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Abstract. A BCH-algebra (H, ∗, 0) furnished with a topology τ on H (also called a BCH-topology
on H) is called a topological BCH-algebra (or TBCH-algebra) if the function ∗ : H × H → H,
defined by ∗((x, y)) = x ∗ y for any x, y ∈ H, is continuous, where the Cartesian product topology
on H × H is furnished by τ . In this paper, we give other structural properties of topological
BCH-algebras.
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1. Introduction

In 1983, Hu and Li [5, 6] introduced the notion of a BCH-algebra which is a
generalization of BCK and BCI-algebras. In the same paper, the concept of associative
BCH-algebra was also introduced. Dar, K. H., and Akram, M. [2] defined the concepts of
BCH-ideal, BCH-subalgebra, ∗-commutative, left and right mappings on a BCH-algebra
and some properties structures were investigated.

In [8] and [4], the concepts of topological BCK-algebra and topological BCI-algebra
were defined and some properties of each newly defined concepts were investigated. In
2017, M. Jansi and V. Thiruveni [7] introduced the concept of topological BCH-algebra
(or TBCH-algebra) and investigated some of its algebraic and topological properties. The
aim of this paper is to give other structural properties of topological BCH-algebras.
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2. Preliminaries and Known Results

Definition 1. [3] Let (X, τ) be a topological space and let x ∈ X. Any set U ∈ τ
containing x is called a neighborhood (sometimes written as nbhd or τ -nbhd) of x.

Definition 2. [3] Let (X, τ) be a topological space. Then

(i) (X, τ) is a T0-space if for any x, y ∈ X with x 6= y, there exists an open set U
containing one but not the other;

(ii) (X, τ) is a T1-space if for any x, y ∈ X with x 6= y, there exist nbhds U and V of x
and y, respectively, such that x /∈ V and y /∈ U ;

(iii) (X, τ) is a T2-space (or Hausdorff space) if for any x, y ∈ X with x 6= y, there exist
disjoint nbhds U and V of x and y, respectively.

Remark 1. [3] T2 ⇒ T1 ⇒ T0 but not conversely.

Theorem 1. [3] Let (X, τ) be a topological space. X is a T1-space if and only if for each
x ∈ X, {x} is a closed set in X.

Definition 3. [5] A BCH-algebra is a nonempty set H endowed with a operation “ ∗ ”
and constant 0 satisfying the following axioms: for all x, y, z ∈ H,

(B1) x ∗ x = 0,

(B2) x ∗ y = 0 and y ∗ x = 0 implies x = y.

(B3) (x ∗ y) ∗ z = (x ∗ z) ∗ y,

Remark 2. [5, 6] In any BCH-algebra (X, ∗, 0), the following hold:

(i) x ∗ 0 = x;

(ii) x ∗ 0 = 0 implies x = 0;

(iii) 0 ∗ (x ∗ y) = (0 ∗ x) ∗ (0 ∗ y);

(iv) (x ∗ (x ∗ y)) ∗ y = 0.

Definition 4. [7] Let (X, ∗, 0) be a BCH-algebra and U, V be any nonempty subsets of
X. We define a subset U ∗ V of X by U ∗ V = {x ∗ y : x ∈ U, y ∈ V }.

Remark 3. Let (X, ∗, 0) be a BCH-algebra. Then ∗(A × B) = A ∗ B for any nonempty
subsets A and B of X.

Remark 4. Let (X, ∗, 0) be a BCH-algebra and A,B ⊆ X. If A∩B 6= ∅, then 0 ∈ A ∗B.

Definition 5. [2] Let (X, ∗, 0) be a BCH-algebra. A nonempty subset S of X is a BCH-
subalgebra if for each x, y ∈ S, x ∗ y ∈ S.
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Definition 6. [7] Let (H, ∗, 0) be a BCH-algebra. A topology τ furnished on H is called
a BCH-topology on H. In addition, (H, τ) is called a topological BCH-algebra (or TBCH-
algebra) if τ is a BCH-topology on H and the function ∗ : H × H → H defined as
∗((x, y)) = x∗y is continuous, where the Cartesian product topology on H×H is furnished
by τ .

Example 1. Let X = {0, 1, 2, 3, 4} and define ∗ as follows:

∗ 0 1 2 3 4

0 0 0 0 0 4
1 1 0 0 1 4
2 2 2 0 0 4
3 3 3 3 0 4
4 4 4 4 4 0

Then, (X, ∗, 0) is a BCH-algebra [1]. Let τ = {X,∅, {4} , {0, 1, 2, 3}}. Then τ is a
BCH-topology on X. Moreover,

∗−1(X) = X ×X
∗−1(∅) = ∅
∗−1({4}) = ({0, 1, 2, 3} × {4}) ∪ ({4} × {0, 1, 2, 3})

∗−1({0, 1, 2, 3}) = ({0, 1, 2, 3} × {0, 1, 2, 3}) ∪ ({4} × {4}).

This implies that ∗ is continuous. Thus, (X, τ) is a TBCH-algebra.

3. Results

Throughout this study, we denote a BCH-algebra (X, ∗, 0) by X, unless otherwise
specified.

Theorem 2. Let τ be a BCH-topology on X. Then, (X, τ) is a TBCH-algebra if and only
if for each x, y ∈ X and each nbhd W of x ∗ y, there exist nbhds U and V of x and y,
respectively, such that U ∗ V ⊆W .

Proof. Let X be a TBCH-algebra. Let x, y ∈ X and a nbhd W of x ∗ y. Since ∗
is continuous, ∗−1(W ) is a nbhd of (x, y) in X × X. By definition of Cartesian product
topology, there exist nbhds U and V of x and y, respectively, such that U × V ⊆ ∗−1(W ).
By Remark 3, U ∗ V = ∗(U × V ). It follows that U ∗ V ⊆ ∗(∗−1(W )) ⊆W .

Conversely, suppose that for each x, y ∈ X and each nbhd W of x ∗ y, there are nbhds
U and V of x and y, respectively, such that U ∗V ⊆W . By definition of Cartesian product
topology, U × V is a nbhd of (x, y) in X × X. By Remark 3, ∗(U × V ) = U ∗ V ⊆ W .
Therefore, ∗ is continuous.

Corollary 1. Let X be a TBCH-algebra and A ⊆ X. If z is an interior point of A, then
there exist elements x, y ∈ X and nbhds Nx, Ny and Nz of x, y and z, respectively, such
that z = x ∗ y and Nx ∗Ny ⊆ Nz = Nx∗y.
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Proof. Suppose z is an interior point of A. Then there exists a nbhd Nz of z such that
Nz ⊆ A. Since z ∈ X, z = x ∗ y for some x, y ∈ X (say, x = z and y = 0). By Theorem 2,
there exist nbhds Nx and Ny of x and y, respectively, such that Nx ∗Ny ⊆ Nz = Nx∗y.

The next theorem asserts that the topology associated in a TBCH-algebra having {0}
as an open set is the discrete topology.

Theorem 3. Let X be a TBCH-algebra. Then {0} is an open set in X if and only if X is
a discrete space.

Proof. Suppose that {0} is an open set in X and let x ∈ X. Then, x ∗ x = 0 ∈ {0} by
(B1). Since {0} is an open set in X, there exist nbhds U and V of x such that U ∗V = {0}
by Theorem 2. Let W = U ∩ V . Then, W is a nbhd of x and W ∗W ⊆ U ∗ V . Hence,
W ∗W = {0}. Let y ∈ W . Then x ∗ y = 0 = y ∗ x. By (B2), y = x. Thus, W = {x},
showing that X is a discrete space.
Conversely, suppose X is the discrete space. Then, {0} is an open set in
X.

Corollary 2. If {0} is an open set in a TBCH-algebra X, then every subset of X is both
open and closed set in X. In particular, if |X| ≥ 2, then X is a disconnected space.

Remark 5. If a BCH-topological space X is a discrete space, then X is a TBCH-algebra.

We now show that a BCH-subalgebra of a TBCH-algebra is also a TBCH-algebra.

Theorem 4. Let X be a TBCH-algebra and H a BCH-subalgebra of X. Then (H, τH) is
a TBCH-algebra, where τH is the relative topology on H.

Proof. Let x, y ∈ H and a nbhd WH of x∗y in the subspace H. Note that WH may be
written as the intersection with H of some nbhd W of x ∗ y in X, that is, WH = H ∩W .
Since X is a TBCH-algebra, there exist nbhds U and V of x and y, respectively, such that
U ∗ V ⊆ W by Theorem 2. Observe that UH = H ∩ U and VH = H ∩ V are nbhds of x
and y, respectively, in the subspace H. Furthermore.

UH ∗ VH = (H ∩ U) ∗ (H ∩ V )

⊆ U ∗ V
⊆W.

Since H is a BCH -subalgebra, UH ∗ VH ⊆ H ∗H ⊆ H so that UH ∗ VH ⊆ H ∩W = WH .
By Theorem 2, (H, τH) is a TBCH-algebra.
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Theorem 5. Let (H1, ∗1, 0) and (H2, ∗2, 0) be BCH-algebras such that H1∩H2 = {0} and
H = H1 ∪H2. Then (H, ∗, 0) is a BCH-algebra, denoted by H1 ⊕H2, where the operation
“ ∗ ” on H is defined for all x, y ∈ H, by

x ∗ y =


x ∗1 y if x, y ∈ H1

x ∗2 y if x, y ∈ H2

x otherwise.

Proof. Let x ∈ H. Then

x ∗ x =

{
x ∗1 x if x ∈ H1

x ∗2 x if x ∈ H2.

Since (H1, ∗1, 0) and (H2, ∗2, 0) are BCH-algebras, x ∗ x = 0 by property (B1).
Next, let x, y ∈ H and suppose that x ∗ y = 0 and y ∗ x = 0. Consider the following

cases:
Case 1: x, y ∈ H1 (or x, y ∈ H2).

Then x ∗ y = x ∗1 y = 0 and y ∗ x = y ∗1 x = 0. Since (H1, ∗1, 0) is a BCH-algebra,
property (B2) yields x = y. Similarly, x = y if x, y ∈ H2.
Case 2: x ∈ H1 and y ∈ H2 (or y ∈ H1 and x ∈ H2).

Then 0 = x ∗ y = x and 0 = y ∗ x = y. Hence, x = 0 = y.
Finally, let x, y, z ∈ H. Consider the following cases:

Case 1: x, y ∈ H1 (or x, y ∈ H2)
Then, by the definition of ∗,

(x ∗ y) ∗ z =

{
(x ∗1 y) ∗1 z if z ∈ H1

x ∗1 y if z ∈ H2.

and

(x ∗ z) ∗ y =

{
(x ∗1 z) ∗1 y if z ∈ H1

x ∗1 y if z ∈ H2.

Since (H1, ∗1, 0) is a BCH-algebra, (x∗1 y)∗1 z = (x∗1 z)∗1 y if z ∈ H1. Hence, (x∗y)∗z =
(x ∗ z) ∗ y. Similarly, (x ∗ y) ∗ z = (x ∗ z) ∗ y whenever x, y ∈ H2.
Case 2: x ∈ H1 and y ∈ H2 (or y ∈ H1 and x ∈ H2)

Then, by the definition of ∗,

(x ∗ y) ∗ z =

{
x ∗1 z if z ∈ H1

x if z ∈ H2.

and

(x ∗ z) ∗ y =

{
x ∗1 z if z ∈ H1

x if z ∈ H2.
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Therefore, (x ∗ y) ∗ z = (x ∗ z) ∗ y. Equality is also obtained if y ∈ H1 and x ∈ H2.
Accordingly, (H, ∗, 0) is a BCH-algebra.

Lemma 1. Let (H, ∗1) and (H2, ∗2) be BCH-algebras such that H1 ∩ H2 = {0} and let
(H, ∗) be the sum of H1 and H2 defined in Theorem 5. Then each of the following holds:

(i) If U and V are subsets of H1 (U and V are subsets of H2), then U ∗1 V = U ∗ V
(resp. U ∗2 V = U ∗ V ).

(ii) If A,B ⊆ H1, C ⊆ H2, and 0 ∈ B, then A ⊆ A∗B and A∗(B∪C) = A∗1B = A∗B.

Proof. (i) Suppose U and V are subsets ofH1. Let x ∈ U and y ∈ V . Since x∗y = x∗1y,
x∗y ∈ U ∗V if and only if x∗1y ∈ U ∗1V . Hence, U ∗1V = U ∗V . Similarly, U ∗2V = U ∗V
if U and V are subsets of H2.

(ii) Let x ∈ A. Then x = x ∗ 0 ∈ A ∗B since 0 ∈ B. Hence, A ⊆ A ∗B = A ∗1 B.
To establish the equality, first note that A ∗1B = A ∗B ⊆ A ∗ (B ∪C). Let a ∈ A and

x ∈ (B∪C). If x ∈ B, then a∗x = a∗1 x ∈ A∗1B. If x ∈ C, then a∗x = a ∈ A ⊆ A∗1B.
Thus, A ∗ (B ∪ C) = A ∗1 B = A ∗B.

Theorem 6. Let (H1, ∗1, 0) and (H2, ∗2, 0) be BCH-algebras such that H1∩H2 = {0} and
let (H, ∗, 0) be the sum of H1 and H2 (defined in Theorem 5). Then each of the following
holds:

(i) (H1, ∗1, 0) and (H2, ∗2, 0) are BCH-subalgebras of H.

(ii) (H, τH1) and (H, τH2) are TBCH-algebras, where τH1 = {∅, H1∪H2, H1} and τH2 =
{∅, H1 ∪H2, H2}.

(iii) If (H, τ) is a TBCH-algebra and A,B ∈ τ for some set A ⊆ H1 and B ⊆ H2 with
0 ∈ A ∩ B, then τ is the discrete topology on H. In particular, if H1, H2 ∈ τ , then
τ is the discrete topology on H.

(iv) If (H, τ) is a TBCH-algebra and τ ⊆ P (H1)∪{H1∪H2} (or τ ⊆ P (H2)∪{H1∪H2}),
where P (H1) and P (H2) are the power sets of H1 and H2, respectively, then 0 ∈W
for every W ∈ τ \ {∅}.

Proof. (i) Let x, y ∈ H1. Then x ∗ y = x ∗1 y ∈ H1 by Theorem 5 and the fact that
(H1, ∗1, 0) is a BCH-algebra. Therefore, (H1, ∗1, 0) = (H1, ∗, 0) is a BCH-subalgebra of H.
Similarly, (H2, ∗2, 0) is a BCH-subalgebra of H.

(ii) Clearly, τH1 are τH2 are topologies on H. First, consider the space (X, τH1). Let
x, y ∈ H and let W be a τH1-nbhd of x ∗ y. Consider the following cases:

Case 1: x, y ∈ H1

Then x ∗ y = x ∗1 y ∈ H1. Hence, W = H1 or W = H1 ∪H2. Then H1 is a τH1-nbhd
of both x and y, and by Lemma 1(i), H1 ∗H1 = H1 ∗1 H1 = H1 ⊂ H1 ∪H2.

Case 2: x, y ∈ H2 or [x ∈ H2 and y ∈ H1]
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If x, y ∈ H2, then x ∗ y = x ∗2 y ∈ H2. Hence, W = H1 ∪H2. The set V = H1 ∪H2

is a τH1-nbhd of both x and y, and V ∗ V = H1 ∪ H2. If x ∈ H2 and y ∈ H1, then
x ∗ y = x ∈ H2. Again, W = H1 ∪H2, V = H1 ∪H1 is a τH1-nbhd of both x and y, and
V ∗ V = H1 ∪H2.

Case 3: x ∈ H1 and y ∈ H2

Then x ∗ y = x ∈ H1. Hence, W = H1 or W = H1 ∪ H2. Let Vx = H1 and
Vy = H1 ∪ H2. Then Vx and Vy are τH1-nbhds of x and y, respectively, and by Lemma
1(ii), Vx ∗ Vy = H1 ∗ (H1 ∪H2) = H1 ∗1 H1 = H1 ⊂ H1 ∪H2.

Therefore, (H, τH1) is a TBCH algebra. Similarly, (H, τH2) is a TBCH algebra.
(iii) Suppose A ⊆ H1, B ⊆ H2, 0 ∈ A ∩ B, and A,B ∈ τ . Since H1 ∩ H2 = {0}, it

follows that A∩B = {0}. Since A,B ∈ τ , {0} ∈ τ . Thus, by Theorem 3, τ is the discrete
topology on H.

(iv) Suppose that (H, τ) is a TBCH-algebra and that τ ⊆ P (H1) ∪ {H1 ∪ H2}. Let
W ∈ τ \ {∅}. Pick any x ∈ W and y ∈ H2. Since x ∗ y = x, W is a nbhd of x ∗ y. By
continuity of ∗, there exist nbhds Vx and Vy of x and y, respectively, such that Vx∗Vy ⊆W .
Now, since τ ⊆ P (H1) ∪ {H1 ∪H2}, the only nbhd of y is H1 ∪H2. Hence, Vy = H1 ∪H2

and by Lemma 1(ii), Vx ∗ Vy = Vx ∗ (H1 ∪H2) = Vx ∗1H1. Since x ∈ H1, x ∗1 x = x ∗ x =
0 ∈ Vx ∗1 H1. Therefore, 0 ∈W .

Theorem 7. Let X be a TBCH-algebra. Then {0} is a closed set in X if and only if X
is a T2-space.

Proof. Suppose {0} is a closed set in X. Let x, y ∈ X with x 6= y. Then, x ∗ y 6= 0 or
y ∗x 6= 0. Without loss of generality, assume that x ∗ y 6= 0. Note that x ∗ y ∈ X \ {0}. By
Theorem 2, there exist nbhds U and V of x and y, respectively, such that U ∗V ⊆ X \{0}.
Suppose U ∩ V 6= ∅. Let z ∈ U ∩ V . Then, z ∈ U and z ∈ V . Hence, by (B1)

0 = z ∗ z ∈ U ∗ V ⊆ X \ {0}

a contradiction. Thus, U ∩ V = ∅ and so X is a T2-space.
Conversely, assume that X is a T2-space. Let x ∈ X \ {0}. Then, there exist nbhds U and
V of x and 0, respectively, such that U ∩ V = ∅. Since 0 /∈ U , x ∈ U ⊆ X \ {0}. This
shows that X \ {0} is open in X. Therefore, {0} is a closed set in X.

The next theorem asserts that T0, T1 and T2 topological spaces are equivalent in a
TBCH-algebra.

Theorem 8. Let X be a TBCH-algebra. Then the following statements are equivalent:

(i) X is a T0-space

(ii) X is a T1-space

(iii) X is a T2-space.
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Proof. (i)⇒(ii): Suppose X is a T0-space. Let x, y ∈ X with x 6= y. Then x ∗ y 6= 0
or y ∗ x 6= 0 by (B2). Without loss of generality, assume that x ∗ y 6= 0. Since X is a
T0-space, there exists an open set U such that x∗y ∈ U but 0 /∈ U or 0 ∈ U but x∗y /∈ U .
Consider the following cases:
Case 1. x ∗ y ∈ U (but 0 /∈ U)
By Theorem 2, there exist nbhdsGx andHy of x and y, respectively, such thatGx∗Hy ⊆ U .
Since 0 /∈ U , 0 /∈ Gx ∗Hy. By Remark 4, Gx ∩Hy = ∅. Thus, y /∈ Gx and x /∈ Hy.
Case 2. 0 ∈ U (but x ∗ y /∈ U).
By (B1), x ∗ x = 0 ∈ U . By Theorem 2, there exist nbhds Nx and Mx of x such that
Nx ∗Mx ⊆ U . Since x ∗ y /∈ U , x ∗ y /∈ Nx ∗Mx. It follows that y /∈ Mx. Similarly, since
y ∗ y = 0 ∈ U , there exist nbhds Ny and My of y such that Ny ∗My ⊆ U . Since x ∗ y /∈ U ,
x ∗ y /∈ Ny ∗My. It follows that x /∈ Ny. Hence, there exist nbhds Mx and Ny of x and y,
respectively, such that y /∈Mx and x /∈ Ny.

Therefore, X is a T1-space.
(ii)⇒(iii): Suppose X is a T1-space. By Theorem 1, {0} is a closed set in X. By Theorem
7, X is a T2-space.
By Remark 1, T2 ⇒ T1 ⇒ T0. Therefore, (i), (ii), and (iii) are equivalent.

The following corollary follows from Theorems 7 and 8.

Corollary 3. Let X be a TBCH-algebra. Then the following statements are equivalent:

(i) X is a T0-space

(ii) X is a T1-space

(iii) X is a T2-space

(iv) {0} is a closed set in X.

Theorem 9. Let X be a TBCH-algebra. Then X is a T2-space if and only if for any x ∈ X
with x 6= 0, there exists a nbhd U of x such that 0 /∈ U .

Proof. Clearly, if X is a T2-space, then for any x ∈ X with x 6= 0, there exists a nbhd
U of x such that 0 /∈ U .

For the converse, suppose that for any x ∈ X with x 6= 0, there exists a nbhd U of x
such that 0 /∈ U . Let a, b ∈ X with a 6= b. Then a∗b 6= 0 or b∗a 6= 0 by (B2). Without loss
of generality, assume that a ∗ b 6= 0. Then, by assumption, there exists a nbhd W of a ∗ b
such that 0 /∈ W . By Theorem 2, there exist nbhds Wa and Wb of a and b, respectively,
such that Wa ∗Wb ⊆W . Since 0 /∈W , 0 /∈Wa ∗Wb. By Remark 4, Wa ∩Wb = ∅. Thus,
X is a T2-space.

Conclusion: Given two BCH-algebras H1 and H2 such that H1∩H2 = {0}, an operation
“ ∗ ” can be defined on H = H1 ∪H2 so that (H, ∗) is a BCH-algebra and H1 and H2 are
BCH-subalgebras. Further, it is shown that T0, T1 and T2 axioms are equivalent in any
topological BCH-algebra.
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