EUROPEAN JOURNAL OF PURE AND APPLIED MATHEMATICS
Vol. 13, No. 4, 2020, 730-738
ISSN 1307-5543 - www.ejpam.com
Published by New York Business Global

Another Look at Topological BCH-algebras

Jemil D. Mancao ${ }^{1, *}$, Sergio R. Canoy, Jr. ${ }^{1}$
${ }^{1}$ Department of Mathematics and Statistics, College of Science and Mathematics, Center of Graph Theory, Algebra and Analysis, Premier Research Institute of Science and Mathematics, Mindanao State University-Iligan Institute of Technology, 9200 Iligan City, Philippines

Abstract

A BCH-algebra $(H, *, 0)$ furnished with a topology τ on H (also called a BCH-topology on H) is called a topological BCH-algebra (or TBCH-algebra) if the function $*: H \times H \rightarrow H$, defined by $*((x, y))=x * y$ for any $x, y \in H$, is continuous, where the Cartesian product topology on $H \times H$ is furnished by τ. In this paper, we give other structural properties of topological BCH -algebras.

2020 Mathematics Subject Classifications: 06F35, 03G25
Key Words and Phrases: BCH-algebra, topology, TBCH-algebra, separation axioms

1. Introduction

In 1983, Hu and $\mathrm{Li}[5,6]$ introduced the notion of a BCH -algebra which is a generalization of BCK and BCI-algebras. In the same paper, the concept of associative BCH-algebra was also introduced. Dar, K. H., and Akram, M. [2] defined the concepts of BCH-ideal, BCH-subalgebra, *-commutative, left and right mappings on a BCH-algebra and some properties structures were investigated.

In [8] and [4], the concepts of topological BCK-algebra and topological BCI-algebra were defined and some properties of each newly defined concepts were investigated. In 2017, M. Jansi and V. Thiruveni [7] introduced the concept of topological BCH-algebra (or TBCH-algebra) and investigated some of its algebraic and topological properties. The aim of this paper is to give other structural properties of topological BCH -algebras.

[^0]
2. Preliminaries and Known Results

Definition 1. [3] Let (X, τ) be a topological space and let $x \in X$. Any set $U \in \tau$ containing x is called a neighborhood (sometimes written as nbhd or τ-nbhd) of x.

Definition 2. [3] Let (X, τ) be a topological space. Then
(i) (X, τ) is a T_{0}-space if for any $x, y \in X$ with $x \neq y$, there exists an open set U containing one but not the other;
(ii) (X, τ) is a T_{1}-space if for any $x, y \in X$ with $x \neq y$, there exist nbhds U and V of x and y, respectively, such that $x \notin V$ and $y \notin U$;
(iii) (X, τ) is a T_{2}-space (or Hausdorff space) if for any $x, y \in X$ with $x \neq y$, there exist disjoint nbhds U and V of x and y, respectively.

Remark 1. [3] $T_{2} \Rightarrow T_{1} \Rightarrow T_{0}$ but not conversely.
Theorem 1. [3] Let (X, τ) be a topological space. X is a T_{1}-space if and only if for each $x \in X,\{x\}$ is a closed set in X.

Definition 3. [5] A BCH-algebra is a nonempty set H endowed with a operation "*" and constant 0 satisfying the following axioms: for all $x, y, z \in H$,
(B1) $x * x=0$,
(B2) $x * y=0$ and $y * x=0$ implies $x=y$.
(B3) $(x * y) * z=(x * z) * y$,
Remark 2. [5, 6] In any BCH-algebra ($X, *, 0$), the following hold:
(i) $x * 0=x$;
(ii) $x * 0=0$ implies $x=0$;
(iii) $0 *(x * y)=(0 * x) *(0 * y)$;
(iv) $(x *(x * y)) * y=0$.

Definition 4. [7] Let $(X, *, 0)$ be a BCH-algebra and U, V be any nonempty subsets of X. We define a subset $U * V$ of X by $U * V=\{x * y: x \in U, y \in V\}$.

Remark 3. Let $(X, *, 0)$ be a BCH-algebra. Then $*(A \times B)=A * B$ for any nonempty subsets A and B of X.

Remark 4. Let $(X, *, 0)$ be a BCH-algebra and $A, B \subseteq X$. If $A \cap B \neq \varnothing$, then $0 \in A * B$.
Definition 5. [2] Let $(X, *, 0)$ be a BCH-algebra. A nonempty subset S of X is a $B C H$ subalgebra if for each $x, y \in S, x * y \in S$.

Definition 6. [7] Let $(H, *, 0)$ be a BCH-algebra. A topology τ furnished on H is called a $B C H$-topology on H. In addition, (H, τ) is called a topological $B C H$-algebra (or $T B C H$ algebra) if τ is a BCH-topology on H and the function $*: H \times H \rightarrow H$ defined as $*((x, y))=x * y$ is continuous, where the Cartesian product topology on $H \times H$ is furnished by τ.
Example 1. Let $X=\{0,1,2,3,4\}$ and define $*$ as follows:

$*$	0	1	2	3	4
0	0	0	0	0	4
1	1	0	0	1	4
2	2	2	0	0	4
3	3	3	3	0	4
4	4	4	4	4	0

Then, $(X, *, 0)$ is a BCH-algebra [1]. Let $\tau=\{X, \varnothing,\{4\},\{0,1,2,3\}\}$. Then τ is a BCH-topology on X. Moreover,

$$
\begin{aligned}
*^{-1}(X) & =X \times X \\
*^{-1}(\varnothing) & =\varnothing \\
*^{-1}(\{4\}) & =(\{0,1,2,3\} \times\{4\}) \cup(\{4\} \times\{0,1,2,3\}) \\
*^{-1}(\{0,1,2,3\}) & =(\{0,1,2,3\} \times\{0,1,2,3\}) \cup(\{4\} \times\{4\}) .
\end{aligned}
$$

This implies that $*$ is continuous. Thus, (X, τ) is a TBCH-algebra.

3. Results

Throughout this study, we denote a BCH-algebra $(X, *, 0)$ by X, unless otherwise specified.

Theorem 2. Let τ be a BCH-topology on X. Then, (X, τ) is a TBCH-algebra if and only if for each $x, y \in X$ and each nbhd W of $x * y$, there exist $n b h d s ~ U$ and V of x and y, respectively, such that $U * V \subseteq W$.

Proof. Let X be a TBCH-algebra. Let $x, y \in X$ and a nbhd W of $x * y$. Since $*$ is continuous, $*^{-1}(W)$ is a nbhd of (x, y) in $X \times X$. By definition of Cartesian product topology, there exist nbhds U and V of x and y, respectively, such that $U \times V \subseteq *^{-1}(W)$. By Remark $3, U * V=*(U \times V)$. It follows that $U * V \subseteq *\left(*^{-1}(W)\right) \subseteq W$.

Conversely, suppose that for each $x, y \in X$ and each nbhd W of $x * y$, there are nbhds U and V of x and y, respectively, such that $U * V \subseteq W$. By definition of Cartesian product topology, $U \times V$ is a nbhd of (x, y) in $X \times X$. By Remark $3, *(U \times V)=U * V \subseteq W$. Therefore, $*$ is continuous.

Corollary 1. Let X be a TBCH-algebra and $A \subseteq X$. If z is an interior point of A, then there exist elements $x, y \in X$ and $n b h d s N_{x}, N_{y}$ and N_{z} of x, y and z, respectively, such that $z=x * y$ and $N_{x} * N_{y} \subseteq N_{z}=N_{x * y}$.

Proof. Suppose z is an interior point of A. Then there exists a nbhd N_{z} of z such that $N_{z} \subseteq A$. Since $z \in X, z=x * y$ for some $x, y \in X$ (say, $x=z$ and $y=0$). By Theorem 2, there exist nbhds N_{x} and N_{y} of x and y, respectively, such that $N_{x} * N_{y} \subseteq N_{z}=N_{x * y}$.

The next theorem asserts that the topology associated in a TBCH-algebra having $\{0\}$ as an open set is the discrete topology.

Theorem 3. Let X be a TBCH-algebra. Then $\{0\}$ is an open set in X if and only if X is a discrete space.

Proof. Suppose that $\{0\}$ is an open set in X and let $x \in X$. Then, $x * x=0 \in\{0\}$ by (B1). Since $\{0\}$ is an open set in X, there exist nbhds U and V of x such that $U * V=\{0\}$ by Theorem 2. Let $W=U \cap V$. Then, W is a nbhd of x and $W * W \subseteq U * V$. Hence, $W * W=\{0\}$. Let $y \in W$. Then $x * y=0=y * x$. By (B2), $y=x$. Thus, $W=\{x\}$, showing that X is a discrete space.
Conversely, suppose X is the discrete space. Then, $\{0\}$ is an open set in X.

Corollary 2. If $\{0\}$ is an open set in a TBCH-algebra X, then every subset of X is both open and closed set in X. In particular, if $|X| \geq 2$, then X is a disconnected space.

Remark 5. If a BCH-topological space X is a discrete space, then X is a TBCH-algebra.
We now show that a BCH-subalgebra of a TBCH-algebra is also a TBCH-algebra.
Theorem 4. Let X be a TBCH-algebra and H a BCH-subalgebra of X. Then $\left(H, \tau_{H}\right)$ is a TBCH-algebra, where τ_{H} is the relative topology on H.

Proof. Let $x, y \in H$ and a nbhd W_{H} of $x * y$ in the subspace H. Note that W_{H} may be written as the intersection with H of some nbhd W of $x * y$ in X, that is, $W_{H}=H \cap W$. Since X is a TBCH-algebra, there exist nbhds U and V of x and y, respectively, such that $U * V \subseteq W$ by Theorem 2. Observe that $U_{H}=H \cap U$ and $V_{H}=H \cap V$ are nbhds of x and y, respectively, in the subspace H. Furthermore.

$$
\begin{aligned}
U_{H} * V_{H} & =(H \cap U) *(H \cap V) \\
& \subseteq U * V \\
& \subseteq W
\end{aligned}
$$

Since H is a $B C H$-subalgebra, $U_{H} * V_{H} \subseteq H * H \subseteq H$ so that $U_{H} * V_{H} \subseteq H \cap W=W_{H}$. By Theorem 2, $\left(H, \tau_{H}\right)$ is a TBCH-algebra.

Theorem 5. Let $\left(H_{1}, *_{1}, 0\right)$ and $\left(H_{2}, *_{2}, 0\right)$ be BCH-algebras such that $H_{1} \cap H_{2}=\{0\}$ and $H=H_{1} \cup H_{2}$. Then $(H, *, 0)$ is a BCH-algebra, denoted by $H_{1} \oplus H_{2}$, where the operation "*" on H is defined for all $x, y \in H$, by

$$
x * y= \begin{cases}x *_{1} y & \text { if } x, y \in H_{1} \\ x *_{2} y & \text { if } x, y \in H_{2} \\ x & \text { otherwise } .\end{cases}
$$

Proof. Let $x \in H$. Then

$$
x * x= \begin{cases}x *_{1} x & \text { if } x \in H_{1} \\ x *_{2} x & \text { if } x \in H_{2} .\end{cases}
$$

Since $\left(H_{1}, *_{1}, 0\right)$ and $\left(H_{2}, *_{2}, 0\right)$ are BCH-algebras, $x * x=0$ by property (B1).
Next, let $x, y \in H$ and suppose that $x * y=0$ and $y * x=0$. Consider the following cases:
Case 1: $x, y \in H_{1}\left(\right.$ or $\left.x, y \in H_{2}\right)$.
Then $x * y=x *_{1} y=0$ and $y * x=y *_{1} x=0$. Since $\left(H_{1}, *_{1}, 0\right)$ is a BCH-algebra, property (B2) yields $x=y$. Similarly, $x=y$ if $x, y \in H_{2}$.
Case 2: $x \in H_{1}$ and $y \in H_{2}$ (or $y \in H_{1}$ and $x \in H_{2}$).
Then $0=x * y=x$ and $0=y * x=y$. Hence, $x=0=y$.
Finally, let $x, y, z \in H$. Consider the following cases:
Case 1: $x, y \in H_{1}\left(\right.$ or $\left.x, y \in H_{2}\right)$
Then, by the definition of $*$,

$$
(x * y) * z= \begin{cases}\left(x *_{1} y\right) *_{1} z & \text { if } z \in H_{1} \\ x *_{1} y & \text { if } z \in H_{2} .\end{cases}
$$

and

$$
(x * z) * y= \begin{cases}\left(x *_{1} z\right) *_{1} y & \text { if } z \in H_{1} \\ x *_{1} y & \text { if } z \in H_{2} .\end{cases}
$$

Since $\left(H_{1}, *_{1}, 0\right)$ is a BCH-algebra, $\left(x *_{1} y\right) *_{1} z=\left(x *_{1} z\right) *_{1} y$ if $z \in H_{1}$. Hence, $(x * y) * z=$ $(x * z) * y$. Similarly, $(x * y) * z=(x * z) * y$ whenever $x, y \in H_{2}$.
Case 2: $x \in H_{1}$ and $y \in H_{2}\left(\right.$ or $y \in H_{1}$ and $\left.x \in H_{2}\right)$
Then, by the definition of $*$,

$$
(x * y) * z= \begin{cases}x *_{1} z & \text { if } z \in H_{1} \\ x & \text { if } z \in H_{2}\end{cases}
$$

and

$$
(x * z) * y= \begin{cases}x *_{1} z & \text { if } z \in H_{1} \\ x & \text { if } z \in H_{2}\end{cases}
$$

Therefore, $(x * y) * z=(x * z) * y$. Equality is also obtained if $y \in H_{1}$ and $x \in H_{2}$.
Accordingly, $(H, *, 0)$ is a BCH-algebra.
Lemma 1. Let $\left(H, *_{1}\right)$ and $\left(H_{2}, *_{2}\right)$ be BCH-algebras such that $H_{1} \cap H_{2}=\{0\}$ and let $(H, *)$ be the sum of H_{1} and H_{2} defined in Theorem 5. Then each of the following holds:
(i) If U and V are subsets of $H_{1}\left(U\right.$ and V are subsets of $\left.H_{2}\right)$, then $U *_{1} V=U * V$ (resp. $U *_{2} V=U * V$).
(ii) If $A, B \subseteq H_{1}, C \subseteq H_{2}$, and $0 \in B$, then $A \subseteq A * B$ and $A *(B \cup C)=A *_{1} B=A * B$.

Proof. (i) Suppose U and V are subsets of H_{1}. Let $x \in U$ and $y \in V$. Since $x * y=x *{ }_{1} y$, $x * y \in U * V$ if and only if $x *_{1} y \in U *_{1} V$. Hence, $U *_{1} V=U * V$. Similarly, $U *_{2} V=U * V$ if U and V are subsets of H_{2}.
(ii) Let $x \in A$. Then $x=x * 0 \in A * B$ since $0 \in B$. Hence, $A \subseteq A * B=A *_{1} B$.

To establish the equality, first note that $A *_{1} B=A * B \subseteq A *(B \cup C)$. Let $a \in A$ and $x \in(B \cup C)$. If $x \in B$, then $a * x=a *_{1} x \in A *_{1} B$. If $x \in C$, then $a * x=a \in A \subseteq A *_{1} B$. Thus, $A *(B \cup C)=A *_{1} B=A * B$.

Theorem 6. Let $\left(H_{1}, *_{1}, 0\right)$ and $\left(H_{2}, *_{2}, 0\right)$ be BCH-algebras such that $H_{1} \cap H_{2}=\{0\}$ and let $(H, *, 0)$ be the sum of H_{1} and H_{2} (defined in Theorem 5). Then each of the following holds:
(i) $\left(H_{1}, *_{1}, 0\right)$ and $\left(H_{2}, *_{2}, 0\right)$ are BCH-subalgebras of H.
(ii) $\left(H, \tau^{H_{1}}\right)$ and $\left(H, \tau^{H_{2}}\right)$ are TBCH-algebras, where $\tau^{H_{1}}=\left\{\varnothing, H_{1} \cup H_{2}, H_{1}\right\}$ and $\tau^{H_{2}}=$ $\left\{\varnothing, H_{1} \cup H_{2}, H_{2}\right\}$.
(iii) If (H, τ) is a TBCH-algebra and $A, B \in \tau$ for some set $A \subseteq H_{1}$ and $B \subseteq H_{2}$ with $0 \in A \cap B$, then τ is the discrete topology on H. In particular, if $H_{1}, H_{2} \in \tau$, then τ is the discrete topology on H.
(iv) If (H, τ) is a TBCH-algebra and $\tau \subseteq P\left(H_{1}\right) \cup\left\{H_{1} \cup H_{2}\right\}\left(\right.$ or $\left.\tau \subseteq P\left(H_{2}\right) \cup\left\{H_{1} \cup H_{2}\right\}\right)$, where $P\left(H_{1}\right)$ and $P\left(H_{2}\right)$ are the power sets of H_{1} and H_{2}, respectively, then $0 \in W$ for every $W \in \tau \backslash\{\varnothing\}$.

Proof. (i) Let $x, y \in H_{1}$. Then $x * y=x *_{1} y \in H_{1}$ by Theorem 5 and the fact that $\left(H_{1}, *_{1}, 0\right)$ is a BCH-algebra. Therefore, $\left(H_{1}, *_{1}, 0\right)=\left(H_{1}, *, 0\right)$ is a BCH-subalgebra of H. Similarly, $\left(H_{2}, *_{2}, 0\right)$ is a BCH-subalgebra of H.
(ii) Clearly, $\tau^{H_{1}}$ are $\tau^{H_{2}}$ are topologies on H. First, consider the space ($X, \tau^{H_{1}}$). Let $x, y \in H$ and let W be a $\tau^{H_{1}}$-nbhd of $x * y$. Consider the following cases:

Case 1: $x, y \in H_{1}$
Then $x * y=x *_{1} y \in H_{1}$. Hence, $W=H_{1}$ or $W=H_{1} \cup H_{2}$. Then H_{1} is a $\tau^{H_{1}}$ nbhd of both x and y, and by Lemma $1(i), H_{1} * H_{1}=H_{1} *_{1} H_{1}=H_{1} \subset H_{1} \cup H_{2}$.

Case 2: $x, y \in H_{2}$ or $\left[x \in H_{2}\right.$ and $\left.y \in H_{1}\right]$

If $x, y \in H_{2}$, then $x * y=x *_{2} y \in H_{2}$. Hence, $W=H_{1} \cup H_{2}$. The set $V=H_{1} \cup H_{2}$ is a $\tau^{H_{1}}$-nbhd of both x and y, and $V * V=H_{1} \cup H_{2}$. If $x \in H_{2}$ and $y \in H_{1}$, then $x * y=x \in H_{2}$. Again, $W=H_{1} \cup H_{2}, V=H_{1} \cup H_{1}$ is a $\tau^{H_{1}}$-nbhd of both x and y, and $V * V=H_{1} \cup H_{2}$.

Case 3: $x \in H_{1}$ and $y \in H_{2}$
Then $x * y=x \in H_{1}$. Hence, $W=H_{1}$ or $W=H_{1} \cup H_{2}$. Let $V_{x}=H_{1}$ and $V_{y}=H_{1} \cup H_{2}$. Then V_{x} and V_{y} are $\tau^{H_{1}}$-nbhds of x and y, respectively, and by Lemma $1(i i), V_{x} * V_{y}=H_{1} *\left(H_{1} \cup H_{2}\right)=H_{1} *_{1} H_{1}=H_{1} \subset H_{1} \cup H_{2}$.

Therefore, $\left(H, \tau^{H_{1}}\right)$ is a TBCH algebra. Similarly, $\left(H, \tau^{H_{2}}\right)$ is a TBCH algebra.
(iii) Suppose $A \subseteq H_{1}, B \subseteq H_{2}, 0 \in A \cap B$, and $A, B \in \tau$. Since $H_{1} \cap H_{2}=\{0\}$, it follows that $A \cap B=\{0\}$. Since $A, B \in \tau,\{0\} \in \tau$. Thus, by Theorem 3, τ is the discrete topology on H.
(iv) Suppose that (H, τ) is a TBCH-algebra and that $\tau \subseteq P\left(H_{1}\right) \cup\left\{H_{1} \cup H_{2}\right\}$. Let $W \in \tau \backslash\{\varnothing\}$. Pick any $x \in W$ and $y \in H_{2}$. Since $x * y=x, W$ is a nbhd of $x * y$. By continuity of $*$, there exist nbhds V_{x} and V_{y} of x and y, respectively, such that $V_{x} * V_{y} \subseteq W$. Now, since $\tau \subseteq P\left(H_{1}\right) \cup\left\{H_{1} \cup H_{2}\right\}$, the only nbhd of y is $H_{1} \cup H_{2}$. Hence, $V_{y}=H_{1} \cup H_{2}$ and by Lemma $1(i i), V_{x} * V_{y}=V_{x} *\left(H_{1} \cup H_{2}\right)=V_{x} *_{1} H_{1}$. Since $x \in H_{1}, x *_{1} x=x * x=$ $0 \in V_{x} *_{1} H_{1}$. Therefore, $0 \in W$.

Theorem 7. Let X be a TBCH-algebra. Then $\{0\}$ is a closed set in X if and only if X is a T_{2}-space.

Proof. Suppose $\{0\}$ is a closed set in X. Let $x, y \in X$ with $x \neq y$. Then, $x * y \neq 0$ or $y * x \neq 0$. Without loss of generality, assume that $x * y \neq 0$. Note that $x * y \in X \backslash\{0\}$. By Theorem 2, there exist nbhds U and V of x and y, respectively, such that $U * V \subseteq X \backslash\{0\}$. Suppose $U \cap V \neq \varnothing$. Let $z \in U \cap V$. Then, $z \in U$ and $z \in V$. Hence, by (B1)

$$
0=z * z \in U * V \subseteq X \backslash\{0\}
$$

a contradiction. Thus, $U \cap V=\varnothing$ and so X is a T_{2}-space.
Conversely, assume that X is a T_{2}-space. Let $x \in X \backslash\{0\}$. Then, there exist nbhds U and V of x and 0 , respectively, such that $U \cap V=\varnothing$. Since $0 \notin U, x \in U \subseteq X \backslash\{0\}$. This shows that $X \backslash\{0\}$ is open in X. Therefore, $\{0\}$ is a closed set in X.

The next theorem asserts that T_{0}, T_{1} and T_{2} topological spaces are equivalent in a TBCH-algebra.

Theorem 8. Let X be a TBCH-algebra. Then the following statements are equivalent:
(i) X is a T_{0}-space
(ii) X is a T_{1}-space
(iii) X is a T_{2}-space.

Proof. (i) \Rightarrow (ii): Suppose X is a T_{0}-space. Let $x, y \in X$ with $x \neq y$. Then $x * y \neq 0$ or $y * x \neq 0$ by (B2). Without loss of generality, assume that $x * y \neq 0$. Since X is a T_{0}-space, there exists an open set U such that $x * y \in U$ but $0 \notin U$ or $0 \in U$ but $x * y \notin U$. Consider the following cases:
Case 1. $x * y \in U$ (but $0 \notin U$)
By Theorem 2, there exist nbhds G_{x} and H_{y} of x and y, respectively, such that $G_{x} * H_{y} \subseteq U$. Since $0 \notin U, 0 \notin G_{x} * H_{y}$. By Remark $4, G_{x} \cap H_{y}=\varnothing$. Thus, $y \notin G_{x}$ and $x \notin H_{y}$. Case 2. $0 \in U$ (but $x * y \notin U$).
By (B1), $x * x=0 \in U$. By Theorem 2, there exist nbhds N_{x} and M_{x} of x such that $N_{x} * M_{x} \subseteq U$. Since $x * y \notin U, x * y \notin N_{x} * M_{x}$. It follows that $y \notin M_{x}$. Similarly, since $y * y=0 \in U$, there exist nbhds N_{y} and M_{y} of y such that $N_{y} * M_{y} \subseteq U$. Since $x * y \notin U$, $x * y \notin N_{y} * M_{y}$. It follows that $x \notin N_{y}$. Hence, there exist nbhds M_{x} and N_{y} of x and y, respectively, such that $y \notin M_{x}$ and $x \notin N_{y}$.

Therefore, X is a T_{1}-space.
(ii) $\Rightarrow\left(\right.$ iii): Suppose X is a T_{1}-space. By Theorem 1, $\{0\}$ is a closed set in X. By Theorem $7, X$ is a T_{2}-space.
By Remark $1, T_{2} \Rightarrow T_{1} \Rightarrow T_{0}$. Therefore, (i), (ii), and (iii) are equivalent.
The following corollary follows from Theorems 7 and 8.
Corollary 3. Let X be a TBCH-algebra. Then the following statements are equivalent:
(i) X is a T_{0}-space
(ii) X is a T_{1}-space
(iii) X is a T_{2}-space
(iv) $\{0\}$ is a closed set in X.

Theorem 9. Let X be a TBCH-algebra. Then X is a T_{2}-space if and only if for any $x \in X$ with $x \neq 0$, there exists a nbhd U of x such that $0 \notin U$.

Proof. Clearly, if X is a T_{2}-space, then for any $x \in X$ with $x \neq 0$, there exists a nbhd U of x such that $0 \notin U$.

For the converse, suppose that for any $x \in X$ with $x \neq 0$, there exists a nbhd U of x such that $0 \notin U$. Let $a, b \in X$ with $a \neq b$. Then $a * b \neq 0$ or $b * a \neq 0$ by (B2). Without loss of generality, assume that $a * b \neq 0$. Then, by assumption, there exists a nbhd W of $a * b$ such that $0 \notin W$. By Theorem 2, there exist nbhds W_{a} and W_{b} of a and b, respectively, such that $W_{a} * W_{b} \subseteq W$. Since $0 \notin W, 0 \notin W_{a} * W_{b}$. By Remark $4, W_{a} \cap W_{b}=\varnothing$. Thus, X is a T_{2}-space.

Conclusion: Given two BCH-algebras H_{1} and H_{2} such that $H_{1} \cap H_{2}=\{0\}$, an operation "*" can be defined on $H=H_{1} \cup H_{2}$ so that $(H, *)$ is a BCH-algebra and H_{1} and H_{2} are BCH -subalgebras. Further, it is shown that T_{0}, T_{1} and T_{2} axioms are equivalent in any topological BCH-algebra.

Acknowledgements

The authors would like to thank the referees for reviewing the initial paper and for the invaluable comments and suggestions that eventually led to this much improved version of the work. This research is funded by the Philippine Department of Science and Technology - Accelerated Science and Technology Human Resource Development Program (DOSTASTHRDP).

References

[1] M.A. Chaudhry and H. Fakhar-Ud-Din. On some classes of BCH-algebras. International Journal of Mathematics and Mathematical Sciences, 25(3):205-211, 2001.
[2] K.H. Dar and M. Akram. On endomorphisms of BCH-algebras. Annals of the University of Craiova-Mathematics and Computer Science Series, 33:227-234, 2006.
[3] J. Dugundji. Topology. Allyn and Bacon, Inc., Boston, 1966.
[4] Y.B. Jun et al. On Topological BCI-Algebras. Information Sciences, 116(2-4):253-261, 1999.
[5] Q.P. Hu and X. Li. On BCH-Algebras. Math. Seminar Notes, 11(2):313-320, 1983.
[6] Q.P. Hu and X. Li. On Proper BCH-algebras. Mathematica Japonica, 30(4):659-661, 1985.
[7] M. Jansi and V. Thiruveni. Topological structures on BCH-algebras. Mathematica Japonicae, 6:22594-22600, 2017.
[8] D. S. Lee and D. N. Ryu. Notes on topological BCK-algebras. Sci. Math, 1:231-235, 1998.

[^0]: ${ }^{*}$ Corresponding author.
 DOI: https://doi.org/10.29020/nybg.ejpam.v13i4.3842
 Email addresses: jemil.mancao@g.msuiit.edu.ph (J. Mancao),
 sergio. canoy@g.msuiit.edu.ph (S. Canoy)

