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Abstract. This paper presents methods of spectral dichotomy of a matrix which compute spectral
projectors on the subspace associated with the eigenvalues external to the parabolas described by
a general equation. These methods are modifications of the one proposed in [A. N. Malyshev and
M. Sadkane, STAM J. MATRIX ANAL. APPL. 18 (2), 265-278, 1997] which uses the spectral
dichotomy Theoretical and method of a matrix with respect to the imaginary axis. algorithmic
aspects of the methods are developed. Numerical results obtained by applying methods presented
on matrices are reported.

2020 Mathematics Subject Classifications: 65F15, 34D09, 47A46

Key Words and Phrases: Spectral dichotomy method, spectral projector, eigensubspaces, eigen-
values.

1. Introduction

Let A € R™™™ (n > 1) be a matrix and I'(a, b, c) a parabola with an equation of the
type

r=ay’ +by+c a # 0. (1)

The aim of this paper is to propose spectral dichotomy methods which partition the
spectrum of matrix A into two parts : A first part inside the parabola and a second one
outside. This will lead to the calculation of the projectors associated respectively with the
eigenvalues inside and outside the parabola.

Equation (1) reduces to the following form

b\? disc
— | = 2
<y + 2a> 4a? ] @)
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where disc = b — 4ac ; or again

(o 2) o2

Throughout this paper we assume that the coefficient a has a negative sign. Thus, the
parabola with equation (3) takes the form

2p(d — x) = (y — pb)® (4)
by setting 4 2
1 isc —4ac
p——% and d__4a T 4a

We assume that the matrix A has no eigenvalues on the parabola I'(a, b, ¢) for any variation
of the parameters a, b and ¢ with a # 0. From the work done in [13, 15], we propose in this
paper spectral dichotomy methods which give the projector P on the subspace associated
with the eigenvalues located outside of I'(a, b, ¢). The paper is organized as follows. Section
2 gives preliminaries used in the implementation of our proposed methods. It consists of
three subsections. The first subsection summarizes the methods of spectral dichotomy of
a matrix and a pencil of matrices with respect to a circle developed respectively by M.
Dosso and al. in [2, 4] and M. Sadkane and al. in [15]. The second subsection makes
a brief presentation of the spectral dichotomy method of a matrix with respect to the
imaginary axis (see [15]). The last subsection presents the study made by A.N.Malyshev
and M.Sadkane in [13]. Section 3 presents new methods of spectral dichotomy of a matrix
with respect to the curve I'(a,b,c) for variations of parameters a, b and ¢ with a #
0. Finally in section 4, numerical tests are used on various examples to illustrate the
effectiveness of the methods presented.

Throughout this paper, the identity and zero matrices of order k are denoted by I
and 0p or just I and 0 whenever the order is clear from the context. The 2-norm of a
matrix A is denoted by ||A].

2. Preliminaries on spectral dichotomy methods

2.1. Spectral dichotomy with respect to a circle

Let A be a matrix having no eigenvalues on the circle C(0,7) (where r > 0). The
spectral projector on the subspace corresponding to the eigenvalues inside the unit circle
is defined by

1 1 27 —10 -1
P=— [ (2L, — A)ldz = / <1n - er A) df (5)
0

20T Je 2

The computation of the spectral projector is accompanied by that of the Hermitian matrix
defined by:



S. Traoré, M. Dosso / Eur. J. Pure Appl. Math, 15 (2) (2022), 681-725 683

1 [2m —if A\ —if g\ !
H=H(r) = 2/ (1 _C > qo <I _C > do, (6)
™ Jo T r

with H® = (H®)* > 0, an arbitrary Hermitian positive definite matrix used for scaling
purpose.

Remark 1. The spectral norm of H indicates the behavior of the spectral projector P. The
smaller ||H|| is, better is the quality of the dichotomy.

The couple of matrices (P, H) is the only solution of the generalized Lyapunov’s equa-
tion [8]
r?H — A*HA = PPHOP — (I — P)*HO(I — P)

PA = AP
P2 =P (7)
PH = (PH)*

That generalized equation was first proposed by Godunov in partial form in [7] and later
by Bulgakov in complete form (7) in [1]. The most efficient numerical method for the
circular dichotomy was first proposed in [10] and [12].

Moreover, for any vector x and for any integer k, we have the estimates [4, 6, 14]

Kk
2
|4k < /TEITETT (1= ) llel

(8)
1

JAB] >
TEEC ]

k

2
> (1+ )" 1T = Pal
which shows the importance of the quantity ||H|| on asymptotic decay to 0 ( or growth to
+00) of the powers of A.

Different authors have proposed methods for determining the projector P and the
matrix H. We summarize the most important steps of the method proposed in [2, 4].
Note that this method is a variant of an initial method proposed by S.K. Godunov and M.
Sadkane in [9]. During their work, these authors have given some important results. The

j+1
first proposition gives the link in the one hand between the sequences of matrices Z,gzj )

and Z,gzj), and in the other hand between H;; and H;.

Proposition 1. For j =0,1,--- and k =0,1,---,27/, we have

2j+l 2]

2" = 2K (9)
2j+l 2j

25y = 2 Lin (10)
Hjp = (Kj1)"HjKjp1 + (Ljt1) HjLjta. (11)

For the details of the proof, see in [2, 4].

In the second proposition, the sequences of matrices (L )x>0 and (K ),>o are computed
iteratively
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Proposition 2. For j =0,1,---, we have

& ) ()= ()
. = 12
<AJ‘ Bj) \Lj+ In (12)
with A; = A2, By =2
For the details of the proof, see in [2, 4].
The third important result gives an estimate of the error Zéj2 il) —IP when j takes large

values

Theorem 1. There exists jo € N such that for all j > jo, we have

. oj+1
(21+l) (,d')’
12557 P < a00)
with w > 1 and 0 < vy < 1.
For the details of the proof, see in [2, 4].
(21

This last result shows the fast convergence of Z. to the projector P.

2i+1
These results led to the following algorithm

Algorithm 1 (DichoCl1).

e Input variables: A and I,, such that the matriz pencil zI, — A has no eigenvalues on
the circle C(O,r) with center O and the radius r.

o Qutput variables: The spectral projector P and the dichotomy criterion H.
P being the projector on the right invariant space of zI, — A corresponding to the
eigenvalues inside the circle C(O,r) and H the dichotomy criterion.
(i) Initialize

(a) Aoz_é.

(b) resolve
Ao L \(EKi\ [0
I, A Ly ) \In)
(c) Put Z¥ = Ky, 2P = Ly and compute Hy = (22 (2 + (2 (2{?).
1) Iterate : For j =1,2,...
(i) j

(a) put _ _
Aj= 4028, B =25,
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(5 () =)
Aj Bj Lj+1 In .

(b) Resolve

(¢) Compute

oj+1 2J
2 7k,
oj+1 o)
Z§j+1 ) :Zéj )Lj—i-l

Hji1 =(Kj+1) HjKjp1 + (Ljy1) HjLjpa.

(iii)

P=2z&0

9j+1 and H = Hj+1.

Another spectral dichotomy method has been proposed by M. Sadkane and A. Touhami
n [15]. We will just present the resulting algorithm of their work within the framework
of the spectral dichotomy method of a pencil AB — A

Algorithm 2 (DichoC2).

e Input: A, B € C™*" such that the pencil A\B — A is reqular having no eigenvalues
on the unit circle.
H© = (HO)Y* used for scaling. For instance H®) = I,

e Output: P the spectral projector onto the right deflating subspace of A\B — A asso-
ciated with the eigenvalues inside the unit circle.
H the matriz integral whose norm ||H|| indicates the quality of the projector P.

1. Initialization
Hy=H°
First iteration

(i) Compute X,Y solutions of the equations
X(B—-A)=A, and Y(B-A)=B
(ii)) Compute Ay, V solutions of the equations
(ii) Compute Hl,Z£2),Z§2) :
Hy = ASH@A + VSHOVO
Zr=No, 2 =V,
2. Next Iterations

For j =2,3.-- until convergence Do :
Update of A4;_;
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(i) Ajor = —AZZ )

(i1) Compute A;_;
(241 — In)Ajo1 = Aj
Computation of Hj, Z§2j), Zéjzj) :
(iit) Hj = A Hj a1 Aja + (I = A1) Hj 1 (In — Bj1)

i j—1 i j—1
(iv) Z{m) _ Z{zj )qu, Zgj) _ Z§j2]—1 )(In — A )

EndFOR

_ 72 _
3. P=23'B and H=H,

2.2. Spectral dichotomy with respect to the imaginary axis

We assume that A\, — A does not have any eigenvalue on the imaginary axis. We sum-
marize the computation of the spectral projector on the right eigenspace corresponding to
the eigenvalues with positive real parts.

Using the Cayley transformation ¢ : A € C\ {1} — 2z € C\ {1}, defined by

A+

(13)

¢ is a bijection from C\ {1} to C\ {1}. The spectral dichotomy with respect to the
imaginary axis can be transformed to the spectral dichotomy to the circle by the inverse
of .

It is not difficult to show that the bijection ¢ transforms the interior (respectively exterior)
of the circle to the left (respectively the right) half plane and the circle to the imaginary
axis. We will briefly prove it below.

Let’s assume that z = x + iy then




S. Traoré, M. Dosso / Eur. J. Pure Appl. Math, 15 (2) (2022), 681-725 687

So

we have:

AeC(0,1) e [N =1
SRA)P+3IN)? =1
Sx=0

which proves that ¢ maps bijectively the circle C(O,1)\{(1,0)} onto the imaginary axis.
Similarly we have,

N <1eRAN2+IN?2 <1
S <0

Consider the pencil AB — A where B= A — I, and A = A+ I,,. The eigenvalues z of
A+1
the matrix A and A are linked by the relation z = )\7+1
Therefore, the spectral dichotomy with respect to the imaginary axis can be transformed
to the spectral dichotomy to the unit circle and their spectral projectors are the same.
According to [3],[11],[12], the quality of the spectral dichotomy with respect to the imag-

inary axis is characterized by the numerical parameter

a= sup [|(z— A (14)
R(z)=0

Similarly, the quality of the dichotomy for the matrix pencil AB — A with respect to the

unit circle is also given by
Q= sup I(AB = A) 7| (15)
=1

The following proposition shows the relation between the two parameters.

Proposition 3. We assume that ||A|| = 1 and let o and & be the two parameters defined
by (14) and (15). Then
1 1
Proof. Since
1
M-A="Tlp (at1y)
z—1
1

=G+ DA-L) = (- DA+ 1)

—2
= I, — A
— )
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-1
then (\B — A)~! = _Z 5 (21, — A)~" and thus
1 1
a= sup o |z—1[[(zl—A)7 > sa
R(2)=0 2 2

We also have 1
1B = AT < S+ 2Dl (2In = 4) 71|
We will discuss according to the values of |z]

1
o If|o] < 2T

_ 1 _
sup || (A8 —A) 7| < 5 sup (14 [2])l| (zIn — A) Hi
IA=1 R(z)=0

<+1
Satg

1
thend§a+§

1 A
o If |2] > CF " then with the assumption ||A|| = 1 it follows that HH < 1. Which
a z

leads to

(21, — A7 =

Il
N | = VW= W

VY
~

3
+
SRS
N
8
|
3‘3
N———

Consequently, we obtain

18 — A7 < 500+ =Dl — 47

1 1

< —(1+—)(1 In—A_1
< 50+ o (L IGE = A7)

20+ 1 _1

< — (1 I, — A

< 5oy (U IGE = 7)

hence
200+ 1

1
a < (1—1—04):04—1—5

2(a+1)
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In both cases

o))
IN
Q
+
N

In conclusion
a<a<a+

N —

1

2

This proposition shows that the quality of the dichotomy of A with respect to the
imaginary axis is equivalent to the dichotomy of the matrix pencil AB — A with respect

to the unit circle. The following algorithm is used to calculate the values of the projector
and the dichotomy criterion

Algorithm 3 (Dichol).

o Input variables: A and I, such that the matrix sheaf zI, — A has no eigenvalues on
the imaginary azis.

e Qutput variables: P and H.
P is the projector onto the left deflating subspace of A corresponding to the eigen-
values with real positives parts and H the dichotomy’s criterion.

1. Set A=A+ and B=A—-1.

2. Using Algorithm 2 to \B— A, compute the projectors P; onto the right eigenspace of
A associated with the eigenvalues inside the unit circle and the Hermitian matrice

H.
3. P=1I,—-"P;.

2.3. Spectral dichotomy with respect to a parabola

Consider the equation of the following parabola

2p (g - :U) =y? with p>0 (17)

which was studied by Malyshev and Sadkane in [13]. We make a brief summary :
Consider the matrix A of order n (n > 1) having no eigenvalues on the parabola
I' =T(a,0,c) of Equation (17). Let A be the matrix of order 2n defined by

_\/gfn A
In _\/gjn

The respective eigenvalues A and z of the matrices A and A satisfy the relation

A
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(o)

In their study, Malyshev and Sadkane assumed in ([13]) that ||A]| = 1. Otherwise we set

According to [13], the quality of the spectral dichotomy with respect to the imaginary
axis is characterized by the numerical value

aq= sup |[(Map — A)le. (18)
RO\)=0

Similarly, the spectral dichotomy with respect to the parabola is also characterized by the
numerical parameter

as = supl|(zl, — A)~!| (19)
zel

The following proposition gives a relation between the parameters a4 and a4.

Proposition 4. ([13]) Let a4 and ay be the two parameters defined by (18) and (19).
We have
ap <ag <ag+aavl+aa (20)

Consider the spectral projectors

e P € C™™ on the right eigenspace of A associated with the eigenvalues outside the
parabola I ;

e P € C?*2" on the right eigenspace of A associated with the eigenvalues in the right
complex half-plane.

The following proposition characterizes the relation between P and P

Proposition 5. (/13]) Consider a partition of the matriz P in the form

= i ) =1, 21
P <733 P4> with PieC 1=1,4 (21)

Then
P=2P; =2P, =4PyPs (22)

Moreover

NP
—~
[\]
<
SN—

1
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Algorithm 4 (DichoP).

e Input variables: A and I, such that the matrixz sheaf zI, — A has no eigenvalues on
2
the parabola of the equation 2p (g — :1;) =y? withp >0
o Qutput variables: The spectral projector P and the dichotomy criterion H.

P being the projector on the right invariant space of zI, — A corresponding to the
etgenvalues outside the parabola and H the dichotomy criterion.

_\/gfn A
In _\/gln

2. Using Algorithm 3 to Ao, — A, compute the Projector P onto the right eigenspace
of A associated with the eigenvalues on the right half-plane of the complex plane and
the matriz H ;

1. Compute the matriz

A

3. If |H|| is not large then determine the projector P by

P = 2P;

3. Presentation of new methods

In what follows, we will consider the general equation of the parabola (1) as announced
in the introduction and we will determine the projector P for parameters a,b and ¢ € R
with a # 0.

3.1. The case of a parabola of equation of type (1) with discriminant
equal to 1.

Equation (1) of the parabola becomes

2p (g — :v) = (y — pb)? (24)

with p > 0.

For the parameter b = 0, we are in the case of the parabola studied by Malyshev and
Sadkane in [13].

On the other hand, in this section, we are going to consider the coefficient b % 0. Which
leads us to define the following parabola

T={z=z+iy\z+i(y—pb) eI}
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of the equation
2 (5 -2) =7 (25)

where

y=y—pb.
Consider the matrix of order 2n defined by

) - 5_[” Ab
A p—
A gh

where A, = A — ipbl,

Remark 2. The respective eigenvalues X and z of the matrices A and A are such that

2
z:<X+V€>44m

We also assume that || Ap|| = 1. Otherwise (i.e. ||Ap|| # 1), we can take

L1 1

Ar = ——A; and = —n.
7 [ P

Consider the dichotomy quantities characterized by the following numerical parameters

up H(j\Ign — fl)_lH and g, =sup ||(z], — A)_1H (26)

OéA = S
R(A)=0 zef

We have the following proposition

Proposition 6. Let oz and aa, be the two parameters defined in (26). Assume that

1
[Ap =1 and  |pb| < —. (27)
aa,
Then
ag, < ag<2(ag, +/an, (1+/ag, +1)) (28)

Proof. Consider the matrix
R+yDn -4,

(M — A) = .
-1, (X+¢@h
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We have
A+ yBL A O+ -4
X pr—
L O+ /B “L, (/B
(X + \/2)2L, — 4, 0
0 A+ g)QIn — Ay
Therefore
~ -1 ~
) ) O+ \/g)m _ A 0 X+ /B)1. Ay
Aoy — A~ = X
0 R+ /32— 4, I, A+ /D)
-~ —1
(A + /2 +ipb)1, — A 0
= X
0 (A + /2 +ipb) 1, — A

(X + \/g)fn A— ipbl,

5 O+ ﬂ)[n

(21, — A)~! 0 vz —ipbl, A—ipbl,
X
I, vz —ipbl,

0 (20, — A)~!

Vz—ipb(zl, — A)~Y (21, — A)"(A — ipbly,)
- ! (21, — A)~! Vz—ipb(zl, — A)7! ]

Knowing that the norm (XIQn — .Z)_l is greater than or equal to the norm of each of
its block components taken individually, we can deduce that

a= sup |[|[(Mop—A)7Y >sup|l(zl — A7 = aa,
R(K)=0 F1S3
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and also
N N vz —ipbl, A —ipbl,
I(AM2n = A) 7! < Iz — A7
I, vz —ipbl,
H\/Z—Z'prnH ||A_ipbln|| 1
< 1(zLn = A)7|
[l Iz — ipbl,|
VRV .
< 1(zL = A)7|
1 R+
< (4 VIl + Vi) 1L — 4) 7
oy +1
o If |2| < —>—— then
aa,
1A 20 = A) 7Y < ay (V2] + VIpbl + 1)
1 1
< g, <\/W+\/+1>
aa, aa,
< g, +/an, (1+/aa, +1)
ag, +1 . . 1
o If |z| > —>—— then with the assumptions ||Ap|| = 1 and |pb| < — we note that
aa, aa,
A g,
— A b
< o 1+ 9t
1
“ati(a)
ag, +1 A,
<1
Which leads to
1 A\
(20, — At == <In — )
z

z
A X Am
(455

(I + A(zL, — A7)

W= e

Therefore
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1

|(Mzp — A) 7| < Hzln + %A (2l — A)7

X Hl—l—\/m—l— \/\pb\H

< (HAH|’(ZI”_A)_1H+1)1+\/E’L‘—Fm

a, a%+%mw

ﬂHWMﬁ%MH+QH1aH4
b b b

(14 ——)an +1)

< aAb + \/aAb + \/aAb

a Q4 og, +1 ag, +1  aa+1
2+ QA

< (o4, + /ang\/aa, + 1+ ag,)

T ag, +1

= 2(aAb Va4, (1+ V @Ay +1))'
Hence

oy, <a< Q(OzAb +Vaa, (l—l— Vo, +1)).

This proves that the dichotomy parameters of a matrix with respect to a parabola and
with respect to the imaginary axis are equivalent.
Consider spectral projectors

e P c C™ " on the right subspace of A associated with its eigenvalues outside the
parabola I'.

e P € (272 op the right subspace of A associated with its eigenvalues in the complex
right half-plane.

We obtain the following proposition which characterizes the relation between P and P

Proposition 7. Consider a partition of the matriz P in the form

P = <g; gi) avec Py € C™, i=1,4 (29)

Then

P = 2P, = 2P, = 4Py Ps (30)
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Moreover
PA = 4 x (Py)? + 2iphP, (31)

Proof.
Let X be a solution to the matrix equation

<X + \/§In>2 = A (32)

Consider the matrix X; defined by

- —X 2\/@”.

We notice that

Hence X is also a solution of matrix equation (32).

X+t -X-,\/tn X o 1 [ix+. /)t i
X X
I, I, 0 —X- 2\/gjn_ _—%(X + \/g.[n)_l %In_
X(X + @m (—X — /BL) (=X —2,/21,) X +,/en)t L,
= X
X -X -2,/2I, —L(X + /)7t i,
1X - Y(X +2,/21,) LX +,/21,)(2X +2,/21,)
| 5(X +\/5L) 7 (2X + 24 /5 1) X —3(X +2,/51)
. Jen, 4,
I, —/tL
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=A.

Jr 0
0 J-
J_ the Jordan blocks associated respectively with the eigenvalues located in the right
half-plane and the left half-plane where J if of order k.

Let X = Q [ Q™! be the canonical jordan form of the matrix X with J4 and

By replacing the decomposition of X in the matrix .Z, we get

- oy Jlere i el [l /i
= X

i I, I,

Jy 0
@[g J}Q—l 0
X
JJr 0 71_ E

ey ey

[ 1 Jo 0] ., .\ 1. ]

1 Q Jv 0 Q- by - .y

2 0 J- 2" "

- I J+ 0 D B J+ O_ B ]2 i
@ [0 J}+ 2l [0 Ty

'0 Q L I, I, |

7. 0 1(/[J. o0 P\ "1

[0 J] 0 2([0 J| T 2I"> 2| o

X
Jr 0] o /p 1/[J. 0 P\ 0o Q!

! [0 J—} 2\/;1" <[0 J} 21”> 2

=079

with
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JJr 0 p J+ 0 b
Q 0] ( 0 J_) + \/;[n - |:0 J_:| - 5[71

0 @

and

J+ 0 P
0 [0 J_] —Qﬁln

Knowing that we have k eigenvalues of the matrix A, in the right half-plane, we can
therefore compute the associated projector

5 _ 54k 0 51
P-ay ole
Jr 0 » J. 0 b I, 0] [0 0
B oA R e A I o |
N 0 0 0 0
0@ I, I, [0 o] [0 0]

- 5 0 . 1 -
([0 2 e
X - -1
1 ( T O] P 1 0 Q!
+ 2

2 gl ] gln
— —0 J_ -
J++\/glk ol To o]
B Q 0 0 0| 0 0]
0 @ I, 0 0 0]
0 0 0 0]]
_ 5 -
1 (J++ QIkz) 0 1[Ik 0
2 p 1 210 I,_g
0 (']*+ QIn—k) Q_l 0
X
Pry-1 0 Q!
2 0 (J_ + gfn,k)*l 210 Ik
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1{@ o] 1 J++\/§Ik 0
5 5 —1
) Q 0 210 0 2 0 ol | [@
0 Q|1 (J++\/§Ik)‘1 0 1[Ik o} 0
E ) 0 210 0 |
1 1 D
Q| 2! 0] Q! Q 2“**\/;[“ Ol
0 0 0 0
- 1 Do 1
Q 2<J++\/;k) ol Q2% Ogn
0 0 0 0
_ P P
[ P3 P4
It follows that
~ 1] 0 1~
Pr=Ql2" Q=3P
0 0
] - .
- 1 £
A=ql J++\£Ik 0] o1
= 0 :>[Pb:4732ﬁ3

2 0

0
~ 1 (e B 0
Ps=Q- |7 2 Q!
0 7

1
- 17 1
Pi=Q 2" 0Q1=§Pb
0 O

We also note that with

A= Ab + ipb]n

2
(4 f5m) oo

p
: (142

0

2
In—k) + 7:prn—k

Q—l

699
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we have

2
p :
PA—0Q 1 o] 01 x 0 (J+ + ﬁ&) + ipbly, 0 o

0 0 D 2
- 0 J_ + §In7k- + 'Lpb[n,k

2
:Q <J++(\/§Ik) +ipb[k 0 Q_l

0 0

— 4P2 + 2ipbPy
Thus we obtain the equality (30) and (31)

Remark 3. if the parameter b = 0, whence equalities (31) are reduced to those of (23)

Algorithm 5 (DichoPDb).

e Input variables : A and I, such that the matriz bundle zI, — A has no eigenvalues

2
on the parabola with equation 2p (g - :1:) = (y — pb)? with p > 0

e Output variables: P and H
P being the projector on the right subspace of zI, — A associated with the eigenvalues
outside the parabola and the matrix H whose norm gives the dichotomy criterion.

1. Determine the matriz

_ﬂfn A —ipbl,,
A=
I, _\/gzn

2. Using Algorithm 3 to XIgn — j, compute the Projector P onto the right eigenspace
of A associted with the eigenvalues on the right half-plane of the complex plane and
the matriz H ;

3. If |H|| is not large, determine the projectors P by
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3.2. The case of a parabola of equation of type (1) with discriminant
different from 1

We consider the following change of variable in equation (4)

~ b
= - —d
x x—|—2
We get
PN _ 2
2p(2 w)—(y pb) (33)

3.2.1. The spectral dichotomy method with the coefficient b = 0

Consider the set

Fdz{Zd=$+iy/x+(g—d)+iyef}

described by the following equation

Let the matrix

Ay = where  Ag= A+ (g - d) I, (34)

Knowing that the eigenvalues z4 and z of the matrices A and A are linked by
p
= - — d
2d =2z + 5 ,

Remark 4. The respective eigenvalues A\g and z of the matrices Ag and A are such that

2
_ py _p
z-()\d+\/;> b +d

Furthermore, since z = x + iy, then we have

z = <§R()\d) + \/@2 — ()% — g +d

By setting that
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Pd =2 (gﬁ(kd) + \/?)2

2 Pq p Pa  ~
Yy Pd |5 —T = 5T P\ — 7

We also assume that ||A4]| = 1. Otherwise we set (i.e. ||A4| # 1), we can take

then

L1 1

AL = A and = —.
4 A Pr= g

Consider the numerical parameters a4, and a4, defined by

asy = sup |[(Aglan — .Ad)flﬂ et aay = sup ||(zI, — A)*lH (35)
R(Aq)=0 z€ly

The following proposition gives a relation between the parameters o 4, and a4,.

Proposition 8. Let auya, and aa, be the two parameters defined in (35). Assume that

P 1
Ag =1 d ‘7—4 -
i =1 and B < (36)
Then
aAdgaAdSQ(aAd—i—,/ozAd (l—l—\/OzAd—{—l)). (37)
Proof.

Let the matrix

(g + \/é)fn _ A

(Aalan — Ag) =
=1, (>‘d + %)In
We have
Ca+ B Al Ca+ /B —Ag
X =
(A + /)L, — Aqg 0
0 ()\d + %)2171 — Ay

with
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-1

(Mg + \/é)ZIn — Ay 0
()\dIQn — .Ad)_l = X
0 (a+ /5T — Ag
()\d + g)[n Ay
I, ()\d + g)[n
_ —1
()‘d + %)Zjn - (A + (% - d)In) 0
0 O+ /B2 = (A+ (= L)

2t 8 —d(zl, — A (2L, — A" A+ (B —d)I,)

(21, — A)~! z+ L —d(zl, — A"

Knowing that the norm of (Agl2, —Ag) "' is greater than or equal to the norm of each
of its block components taken individually, we can deduce that
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asg = sup ||(Aalon — Ag) 7| = sup [[(zI, — A) 7Y = aay

R(Ag)=0 z€ly
and also
z4+5—dl, A+ (§5-d)I,
|(Aal2n — Ag) 7| < (21, — A)~7 Y|
I, z+ L —dI,
2+ 5 —dla|l [[A+ (5 —d) L]
< (20 = A) |
HInH ||\/Z+g_dInH
ViIzl+4/15 —d| 1
< (=2 = A)~|
1 F+/E—d
p -1
< (VR 12 =i+ D)1 — 47
agy +1
o If 2| < —%—— then
Ay
1
mmwwwWQWQﬂ“++)ﬂw+Q
oAy 2
1
< agy <1 +4/ a) +/aag/ 1+ aay
Aqg
<y +/aay (1 +\/aa, + 1)
apg +1 .
o If |z| > —°—— with the conditions (36) we have ||—| < 1.
Ay z

Which leads to

(T = A = (= )

z
1+00Ak

k=0
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m=0
= 1 (In 4 é([n _ A)1>
z z z

Consequently

(v )

1 1 _
Otz = A <[ 10+ 24T, - a7

P
1 1 5
S ||A(ZI7L _A)il +In" X |Z| + ‘Z| ’Z‘

(O gl o) < (s 0 0%

gy +1 ags+1 aagt+1

< (2+aAd)
Ay +1

(aAdJF\/@vaAd +\/@)

<2(O‘Ad+M(1+\/O‘Ad+1))'

Consider spectral projectors

e Py € C™*™ on the right eigensubspace associated with the eigenvalues of A outside
the parabola I'y

e P, € C?*2n on the right eigensubspace associated to the eigenvalues of A, in the
right complex half-plane.

The following proposition characterizes the relation between P; and Py
Proposition 9. Consider a partition of the matrixz Py in the form
Pl pld) . (d) .
Pq = (P;Ed) Pzd) with P e Crm, i=1,4 (38)
Then
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Py = 2P = 2P = 4P’ P{" (39)

Moreover ; ;
PyA = 4(P{")? - (p — 2d)P}" (40)

Proof.

Let X, be a solution of the matrix equation

(Xd + \/§In>2 = Ay (41)

Following the same calculation as in the proof of Proposition 7, we get

1 P 1

X Z Pry-1 =
RN T A M LA

Ad = X D X

I I 0 _Xd_2\/>In 1 X Pry-1 1[
" ! 2 pXaty[3I)7 gh

My 0 1 . . .
Let Xy = Qg 0 M (), be the canonical Jordan form of the matrix Xy with

M and M_ the Jordan blocks associated respectively with the eigenvalues of X  located
in the right half-plane and the left half-plane.

By replacing the decomposition of X, in the matrix Ay, we get

Ag = QqM(Qy)

with
M+ 0 p o M+ 0 o B
Qa0 (0 M>+\@zn [0 M] ',
Qi =
0 Qq I, I,
and
My 0 0
0 M_
M =

My O p
0 { . M} —2\/;In

Therefore we can compute the associated projector

Pa=@a) [ ] (@
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M,
0

0

|

(s |
2\ o0 o1 0
X M 0 —1 |:
1 ! — 2, A o
0 M 2 2 |
i M++\/51k ol [o o1 |
|:Qd 0] 0 2 ol 100l
0 Ca Iy 0 0 0]
I 0 0 0 0]
2 0 (M, + g-[n—k)_l 2 0 Inik |:Qd1
X
0 (M + gIn_k)*l 210 Ink
1[I, 0 1| M \/5 ]
11k 1 + + 2Ik 0
Qs O 2[0 0} 2 0 ol | T@a"
- 0 Qq |1 (M++\/§Ik)1 0 1[Ik 0} 0
_2 0 0 210 0
1 1 P
Qu |2 0] Q! Q{2<M++ \@I’f) 0] Q7!
B 0 0 0 0
- }(M +\/5I )L o LA
Qa2 P Q' Q [2 k ]Q‘l
i 0 0 0 O

p
M_} + \/;In

0

ANl

0

0o |

; |

o] |

0
0
0
0
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,Pl(d) Péd)
,P:gd) ,Pid)

It follows that

1
I 0 — 1
,PZEd) = Qd [2 k ] le = ipd
0 O

_ 5 \
1 (M =I; O _
Péd):Qd§ ++\/;k le
L|(My+ /207 0] A
P?Ed) _ Qd§ (M \/; k) le
L 0 0 J
d 1I 0 1
Pi):Qd 9k Q;1=§Pd
0 0
With X;=Q []\ng ]\2_} Q;l we have
A= Ay— (g—d)ln
2
<M+ n Zh) - (g - d) I 0
=Qq 5 2 » Q!
0 (M_ + 21nk> (5 _ d) o
and
p p
L. 0] 4 (M+ + ﬁh) = (G5 —d 0
0 (M_ + 2In_k> — (5~ Dl
p ? b
0, {<M+ + \/glk> — (5~ D 0] 0!
0 0

= 4(Py")? ~ (p —2d)P{"
Hence (39) and (40).

Remark 5. If the parameter d = g, whence equalities (40) are reduced to those of equal-
ities (23).
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Algorithm 6 (DichoPd).

e Input variables: the matrices A , I, and the real numbers d and p such that the matriz
pencil zI, — A has no eigenvalues on the parabola with equation 2p (d — ) = y? with
p>0etd>0

e Output variables: Py and Hy.
Py being the projector on the right subspace of zI, — A associated with the eigenvalues
outside the parabola and Hy the matriz whose norm defines the dichotomy criterion.

1. Determine the matriz

Aqg

2. Using Algorithm 3 to A\glon — Ag, compute the Projector Py onto the right eigenspace
of Aq associted with the eigenvalues on the right half-plane of the complex plane and
the matriz Hy.

3. If |Hyl|| is not large, determine the projector Py by

P, = 2P\,

3.2.2. The spectral dichotomy method with the coefficient b # 0
Consider the set
Iy= {z:x—l—iy/x—i— (g —d) +i(y — pb) GF}

described by the following equation (33).
We consider the following order matrix 2n

p
B - iln Agp
A= with Ag = A+ <13 —d- Z'pb) I.
p 2
In ‘\@In

The respective eigenvalues Xd and zg of the matrices .Zd and Ay, verify the relationship

2
Zdp = (\/g—i-)\d) .

This leads to the following remark
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Remark 6. The respective eigenvalues Xd and z of the matrices .Zd and A satisfy the

relation )
_ P .y _(P_, _.
z = <\/;—|- Ad) (2 d zpb)

Furthermore, we get

Thus
~ 2 o~ o~ ~
7= 4060+ [5) 90w~ (%00 +/5) SCaph+ 570
= [(?)‘E()\d)—i-\/;) —x+\/g—d—zpb
By setting
2
Pa=2 <§R(/\d) + \/g - pb)

we have

2 ~ Pdb p ~ Pdb -
=2 D - 4db) =2 [ 2 -7
y pdb<2 2 b) db<2 )

We also assume that || Ag|| = 1. Otherwise (if ||Agl|| # 1), we can take
1 1
Al = —— Ay and Py = .
| Al [ Agp
Consider the numerical parameters « £, and a4, defined by
(g = Sup |(Aalon — Ag) ™Y and aay, = sup ||(zI, — A)7Y| (42)
R(8q)=0 z€By

The following proposition gives a relation between the parameters « £, and oay, -
Proposition 10. Let g and o ay, be the two parameters defined in (46). Assume that
1

(43)
Qdp

lAwl =1 and |5 —d—iph| <

Then
Qag, S g <2 (A + VO (V1 +aag +1)). (44)
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Proof. Let the matrix

(\a + \/g)fn —Agp

(Xlgn - .Ad) ==
—Iy (>\d + g)In
We have
(A + /2T, Agy a+ /), —Ag
X =
I, M+ | I A+ y/B)In
[ + 521, — Agy 0
0 (A +1/5)L — Ag
With
_ ) —1
N N (Ad+4/5) 0 — Aa 0
(Nilop — Ag) ™' = X
0 (Mg + \/§)an — Aap
(A +4/5)n Agp
L A+ /21,
[(a+ /B)2L, — (A+ (B —d—ipb)I,,) 0
0 A+ /5P —(A+ (5 —d—

0 (Ma+4/B)2 =2 +d—ipb)l,, — A
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Ca+ /Bl A+(E—d—iph)L,)
I, (g + \/g)fn
(oI, — A)! 0 VE+B—d—ipbly A+ (5 —d—iph)l,
= X
L 0 (20, — A)~! I, \/z + £ —d —ipbl,

\/z + 5 —d—ipb(zl, — A)7" (2L — A)TH A+ (§ — d —ipb)I,)

(21, — A)~! \/z + & —d —ipb(z1, — A)~*

Knowing that the norm of (degn — .Zd)*l is greater than or equal to the norm of each
of its block components taken individually, we can deduce that

a‘/g:

and also

ot 207 <

IN

IN

IN

sup  ||(Aalan — Ag) M| = sup [[(z1, — A) 7| = aay,
R(8&q)=0 2cBy

\/z+g—d—¢pbfn A+ (L —d—iph)I,
G20 = A)7
I, \/z+g—d—¢pb1n
I\/z+ 8 —d—ipblul| A+ (5 —d—iph)|
G20 = )7
|l Iy/2+ 5 — d—ipbl|
2| + /|5 — d —ipb| 1
(=1 = A) 7|
1 2| + /|5 — d —ipb|

|z| + \E—d—ipb]—kl (21, — A1
2
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QAg, + 1
A Agp

then

|OMan = Aa) 7| < ctagy (VIET+ (/15 = d = ipb| + 1)

o If 2] <

< oagy, + Voaa(Vag +1+1)
1 A
o If |2 > YAw T 1 it the conditions (43) we have H < 1. we note that
Adb z
A Qb P ,
2l < A +15 —d—iph])
1< 2 (1wl + 15 —d o
Qg 1
< 1+ —
agp + 1 < adb)
<1
Which leads to
_ 1 A _
(21, — A) t= ;(In - ;) !
+00 Lk
1 A
=\ k)
k=1
A

N | =W =

Consequently

~ ~ 1 1 _
Gtz = A0 < | 110+ 241 - )7

L+ /2] + /|5 — d —ipbd)|

< (| AGE ~ A7+ 1) .
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11 5 —d—ipb|
TR IR
2] I2] ||

< > i 1) CAgp i A Agp 4 V& Agp
aAdb aAdb + 1 aAdb + 1 aAdb—‘rl

< Qag, +2
a4
2

< ((1 T |§ —p— z‘pb\> Qg + 1)

IN

i 1> VA QAg, + 1+ \/aay, +Oédb)
db
aAdb TV QAg, (\/ QAgy+1 T ))

Finally

QAgy < OAg, <2 (aAdb /A, (V QAgy+1 T+ 1)) .

Consider the projector

° ]f’?; € C" " on right eigenspace of Ag, associated with eigenvalues outside the
parabola I'y

° ﬁd € €227 on right eigenspace of ,Zd associated with eigenvalues in the right com-
plex half-plane.

The following proposition characterizes the relation between I,PE and 75d

Proposition 11. Consider a partition of the matriz Py in the form

Py = (%2 %Z;) with PP ec™,  i=14 (45)
Then
Py = 2P = 2P = 4p{D P (46)
Moreover
PaA = 4(PY)2 — (p — 2d — 2ipb)P\? (47)
Proof.

Let )f(vd be a solution of the matrix equation

<5(vd + \/gfn)2 = Agp- (48)

Following the same calculation as in the proof of Proposition 7, we get
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N 1 — D 1
=~ =~ S(Xa+ Pyt Lo
Xd-l-\/gfn —Xd—\/gfn Xa 0 2( d+\/;n) 2"

X

Ay =

X
ey p
0 —Xg-—2,/=1 1 & 1
In In ‘ \@ |5+ \/gfn) bk
Let )?d = Quw []\g+ ]\2 } Q;bl be the canonical Jordan form of the matrix )A(; with

M, and M_ the Jordan blocks associated respectively with the eigenvalues of )A(:j located
in the right half-plane and the left half-plane.

By replacing the decomposition of )751 in the matrix .,Zl/d, we get

Ag = QapM(Qgp) ™

with
M+ 0 p M+ 0 p
o de 0 < 0 M_) + \/;In |: 0 M_:l §In
Qip =
0 Qaw 7 7
et
My O 0
0 M_
M =

M+ 0 p
0 [o M_] 2\/;.7”

We can therefore calculate the associated projector
~ ~ I, O x~ =
Pa = (Qan) [(f 0] (Qan) ™"

M 0 2 M 0 P I. 0 0 0
R v R v R A B

0 0 0 0

0 Qu I, I, [0 0] [0 O]
_ . -

(U ] vam)

a + *In *In

2 0 M_ 2 2 _

del 0
8 M, 0 !
-1

- O M_ -
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i M++\/§Ik ol o 0'_
- {de 0] 0 ol 10 0

0 Qay I, 0 0 0]
I 0 0 0 0
) ;o _
1 (M++\/;Ik) 0 1 [Ik 0 }
2 210 I,_
2 0 M-+ /Pt 2 n—k

—1
db 0
X
0 —1
oz + \/glk)_l 0 d

2

0 (M— + iln—k
_ 5 -
1 [Ik o] 1 M++\/;Ik 0
S = 1
B Qa 0 210 0 2 0 0 om0
0 Qal |1 [(My+ \/ﬁfk)_l 0 1 [Ik 0} 0 s
— 2 —
2 0 0 210 O
1 1 D i
I, 0] ~— —(MyL+ /=1 0 _
de 2 k ] del de 2( + \/; k) del
_ 0 0 0
- 1 P 1
—(My + /ZL)7Y 0f A —Ix 0| -
Qav 2( * \/; 2 o Qav [2 F ] Qu
- O 0 O =
[ A
= |50 =
B B
It follows that
d 1 0 1
P = Qq [20k Qp = STd
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D,
~ 1 M 1) ool
PO — Lo, | ++\/;k) -

0 (a1 +

and

2
N o (M+ " \/§1k> ~ @ a i,
PyA = Qap ]

0 0
) 0

i 0
_475(d)2_ _2d_2.b73(db)
=4(Py ") (p ipb) Py

Hence (46) and (47).

Remark 7. We note that :

2
p p .
M I ) — (5 —d—ipb)I;; Of H—
= Qap < ++\/;k> (2 Zp)k del
0

b

(o1 +

0

2
D .
Pr ) — <7 _d— b) I
5 k) 5 ip k

gjnfk

717

Qfl

0

2
) — (5 —d—ipb) L,y

e if the parameter d = g, whence equalities (47) are reduced to those of equalities (31).

e if the parameter b = 0, whence equalities (47) are reduced to those of equalities (40).

e if the parameters b= 0,d = g, whence equalities (47) are reduced to those of equali-

ties (23).
Algorithm 7 (DichoPdb).

-1
de
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e Input variables: the matrices A, I, and the real numbers b, d and p such that the
matriz pencil zI, — A has no eigenvalues on the parabola with equation 2p (d — ) =
(y — ipb)? withp >0 etd >0

e Output variables: @;, ]I-A]I:l and b # 0.
Py being the projector on the right subspace of 21, — A associated with the eigenvalues
outside the parabola and Hy the matriz whose norm defines the dichotomy criterion.

1. Determine the matriz

p p )
P A+ E—a—ipp,
) 5 +(2 d — ipb)
Ag =
p
I, —/zIn
2

2. Using Algorithm 3 to den —.,Zd, compute the Projector ﬁd onto the right eigenspace
of Aq associted with the eigenvalues on the right half-plane of the complex plane and
the matriz Hy.

3. If ||m” is not large, determine the projector I/P?; by

Py = 2P\,

4. Numerical experiments

In this section, we illustrate numerical examples using a matrix function from [2, 4, 5]
on which we apply the algorithms 4, 5, 6 and 7 for positive parameters p, b and d given.

—(A(s(t)) T cos(w(t)) —(A(s(t))) " sin(w(t))
W(t) = (49)
A(s(t)) sin(w(?)) (A(s(1))) ™" cos(w(t))

Als) = (1 - ) :1$2> T g @ - isin(?)t)> ot s(t) = dsin(3t)

e Applying Algorithm 4 to matrix function (49) gives the following results:

- At t = 3.5,
Those different graphs on Figure 1 show how a parabola I' can realise a di-
chotomy on the eigenvalues of a given matrix. We have three possibilities:
when all the eigenvalues are in the interior,then the computed projector is the
null matrix. When all the eigenvalues are at the exterior of the parabola, the
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p=4 and t=3.5 p=1.3 and t=3.5 p=0.2 and t=3.5
151 8r 25,
6F 2r
101
15¢
al
1 *
w 57 (%2} w
5 52 5 o5
e e e
© © ©
= 0 £ 0 I = 0
° ° °
o o o
i} () o _
£ £ £0°
5t
-1 *
4}
-151
-10+
6t ol
15— gl 25—
-10 0 10 -10 0 10 -10 0 10
The abscissa axis The abscissa axis The abscissa axis
Figure 1: Partition of the spectrum of the matrix W (t) for t = 3:5 by parabolas of equation 2p(g x) =y2.

Table 1: Traces, norms and quality of spectral projectors P by applying the DichoP algorithm for three values

of p

p tr(®) [P [P*—P||  PW(t) - WP |H]|

4 0 0 0 0 4.0502
1.3 2 1.6305 2.3747 1071° 5.6077 1010 63.1478
0.2 4 1 2.0540 10715 5.3639 10~1° 6.2228

computed projector is the identity matrix. A part of the eigenvalues can be in
the interior of the parabola and another part of the eigenvalues can be at the ex-
terior. In this case, the projector is different of the null matrix and the identity
matrix. In the above table of values, the trace tr(IP) of P denotes the number of
eigenvalues outside of the parabola. Moreover, the values of ||P|| confirm what
was said above. The computing of |[P? — P|| and ||[PW (t) — W (¢)P|| prove that
P is a projector and the values obtained for ||H|| show the good quality of the
dichotomy. This shows the effectiveness of the method.

- The partition of the eigenvalues of W (t), Vt € [0, 7] with the parameters p €
{0.5,1,2,4} gives us Figure 2.
Those graphs describe the spectral portrait of W (t),vt € [0; 27]

This spectrum dichotomy realised by the parabola I' is illustrated with colors
(the green color for the inside eigenvalues and the red color for the outside
eigenvalues).

e Applying Algorithm 5 to matrix function 49 gives the following results:

- At t =6,
Those different graphs on Figure 3 show how a parabola I can realise a di-
chotomy on the eigenvalues of a given matrix. Similarly to the case seen for
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p=0.5 p=1

the ordinate axis
l|\> o n

the ordinate axis
(IJ‘I o o

4 0

-15 -10 -5 0 5 -15 -10 -5 0 5

the abscissa axis the abscissa axis
p=2 p=4

>

-20
-15 -10 -5 0 5
the abscissa axis

the ordinate axis
o (4]

the ordinate axis
o o

.5 10 -5 0 5
the abscissa axis

Figure 2: Partition of the eigenvalues of W (t); 8t 2 [0; | for p 2 0:5; 1; 2; 4g.

Table 2: Traces, norms and quality of spectral projectors 2 by applying the DichoPb algorithm for di erents
values of p and b

p b tr(P) [P [P =P  [[PW()-W®P|  [H]|

2 1 3 1.0268 1.4726 10~ 1° 2.2659 10~ 1° 3.9802
2 4 1 2.6170 10~1° 3.9255 10719 0.9799
2 0.1 0 4983810716 4.9838 1016 8.0143 1016 29.4351
0.1 05 4 1 2.8478 10715 5.1651 10710 1.1260
1 05 3 1.6455 2.6392 10~ 1° 2.6392 10~1° 7.7339
4 05 0  4.812010716 4.812010°16 6.0288 1016 3.7896

the parabola I', the values obtained for P2 — ]@ﬂ and |PW (t) — W (t)P|| proved
that IP is a projector. Moreover, the values of |H|| show the good quality of the
dichotomy.

- The partition of the eigenvalues of W (t), Vt € [0, 7] with the parameters (p, b) €

{(0.5,2), (1,-2),(2,0),(4,3)} gives us Figure 4. This shows the effectiveness
of the method.

Those graphs describe the spectral portrait of W (t),¥t € [0; 27]. This spectrum
dichotomy realised by the parabola I is illustrated with colors (the green color
for the inside eigenvalues and the red color for the outside eigenvalues).

e Applying Algorithm 6 to matrix function 49 gives the following results:

- At t =27,

Those different graphs on Figure 5 show how a parabola I'y can realise a di-
chotomy on the eigenvalues of a given matrix.
Similarly to the case seen for the parabola I, the values obtained for ||P2 —P,||
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for t=3.5 with p=3 and b=1 for t=3.5 with p=3 and b=0.2 for t=3.5 with p=3 and b=3

for 1=3.5 with p=4 and b=0.5 for t=3.5 with p=0.2 and b=0.5

Figure 3: Partition of the spectrum of the matrix W (t) for t = 6 by parabolas of equation 2p( P X) = (y ipb)3.

2

Table 3: Traces, norms and quality of spectral projectors Py by applying the DichoPd algorithm for di erents
values of p and d

P d tr(Pg) P4 P2 =Pyl [[PaW () — W(O)P4||  |Hql

0.1 5 0 1.9703 1017 1.9703 10~17 4.1735 10717 37.0029
0.1 2 4 1 1.3784 10710 1.9182 1015 11.0360
0.1 3.5 2 1 2.8054 10~12 5.0227 10715 96.0484
0.15 1.5 4 1 2.1579 1015 3.6774 10715 15.1757
025 1.5 2 1 4.4977 10716 2.0476 10~1° 9.6088
2 1.5 0 6.2936 10717 6.2936 1017 1.0107 1016 1.1828

and ||P4W — WP,|| proved that Py is a projector. Moreover, the values of || Hg||
show the good quality of the dichotomy.

- The partition of the eigenvalues of W (t), V¢t € [0, 7] with the parameters (p,d) €

{(0.5,0.5),(2,1), (0.2,2), (0.2, 7)} gives us Figure 6. This shows the effectiveness
of the method.

Those graphs describe the spectral portrait of W (t),Vt € [0; 2] This spectrum
dichotomy realised by the parabola I'y is illustrated with colors (the green color
for the inside eigenvalues and the red color for the outside eigenvalues).

e Applying Algorithm 7 to matrix function 49 gives the following results:

At t =35,

Those different graphs on Figure 7 show how a parabola fd can realise a di-
chotomy on the eigenvalues of a given matrix.
Similarly to the case seen for the parabola I', the values obtained for ||I,E’E2 - I,PEH
and ||PaW (t) — W ()Py|| proved that Py is a projector. Moreover, the values of
|Hy|| show the good quality of the dichotomy.






