbb{Z}_{\ltimes}, +, *)$ is a near ring if $\pi(\pi(p)q) = \pi(p)\pi(q)$. K.D. Magill, Jr. (1995) [4] characterized that any near ring multiplication on a real finite dimensional Euclidean space \mathbb{R}^n is associated with a real-valued function f on \mathbb{R}^n that satisfies f(f(x)y) = f(x)f(y). In this paper we present methods [2], [3] [1] of finding near ring multiplications on some algebraic structures which we call modified near modules. A right near ring [5] is a triple (N, +, .), where (N, +) is a (not necessarily abelian) group, (N, .) is a semigroup satisfying the right distributive law: (a + b)c = ac + bc for all $a, b, c \in N$.

By a near ring we mean a right near ring. When there is no scope for confusion, we write N is a near ring instead of $(N, +, \cdot)$ is a near ring. [6]

Email addresses: amathi70gmail.com (A. V. Ramakrishna), tvnp110gmail.com (T.V.N. Prasanna), himaja960gmail.com (D.V. Lakshmi)

http://www.ejpam.com

© 2021 EJPAM All rights reserved.

^{*}Corresponding author.

DOI: https://doi.org/10.29020/nybg.ejpam.v14i1.3781

2. Modified near modules

Let (M, +) be a group and let N be a near ring and suppose '.' is a mapping of $N \times M$ into M.

Definition 1. $(M, +, \cdot)$ is called a near module over N if

- (i) $(n_1 + n_2)m = n_1m + n_2m$ for all $n_1, n_2 \in N$ and $m \in M$;
- (*ii*) $(n_1n_2)m = n_1(n_2m)$ for all $n_1, n_2 \in N$ and $m \in M$.

Remark 1. Clearly our near module is the N-group introduced by Pilz.

Definition 2. $(M, +, \cdot)$ is called a modified near module over N if

- (i) $n(m_1 + m_2) = nm_1 + nm_2$ for all $n \in N$ and $m_1, m_2 \in M$;
- (*ii*) $(n_1n_2)m = n_1(n_2m)$ for all $n_1, n_2 \in N$ and $m \in M$.

Definition 3. $(M, +, \cdot)$ is called a strong near module over N if

- (i) $(n_1 + n_2)m = n_1m + n_2m$ for all $n_1, n_2 \in N$ and $m \in M$;
- (*ii*) $n(m_1 + m_2) = nm_1 + nm_2$, for all $m_1, m_2 \in M$ and $n \in N$;
- (*iii*) $(n_1n_2)m = n_1(n_2m)$ for all $n_1, n_2 \in N$ and $m \in M$.

Remark 2. A strong near module over a field is a vector space if '+' is abelian and 1m = m for every m.

Example 1. Let (G, +) be a group. Define the function \cdot from $M(G) \times G$ into G by $\cdot (f, x) = f \cdot x = f(x)$ for all $f \in M(G)$ and $x \in G$. For any $f, g \in M(G)$ and $x \in G$, $(f \circ g)(x) = f(g(x)) = f(gx)$. Also (f + g)(x) = f(x) + g(x) = fx + gx. and $f(x+y) \neq f(x)+f(y)$. Therefore $(G, +, \cdot)$ is a near module over near ring $(M(G), +, \circ)$, but **not** a modified near module.

Example 2. Let N be a nontrivial near ring with ab = a. Let M = (N, +). Define the function \odot from $N \times M$ into M as $\odot(n, m) = n \odot m = m$ for all $n \in N, m \in M$. For any $n, n_1, n_2 \in N$ and $m, m_1, m_2 \in M$, (1) $(n_1n_2) \odot m = n_1 \odot m = m$ and $n_1 \odot (n_2 \odot m) = n_2 \odot m = m$ (2) $n \odot (m_1 + m_2) = m_1 + m_2$ and $n \odot m_1 + n \odot m_2 = m_1 + m_2$. Therefore $(M, +, \odot)$ is a modified near module over N. However $(M, +, \odot)$ is **not** a near module since $(n_1 + n_2) \odot m = m$ and $n_1 \odot m + n_2 \odot m = m + m$.

Example 3. Let $R = (\mathbb{R}, +, \cdot)$. Define $\phi : \mathbb{R} \to \mathbb{R}$ by $\phi(r) = r^2$. Define ' \odot ': $\mathbb{R} \times \mathbb{R}$ into \mathbb{R} as $\odot(r, m) = r \odot m = r^2 m$ for $r, m \in \mathbb{R}$. Then (R, +) is a modified near module over the near ring $(\mathbb{R}, +, \cdot)$ but not a near module. That (R, +) is a modified near module can be verified easily. However R is not a near module as is evident from the following: Take $r_1 = 1, r_2 = 1, m = 2$. Then $(r_1 + r_2) \odot m = (1 + 1) \odot 2 = 2 \odot 2 = 2^2 2 = 8$ and $r_1 \odot m + r_2 \odot m = 1 \odot 2 + 1 \odot 2 = 1^2 2 + 1^2 2 = 2 + 2 = 4$.

Infact the above example is a special case of the following theorem:

Theorem 1. Let $(R, +, \cdot)$ and $(S, +_1, \cdot_1)$ be near rings and let $\phi : R \to S$ be a mapping such that $\phi(r_1 \cdot r_2) = \phi(r_1) \cdot_1 \phi(r_2)$ for all $r_1, r_2 \in R$. Let (M, \oplus, \odot) be a left S-module. Therefore (M, \oplus, \odot_1) is a modified near module over the near ring $(R, +, \cdot)$ when \odot_1 is defined by $r \odot_1 m = \phi(r) \odot m$ for all $r \in R$ and $m \in M$.

Proof. Since (M, \oplus, \odot) is a left S-module,

- (i) $s \odot (m_1 \oplus m_2) = s \odot m_1 \oplus s \odot m_2;$
- (ii) $(s_1 + s_2) \odot m = s_1 \odot m \oplus s_2 \odot m;$
- (iii) $s_1 \odot (s_2 \odot m) = (s_1 \cdot s_2) \odot m$ for all $s, s_1, s_2 \in S$ and $m, m_1, m_2 \in M$.

For any $r, r_1, r_2 \in R$ and $m, m_1, m_2 \in M$, (1) $r_1 \odot_1 (r_2 \odot_1 m) = \phi(r_1) \odot (r_2 \odot_1 m) = \phi(r_1) \odot [\phi(r_2) \odot m]$ $= [\phi(r_1) \cdot_1 \phi(r_2)] \odot m = \phi(r_1r_2) \odot m = (r_1r_2) \odot_1 m$ and (2) $r \odot_1 (m_1 \oplus m_2) = \phi(r) \odot [m_1 \oplus m_2] = \phi(r) \odot m_1 \oplus \phi(r) \odot m_2$ $= r \odot_1 m_1 \oplus r \odot_1 m_2$. Therefore $(M, +, \cdot)$ is a modified near module over $(R, +, \cdot)$.

Definition 4. Let $(M, +, \cdot)$ be a modified near module over N. A normal subgroup I of M is called an ideal of M if

$$n(m+i) - nm \in I$$
 for all $n \in N, i \in I$ and $m \in M$

Definition 5. Let $(M_1, +_1, \cdot_1)$ and $(M_2, +_2, \cdot_2)$ be modified near modules over N. A mapping $\phi: M_1 \to M_2$ is called a modified near module homomorphism if

- (i) $\phi(m+_1m') = \phi(m) +_2 \phi(m');$
- (ii) $\phi(n \cdot m) = n \cdot \phi(m)$ for all $m, m' \in M_1$ and $n \in N$.

The proofs of the following theorems are similar to those of their counterparts in near ring theory [5], hence omitted.

Theorem 2. Let M_1, M_2 be modified near modules over N and let $\phi : M_1 \to M_2$ be a modified near module homomorphism. Then ker ϕ is an ideal of M_1 and $\frac{M_1}{\ker \phi} \simeq \phi(M_1)$.

Theorem 3. The intersection of any family of ideals of a modified near module M is ideal of M.

Proposition 1. Let M be a modified near module over N and let I be an ideal of M. Let $\frac{M}{I} = \{m + I | m \in M\}$. Then $(\frac{M}{I}, \oplus, \odot)$ is a modified near module when \oplus and \odot are defined as

$$\begin{array}{l} (m+I)\oplus(m'+I)=(m+m')+I \ and \\ n\odot(m+I)=nm+I \ for \ all \ m+I,m'+I\in \frac{M}{I} \ and \ n\in N \end{array}$$

and the natural projection map $\pi: M \to \frac{M}{I}$ defined by $\pi(m) = m + I$ is a modified near module homomorphism with kernel I.

3. Near ring Multiplication On a Modified Near Module

The following theorem explains a method of obtaining a near ring multiplications on a modified near module over N via semilinear map from M into N.

Definition 6. Let $(M, +, \cdot)$ be a modified near module over N. We call a mapping $f : M \to N$ a semilinear if $f(f(m_1)m_2) = f(m_1)f(m_2)$ for all $m_1, m_2 \in M$.

Theorem 4. Let $(M, +, \cdot)$ be a modified near module over a near ring $(N, +, \cdot)$. Let f be a semilinear map from M into N. Define the binary operation * on M as $m_1*m_2 = f(m_2)m_1$ for all $m_1, m_2 \in M$. Then (M, +, *) is a near ring.

Proof. For any $m_1, m_2, m_3 \in M$, $m_1 * (m_2 * m_3) = f(m_2 * m_3)m_1 = f(f(m_3)m_2)m_1 = [f(m_3)f(m_2)]m_1$ and $(m_1 * m_2) * m_3 = f(m_3)(m_1 * m_2) = f(m_3)[f(m_2)m_1] = [f(m_3)f(m_2)]m_1$. So the binary operation * is associative. Now $(m_1 + m_2) * m_3 = f(m_3)(m_1 + m_2) = f(m_3)m_1 + f(m_3)m_2 = m_1 * m_3 + m_2 * m_3$.

So the binary operation * is right distributive and hence (M, +, *) is a near ring.

Examples 3.3 through 3.7 illustrate the technique of defining a near ring multiplication on (M, +)

Example 4. Let $M = \{f | f : \mathbb{R} \to \mathbb{R}\}$ and $N = (End(\mathbb{R}, +), +, \circ)$. Then $(M, +, \circ)$ is a modified near module over $(N, +, \circ)$. Define $\alpha : M \to N$ by $\alpha(f) = f'$ where $\begin{cases} 0 & \text{if } r = 0 \end{cases}$

$$f'(x) = \begin{cases} 0 \ if \ x = 0 \\ f(x) \ if \ x \neq 0. \end{cases}$$

Note that f(x) = 0 implies f'(x) = 0 for $x \in \mathbb{R}$. We claim that α is semilinear.

Let $f, g \in M$ and $x \in \mathbb{R}$. $\underbrace{Case(i): x \neq 0. \text{ Now } \alpha(\alpha(f)og)(x) = \alpha(f'og)(x)}_{= (f' \circ g)'(x) = (f' \circ g)(x) = f'(g(x))}_{= f'(g'(x)) = (f' \circ g')(x) = (\alpha(f) \circ \alpha(g))(x) \text{ implies } \alpha(\alpha(f) \circ g) = \alpha(f) \circ \alpha(g).}$ $\underbrace{Case(ii): x = 0.}$

Now
$$\alpha(\alpha(f) \circ g)(0) = \alpha(f' \circ g)(0)$$

= $(f' \circ g)'(0) = 0$

Also $[\alpha(f) \circ \alpha(g)](0) = (f' \circ g')(0) = f'(g'(0)) = f'(0) = 0.$ So $\alpha(\alpha(f) \circ g) = \alpha(f) \circ \alpha(g)$ when x = 0. Hence α is semilinear; therefore (M, +, *) is a near ring with * defined by $f * g = \alpha(g) \circ f = g' \circ f$.

Example 5. Let M be the abelian group of all $n \times n$ circulant matrices with real entries. Then (M, +) is a modified near module over $N = (\mathbb{R}, +, \cdot)$, if we define kA as the matrix obtained by multiplying each entry of A by k. Define $\alpha : M \to N$ by $\alpha(A) = specA$ for all $A \in M$

where $specA = max\{|\lambda_i||\lambda_i \text{ is an eigen value of } A\}$.

Now
$$\alpha(\alpha(A)B) = spec(\alpha(A)B)$$

= $\alpha(A)specB$
= $\alpha(A)\alpha(B)$ for all $A, B \in M$.

Hence α is semilinear; therefore (M, +, *) is a near ring with * defined by $A * B = \alpha(B)A =$ spec BA.

Example 6. Let (G, +) be a (not necessarily abelian) group. Let $N = (End(G), +, \circ)$. For f in N and a in G, define fa = f(a). Then G is a modified near module over N. Define $\alpha : G \to N$ by $\alpha(a) = L_a$ where L_a is the left addition by $a: L_a(x) = a + x$ for all $x \in G$.

Then $\alpha: M \to N$ is semilinear.

Example 7. Let $(\mathbb{C}, +)$ be the module of complex numbers over the real field $(\mathbb{R}, +, \cdot)$ with usual product. (i) Define $f : \mathbb{C} \to \mathbb{R}$ by $f(x + iy) = (x^2 + y^2)^{\frac{1}{2}}$ for all $x + iy \in \mathbb{C}$. For any $x_1 + iy_1, x_2 + iy_2 \in \mathbb{C}$, $f(f(x_1 + iy_1)(x_2 + iy_2)) = f((x_1^2 + y_1^2)^{\frac{1}{2}}(x_2 + iy_2))$ $= f((x_1^2 + y_1^2)^{\frac{1}{2}}x_2 + i(x_1^2 + y_1^2)^{\frac{1}{2}}y_2)^2$ $= [((x_1^2 + y_1^2)^{\frac{1}{2}}x_2)^2 + ((x_1^2 + y_1^2)^{\frac{1}{2}}y_2)^2]^{\frac{1}{2}}$ $= (x_1^2 + y_1^2)^{\frac{1}{2}}(x_2^2 + y_2^2)^{\frac{1}{2}}$ $= f(x_1 + iy_1)f(x_2 + iy_2)$. Hence f is semilinear; therefore $(\mathbb{C}, +, *)$ is a near ring with * defined by

$$(x_1 + iy_1) * (x_2 + iy_2) = f(x_2 + iy_2)(x_1 + iy_1)$$
$$= (x_2^2 + y_2^2)^{\frac{1}{2}}(x_1 + iy_1).$$

(ii) Define $f : \mathbb{C} \to \mathbb{R}$ by f(x + iy) = |x| for all $x + iy \in \mathbb{C}$. For any $x_1 + iy_1, x_2 + iy_2 \in \mathbb{C}$,

$$f(f(x_1 + iy_1)(x_2 + iy_2)) = f(|x_1|(x_2 + iy_2))$$

= $f(|x_1|x_2 + i|x_1|y_2)$
= $||x_1|x_2| = |x_1||x_2|$
= $f(x_1 + iy_1)f(x_2 + iy_2)$

Hence f is semilinear; therefore $(\mathbb{C}, +, *)$ is a near ring with * defined by

$$(x_1 + iy_1) * (x_2 + iy_2) = f(x_2 + iy_2)(x_1 + iy_1)$$

= $|x_2|(x_1 + iy_1).$

Example 8. Let $M = \{a + bi + cj + dk | a, b, c, d \in \mathbb{R}\}$ be the ring of real quaternions. Then M is a modified near module over the real number field $(\mathbb{R}, +, \cdot)$. Define $f: M \to \mathbb{R}$ by $f(a+bi+cj+dk) = a^2 + b^2 + c^2 + d^2$ for all $a+bi+cj+dk \in M$. For any $a_1 + b_1i + c_1j + d_1k$, $a_2 + b_2i + c_2j + d_2k \in M$, $f(f(a_1 + b_1i + c_1j + d_1k)(a_2 + b_2i + c_2j + d_2k))$ $= f((a_1^2 + b_1^2 + c_1^2 + d_1^2)(a_2 + b_2i + c_2j + d_2k))$ $= f(a_1 + b_1i + c_1j + d_1k)f(a_2 + b_2i + c_2j + d_2k).$ Hence f is semilinear and therefore (M, +, *) is a near ring with $(a_1 + b_1i + c_1j + d_1k) * (a_2 + b_2i + c_2j + d_2k)$

 $= f(a_2 + b_2i + c_2j + d_2k)(a_1 + b_1i + c_1j + d_1k)$ = $(a_2^2 + b_2^2 + c_2^2 + d_2^2)(a_1 + b_1i + c_1j + d_1k).$

Example 9. Let M be the set of all $n \times n$ real matrices. Then $(M, +, \cdot)$ is a strong near

module over the real number field $(\mathbb{R}, +, \cdot)$. Define $f : M \to \mathbb{R}$ by $f(A) = \sum_{1 \le i,j \le n} (a_{ij})^2$. Then f is a semilinear map and hence (M, +, *) is a near ring with A * B = f(B)A.

Theorem 5. Let $(M, +, \cdot)$ be a modified near module over N. Define the function \odot from $N \times M$ into M as $\odot(n,m) = n \odot m = f(n)m$ for all $m \in M$ and $n \in N$. Then $(M, +, \odot)$ is a modified near module over N_f , where N_f is a near ring induced by the semilinear map f.

Proof. For any $n \in N$ and $m_1, m_2 \in M$, $n \odot (m_1 + m_2) = f(n)(m_1 + m_2) = f(n)m_1 + f(n)m_2 = n \odot m_1 + n \odot m_2.$ For any $n_1, n_2 \in N$ and $m \in M$, $(n_1 * n_2) \odot m = f(n_1 * n_2)m = f(n_1 f(n_2))m = [f(n_1)f(n_2)]m$ and $n_1 \odot (n_2 \odot m) = f(n_1)(n_2 \odot m) = f(n_1)[f(n_2)m] = [f(n_1)f(n_2)]m$. Therefore $(M, +, \odot)$ is a modified near module over N_f .

Theorem 6. Let M_1, M_2 be modified near modules over N and $f: M_1 \to N$ be a semilinear map and $\phi: M_2 \to M_1$ be a near module homomorphism. Then for is a semilinear map.

Proof. Let $g = f \circ \phi$. For any $m_2, m_2' \in M_2$, $g(g(m_2)m_2') = g([(f \circ \phi)(m_2)]m_2') = g((f(\phi(m_2))(m_2')))$ $= (f \circ \phi)[f(\phi(m_2))m_2'] = f[\phi[f(\phi(m_2))m_2']]$ $= f[f(\phi(m_2))\phi(m_2')] = f(\phi(m_2))f(\phi(m_2'))$ $= g(m_2)g(m_2')$. Therefore g is a semilinear map.

Remark 3. Suppose a modified near module $(M, +, \cdot)$ over a near ring $(N, +, \cdot)$ is made into a near ring (M, +, *) with the help of a semilinear map f. Then we know that M^k , the k-fold product of (M, +, *) is also a near ring. It may be hoped that the near ring module (M^k, \oplus, \cdot) can be made into the near ring (M^k, \oplus, \otimes) directly by employing a suitable semilinear map from M^k into N. The following example warns that not every modified near module comes through a semilinear map.

As an illustration we present the following:

Example 10. Define $x \cdot y = 2xy$ for all $x, y \in \mathbb{R}$. Then $(\mathbb{R}, +, \cdot)$ is a modified near module over \mathbb{R} .

Define $f : \mathbb{R} \to \mathbb{R}$ by f(m) = 2m for all $m \in \mathbb{R}$. Then $f(f(a) \cdot b) = f(a) \cdot f(b) = 8ab$. So that f is semilinear.

Now
$$m_1 * m_2 = f(m_2) \cdot m_1 = 2f(m_2)m_1 = 2(2m_2)m_1 = 4m_2m_1$$
.

Consider $(\mathbb{R}^2, \oplus, \otimes)$, the product of the near ring $(\mathbb{R}, +, *)$ with itself. Suppose if possible there is a semilinear map $g: \mathbb{R}^2 \to \mathbb{R}$ such that ' \otimes ' is induced by g.

Now
$$(m_1 \cdot m_3, m_2 \cdot m_4) = (m_1, m_2) \otimes (m_3, m_4)$$

= $g(m_3, m_4) \cdot (m_1, m_2)$
= $(\alpha \cdot m_1, \alpha \cdot m_2)$ where $\alpha = g(m_3, m_4)$
 $\Rightarrow m_1 \cdot m_3 = \alpha \cdot m_1$ and
 $m_2 \cdot m_4 = \alpha \cdot m_2$
 $\Rightarrow 2m_1m_3 = 2\alpha m_1$ and
 $2m_2m_4 = 2\alpha m_2$ for all $m_1, m_2, m_3, m_4 \in M$.

Taking $m_1 = m_3 = 1, m_2 = m_4 = 2$, we get $2 = 2\alpha$ and $8 = 4\alpha$ $\Rightarrow \alpha = 1$ and $\alpha = 2$, which is a contradiction.

Theorem 7. Let M be a modified near module over $(\mathbb{R}, +)$ and $f : M \to \mathbb{R}$ be a semilinear map.

- (i) If f is one-one, then $(M_f, +, *)$ is commutative.
- (ii) Suppose $M = (\mathbb{R}^k, +)$. Then $(M_f, +, *)$ is commutative if and only if either $M = \{0\}$ or $(M_f, +, *) \simeq (\mathbb{R}, +, \cdot)$, where M_f is a near ring induced by the semilinear map f.

Proof. (1) For any $m_1, m_2 \in M$, $m_1 * m_2 = f(m_2)m_1$ and $m_2 * m_1 = f(m_1)m_2$.

Now
$$f(m_1 * m_2) = f(f(m_2)m_1)$$

= $f(m_2)f(m_1)$.
Also $f(m_2 * m_1) = f(f(m_1)m_2)$
= $f(m_1)f(m_2)$.

Since (\mathbb{R}, \cdot) is commutative, we have $f(m_1 * m_2) = f(m_2 * m_1)$. Since f is one-one, we have $m_1 * m_2 = m_2 * m_1$. So '*' is commutative on M and hence $(M_f, +, *)$ is commutative. (2) Suppose $(M_f, +, *)$ is commutative. Then

$$m_1 * m_2 = m_2 * m_1$$

$$\Rightarrow f(m_2)m_1 = f(m_1)m_2$$

$$\Rightarrow \text{ The vectors } m_1 \text{ and } m_2 \text{ are parallel}$$

$$\Rightarrow k = 0 \text{ or } k = 1.$$

When k=1:

Now $m_1 * m_2 = f(m_2)m_1$ and $m_2 * m_1 = f(m_1)m_2 \Rightarrow f(m_2)m_1 = f(m_1)m_2$ for all $m_1, m_2 \in M$. This equality is true for $m_1 = 1$, we get $f(m_2) = f(1)m_2$. Put $f(1) = \lambda \Rightarrow f(m_2) = \lambda m_2$ for some constant. Therefore f is linear.

Now
$$m_1 * (m_2 + m_3) = f(m_2 + m_3)m_1$$

= $[f(m_2) + f(m_3)]m_1$
= $f(m_2)m_1 + f(m_3)m_1$
= $m_1 * m_2 + m_1 * m_3$.

Therefore $(M_f, +, *)$ is a commutative ring. Let $0 \neq m \in \mathbb{R}$, then $m * m_1 = f(m_1)m = \lambda m_1 m = \lambda m m_1$. Put $m_1 = \frac{1}{\lambda m}$. Then $m * m_1 = 1$. Define $\psi : (M, +, *) \to (\mathbb{R}, +, \cdot)$ by $\psi(m) = \lambda m$ for all $m \in M$. Then $(M, +, *) \simeq (\mathbb{R}, +, \cdot)$. Conversely suppose that $M = \{0\}$ or $(M_f, +, *) \simeq (\mathbb{R}, +, \cdot)$. Since the ring $\{0\}$ is commutative and since any ring isomorphic to $(\mathbb{R}, +, \cdot)$ is commutative, the converse is clear.

Acknowledgements

The authors are thankful to Prof.I.Ramabhadra Sarma for his valuable comments and suggestions.

References

- O. Attagun and H.Altindis F.Tasdemir, A. Equiprime n-ideals of monogenic n-groups. Hacettepe Journal of Mathematics and Statistics, 40:375–382, 2011.
- [2] N. Groenwald. On the Prime radicals of Nea-rings and Near modules. Nearrings, Near-fields and Related and related toppics, 119:42–57, 2017.
- [3] T.V.N. Prasanna and A.V. Ramakrishna I.R.B. Sarma, J.Madhu Sudan Rao. Near relatives of homoneous maps. Southeast Asian Bulletin of Mathematics, 38:543–554, 2014.
- [4] K.D. Magill, Jr. Topological Nearrings Whose Additive Groups are Euclidean. Mathematik, 119:281–301, 1995.
- [5] G. Pilz. Near-Rings. North-Holland Mathematical Studies, Amsterdam, 1983.
- [6] J. R.Clay. Nearrings: Genesis and Applications. Oxford Science Publications, New York, 1992.