EUROPEAN JOURNAL OF PURE AND APPLIED MATHEMATICS Vol. 15, No. 3, 2022, 878-886 ISSN 1307-5543 — ejpam.com Published by New York Business Global # Some applications of (Λ, sp) -open sets in topological spaces Chawalit Boonpok¹, Chokchai Viriyapong^{1,*} ¹ Mathematics and Applied Mathematics Research Unit, Department of Mathematics, Faculty of Science, Mahasarakham University, Maha Sarakham, 44150, Thailand **Abstract.** Our main purpose is to introduce some weak separation axioms by utilizing the concepts of (Λ, sp) -open sets and the (Λ, sp) -closure operator. In particular, some characterizations of (Λ, sp) - R_0 and (Λ, sp) - R_1 topological spaces are investigated. 2020 Mathematics Subject Classifications: 54A05, 54D10 **Key Words and Phrases**: (Λ, sp) -open set, (Λ, sp) - R_0 space, (Λ, sp) - R_1 space ### 1. Introduction The concept of R_0 topological spaces was first introduced by Shanin [18] In 1961, Davis [7] introduced the concept of a separation axiom called R_1 . Dube [9] and Naimpally [15] further investigated characterizations of R_0 topological spaces and several interesting results have been obtained in various contexts. Murdeshwar and Naimpally [14] and Dube [10] studied some of the fundamental properties of R_1 topological spaces. As natural generalizations of the separation axioms R_0 and R_1 , the concepts of semi- R_0 and semi-R₁ were introduced and investigated by Maheshwari and Prasad [13] and Dorsett [8]. In [4], the concepts of the (Λ, θ) -closure and (Λ, θ) -open sets were introduced by using the θ -closure operator and θ -open sets due to Velčko [19]. Caldas et al. [5] introduced and studied two new weak separation axioms called Λ_{θ} - R_0 and Λ_{θ} - R_1 by using the notions of (Λ, θ) -open sets and the (Λ, θ) -closure operator. In 2005, Cammaroto and Noiri [6] introduce a weak separation axiom m- R_0 in m-spaces which are equivalent to generalized topological spaces due to Lugojan [12]. In 2006, Noiri [16] introduced the notion of m- R_1 spaces and investigated several characterizations of $m-R_0$ spaces and $m-R_1$ spaces. Abd El-Monsef et al. [11] introduced a weak form of open sets called β -open sets. This notion was also called semi-preopen sets in the sense of Andrijević [1]. Noiri and Hatir [17] introduced the notion of Λ_{sp} -sets in terms of the concept of β -open sets and investigated the notion of Λ_{sp} -closed sets by using Λ_{sp} -sets. In [2], the author introduced the concepts DOI: https://doi.org/10.29020/nybg.ejpam.v15i3.4367 Email addresses: chawalit.b@msu.ac.th (C. Boonpok), chokchai.v@msu.ac.th (C. Viriyapong) ^{*}Corresponding author. of (Λ, sp) -open sets and (Λ, sp) -closed sets which are defined by utilizing the notions of Λ_{sp} -sets and β -closed sets. In this paper, introduce some weak separation axioms by utilizing the concepts of (Λ, sp) -open sets and the (Λ, sp) -closure operator. Furthermore, several characterizations of (Λ, sp) - R_0 and (Λ, sp) - R_1 topological spaces are discussed. ## 2. Preliminaries We begin with some definitions and known results which will be used throughout this paper. In the present paper, spaces (X,τ) and (Y,σ) (or simply X and Y) always mean topological spaces on which no separation axioms are assumed unless explicitly stated. For a subset A of a topological space (X,τ) , $\operatorname{Cl}(A)$ and $\operatorname{Int}(A)$ represent the closure and the interior of A, respectively. A subset A of a topological space (X,τ) is said to be β -open [11] if $A \subseteq Cl(Int(Cl(A)))$. The complement of a β -open set is called β -closed. The family of all β -open sets of a topological space (X,τ) is denoted by $\beta(X,\tau)$. A subset $\Lambda_{sp}(A)$ [17] is defined as follows: $\Lambda_{sp}(A) = \bigcap \{U \mid A \subseteq U, U \in \beta(X, \tau)\}$. A subset B of a topological space (X,τ) is called a Λ_{sp} -set [17] if $B=\Lambda_{sp}(B)$. A subset A of a topological space (X,τ) is called (Λ, sp) -closed [2] if $A = T \cap C$, where T is a Λ_{sp} -set and C is a β -closed set. The complement of a (Λ, sp) -closed set is called (Λ, sp) -open. The family of all (Λ, sp) -open (resp. (Λ, sp) -closed) sets in a topological space (X, τ) is denoted by $\Lambda_{sp}O(X, \tau)$ (resp. $\Lambda_{sp}C(X,\tau)$). Let A be a subset of a topological space (X,τ) . A point $x\in X$ is called a (Λ, sp) -cluster point [2] of A if $A \cap U \neq \emptyset$ for every (Λ, sp) -open set U of X containing x. The set of all (Λ, sp) -cluster points of A is called the (Λ, sp) -closure [2] of A and is denoted by $A^{(\Lambda,sp)}$. The union of all (Λ,sp) -open sets contained in A is called the (Λ,sp) -interior [2] of A and is denoted by $A_{(\Lambda,sp)}$. **Lemma 1.** [2] Let A and B be subsets of a topological space (X, τ) . For the (Λ, sp) -closure, the following properties hold: - (1) $A \subseteq A^{(\Lambda,sp)}$ and $[A^{(\Lambda,sp)}]^{(\Lambda,sp)} = A^{(\Lambda,sp)}$. - (2) If $A \subseteq B$, then $A^{(\Lambda,sp)} \subseteq B^{(\Lambda,sp)}$. - (3) $A^{(\Lambda,sp)}$ is (Λ,sp) -closed. - (4) A is (Λ, sp) -closed if and only if $A^{(\Lambda, sp)} = A$. **Lemma 2.** [2] For subsets A and B of a topological space (X, τ) , the following properties hold: - (1) $A_{(\Lambda,sp)} \subseteq A$ and $[A_{(\Lambda,sp)}]_{(\Lambda,sp)} = A_{(\Lambda,sp)}$. - (2) If $A \subseteq B$, then $A_{(\Lambda,sp)} \subseteq B_{(\Lambda,sp)}$. - (3) $A_{(\Lambda,sp)}$ is (Λ,sp) -open. - (4) A is (Λ, sp) -open if and only if $A_{(\Lambda, sp)} = A$. (5) $$[X - A]^{(\Lambda, sp)} = X - A_{(\Lambda, sp)}.$$ (6) $$[X - A]_{(\Lambda, sp)} = X - A^{(\Lambda, sp)}$$. # 3. Characterizations of (Λ, sp) - R_0 topological spaces In this section, we introduce the notion of (Λ, sp) - R_0 topological spaces. Moreover, several characterizations of (Λ, sp) - R_0 topological spaces are discussed. **Definition 1.** A topological space (X, τ) is called (Λ, sp) - R_0 if, for each (Λ, sp) -open set U and each $x \in U$, $\{x\}^{(\Lambda, sp)} \subseteq U$. **Theorem 1.** For a topological space (X,τ) , the following properties are equivalent: - (1) (X, τ) is (Λ, sp) - R_0 . - (2) For each (Λ, sp) -closed set F and each $x \in X F$, there exists $U \in \Lambda_{sp}O(X, \tau)$ such that $F \subseteq U$ and $x \notin U$. - (3) For each (Λ, sp) -closed set F and each $x \in X F$, $F \cap \{x\}^{(\Lambda, sp)} = \emptyset$. - (4) For any distinct points x, y in X, $\{x\}^{(\Lambda,sp)} = \{y\}^{(\Lambda,sp)}$ or $\{x\}^{(\Lambda,sp)} \cap \{y\}^{(\Lambda,sp)} = \emptyset$. *Proof.* (1) \Rightarrow (2): Let F be a (Λ, sp) -closed set and let $x \in X - F$. Since (X, τ) is (Λ, sp) - R_0 , we have $\{x\}^{(\Lambda, sp)} \subseteq X - F$. Put $U = X - \{x\}^{(\Lambda, sp)}$. Thus, by Lemma 1, $U \in \Lambda_{sp}O(X, \tau)$, $F \subseteq U$ and $x \notin U$. - $(2) \Rightarrow (3)$: Let F be a (Λ, sp) -closed set and let $x \in X F$. By (2), there exists $U \in \Lambda_{sp}O(X,\tau)$ such that $F \subseteq U$ and $x \notin U$. Since $U \in \Lambda_{sp}O(X,\tau)$, $U \cap \{x\}^{(\Lambda,sp)} = \emptyset$ and hence $F \cap \{x\}^{(\Lambda,sp)} = \emptyset$. - $(3) \Rightarrow (4)$: Let x and y be distinct points of X. Suppose that $\{x\}^{(\Lambda,sp)} \cap \{y\}^{(\Lambda,sp)} \neq \emptyset$. By (3), $x \in \{y\}^{(\Lambda,sp)}$ and $y \in \{x\}^{(\Lambda,sp)}$. By Lemma 1, $\{x\}^{(\Lambda,sp)} \subseteq \{y\}^{(\Lambda,sp)} \subseteq \{x\}^{(\Lambda,sp)}$ and hence $\{x\}^{(\Lambda,sp)} = \{y\}^{(\Lambda,sp)}$. - $(4) \Rightarrow (1)$: Let $V \in \Lambda_{sp}O(X,\tau)$ and let $x \in V$. For each $y \notin V$, $V \cap \{y\}^{(\Lambda,sp)} = \emptyset$ and hence $x \notin \{y\}^{(\Lambda,sp)}$. Thus, $\{x\}^{(\Lambda,sp)} \neq \{y\}^{(\Lambda,sp)}$. By (4), for each $y \notin V$, $$\{x\}^{(\Lambda,sp)} \cap \{y\}^{(\Lambda,sp)} = \emptyset.$$ Since X-V is (Λ, sp) -closed, $y \in \{y\}^{(\Lambda, sp)} \subseteq X-V$ and $\bigcup_{y \in X-V} \{y\}^{(\Lambda, sp)} = X-V$. Thus, $\{x\}^{(\Lambda, sp)} \cap (X-V) = \{x\}^{(\Lambda, sp)} \cap [\bigcup_{y \in X-V} \{y\}^{(\Lambda, sp)}] = \bigcup_{y \in X-V} [\{x\}^{(\Lambda, sp)} \cap \{y\}^{(\Lambda, sp)}] = \emptyset$ and hence $\{x\}^{(\Lambda, sp)} \subseteq V$. This shows that (X, τ) is (Λ, sp) - R_0 . **Corollary 1.** A topological space (X, τ) is (Λ, sp) - R_0 if and only if, for any points x and y in X, $\{x\}^{(\Lambda, sp)} \neq \{y\}^{(\Lambda, sp)}$ implies $\{x\}^{(\Lambda, sp)} \cap \{y\}^{(\Lambda, sp)} = \emptyset$. *Proof.* This is obvious by Theorem 1. Conversely, let $U \in \Lambda_{sp}O(X,\tau)$ and let $x \in U$. If $y \notin U$, then $U \cap \{y\}^{(\Lambda,sp)} = \emptyset$. Thus, $x \notin \{y\}^{(\Lambda,sp)}$ and $\{x\}^{(\Lambda,sp)} \neq \{y\}^{(\Lambda,sp)}$. By the hypothesis, $\{x\}^{(\Lambda,sp)} \cap \{y\}^{(\Lambda,sp)} = \emptyset$ and hence $y \notin \{x\}^{(\Lambda,sp)}$. This shows that $\{x\}^{(\Lambda,sp)} \subseteq U$. Thus, (X,τ) is $(X,\tau) = \emptyset$. **Definition 2.** [3] Let A be a subset of a topological space (X, τ) . A subset $\Lambda_{(\Lambda, sp)}$ is defined as follows: $\Lambda_{(\Lambda, sp)}(A) = \cap \{U \mid A \subseteq U, U \in \Lambda_{sp}(X, \tau)\}.$ **Lemma 3.** [3] For subsets A, B of a topological space (X, τ) , the following properties hold: - (1) $A \subseteq \Lambda_{(\Lambda,sp)}(A)$. - (2) If $A \subseteq B$, then $\Lambda_{(\Lambda,sp)}(A) \subseteq \Lambda_{(\Lambda,sp)}(B)$. - (3) $\Lambda_{(\Lambda,sp)}[\Lambda_{(\Lambda,sp)}(A)] = \Lambda_{(\Lambda,sp)}(A).$ - (4) If A is (Λ, sp) -open, $\Lambda_{(\Lambda, sp)}(A) = A$. **Lemma 4.** [3] Let (X, τ) be a topological space and $x, y \in X$. Then, the following properties hold: - (1) $y \in \Lambda_{(\Lambda,sp)}(\{x\})$ if and only if $x \in \{y\}^{(\Lambda,sp)}$. - (2) $\Lambda_{(\Lambda,sp)}(\{x\}) = \Lambda_{(\Lambda,sp)}(\{y\})$ if and only if $\{x\}^{(\Lambda,sp)} = \{y\}^{(\Lambda,sp)}$. **Theorem 2.** A topological space (X, τ) is (Λ, sp) - R_0 if and only if, for each points x and y in X, $\Lambda_{(\Lambda, sp)}(\{x\}) \neq \Lambda_{(\Lambda, sp)}(\{y\})$ implies $\Lambda_{(\Lambda, sp)}(\{x\}) \cap \Lambda_{(\Lambda, sp)}(\{y\}) = \emptyset$. Proof. Let (X, τ) be (Λ, sp) - R_0 . Suppose that $\Lambda_{(\Lambda, sp)}(\{x\}) \cap \Lambda_{(\Lambda, sp)}(\{y\}) \neq \emptyset$. Let $z \in \Lambda_{(\Lambda, sp)}(\{x\}) \cap \Lambda_{(\Lambda, sp)}(\{y\})$. Then, $z \in \Lambda_{(\Lambda, sp)}(\{x\})$ and by Lemma 4, $x \in \{z\}^{(\Lambda, sp)}$. Thus, $x \in \{z\}^{(\Lambda, sp)} \cap \{x\}^{(\Lambda, sp)}$ and by Corollary 1, $\{z\}^{(\Lambda, sp)} = \{x\}^{(\Lambda, sp)}$. Similarly, we have $\{z\}^{(\Lambda, sp)} = \{y\}^{(\Lambda, sp)}$ and hence $\{x\}^{(\Lambda, sp)} = \{y\}^{(\Lambda, sp)}$, by Lemma 4, $$\Lambda_{(\Lambda,sp)}(\{x\}) = \Lambda_{(\Lambda,sp)}(\{y\}).$$ Conversely, we show the sufficiency by using Corollary 1. Suppose that $${x}^{(\Lambda,sp)} \neq {y}^{(\Lambda,sp)}.$$ By Lemma 4, $\Lambda_{(\Lambda,sp)}(\{x\}) \neq \Lambda_{(\Lambda,sp)}(\{y\})$ and hence $\Lambda_{(\Lambda,sp)}(\{x\}) \cap \Lambda_{(\Lambda,sp)}(\{y\}) = \emptyset$. Thus, $\{x\}^{(\Lambda,sp)} \cap \{y\}^{(\Lambda,sp)} = \emptyset$. In fact, assume that $z \in \{x\}^{(\Lambda,sp)} \cap \{y\}^{(\Lambda,sp)}$. Then, $z \in \{x\}^{(\Lambda,sp)}$ implies $x \in \Lambda_{(\Lambda,sp)}(\{z\})$ and hence $x \in \Lambda_{(\Lambda,sp)}(\{z\}) \cap \Lambda_{(\Lambda,sp)}(\{x\})$. By the hypothesis, $\Lambda_{(\Lambda,sp)}(\{z\}) = \Lambda_{(\Lambda,sp)}(\{x\})$ and by Lemma 4, $\{z\}^{(\Lambda,sp)} = \{x\}^{(\Lambda,sp)}$. Similarly, we have $\{z\}^{(\Lambda,sp)} = \{y\}^{(\Lambda,sp)}$ and hence $\{x\}^{(\Lambda,sp)} = \{y\}^{(\Lambda,sp)}$. This contradicts that $${x}^{(\Lambda,sp)} \neq {y}^{(\Lambda,sp)}.$$ Thus, $\{x\}^{(\Lambda,sp)} \cap \{y\}^{(\Lambda,sp)} = \emptyset$. This shows that (X,τ) is (Λ,sp) - R_0 . **Theorem 3.** For a topological space (X, τ) , the following properties are equivalent: (1) (X, τ) is (Λ, sp) - R_0 . - (2) $x \in \{y\}^{(\Lambda,sp)}$ if and only if $y \in \{x\}^{(\Lambda,sp)}$. - *Proof.* (1) \Rightarrow (2): Suppose that $x \in \{y\}^{(\Lambda,sp)}$. By Lemma 4, $y \in \Lambda_{(\Lambda,sp)}(\{x\})$ and hence $\Lambda_{(\Lambda,sp)}(\{x\}) \cap \Lambda_{(\Lambda,sp)}(\{y\}) \neq \emptyset$. By Theorem 2, $\Lambda_{(\Lambda,sp)}(\{x\}) = \Lambda_{(\Lambda,sp)}(\{y\})$ and hence $x \in \Lambda_{(\Lambda,sp)}(\{y\})$. Thus, by Lemma 4, $y \in \{x\}^{(\Lambda,sp)}$. The converse is similarly shown. - $(2) \Rightarrow (1)$: Let $U \in \Lambda_{sp}O(X,\tau)$ and let $x \in U$. If $y \notin U$, then $U \cap \{y\}^{(\Lambda,sp)} = \emptyset$. Thus, $x \notin \{y\}^{(\Lambda,sp)}$ and $y \notin \{x\}^{(\Lambda,sp)}$. This implies that $\{x\}^{(\Lambda,sp)} \subseteq U$. Therefore, (X,τ) is (Λ,sp) - R_0 . **Theorem 4.** For a topological space (X, τ) , the following properties are equivalent: - (1) (X, τ) is (Λ, sp) - R_0 . - (2) For each nonempty subset A of X and each $U \in \Lambda_{sp}O(X,\tau)$ such that $A \cap U \neq \emptyset$, there exists a (Λ, sp) -closed set F such that $A \cap F \neq \emptyset$ and $F \subseteq U$. - (3) $F = \Lambda_{(\Lambda,sp)}(F)$ for each (Λ,sp) -closed set F. - (4) $\{x\}^{(\Lambda,sp)} = \Lambda_{(\Lambda,sp)}(\{x\})$ for each $x \in X$. - (5) $\{x\}^{(\Lambda,sp)} \subseteq \Lambda_{(\Lambda,sp)}(\{x\})$ for each $x \in X$. - *Proof.* (1) \Rightarrow (2): Let A be a nonempty subset of X and let $U \in \Lambda_{sp}O(X,\tau)$ such that $A \cap U \neq \emptyset$. Then, there exists $x \in A \cap U$ and hence $\{x\}^{(\Lambda,sp)} \subseteq U$. Put $F = \{x\}^{(\Lambda,sp)}$, by Lemma 1, F is (Λ, sp) -closed, $A \cap F \neq \emptyset$ and $F \subseteq U$. - $(2)\Rightarrow (3)$: Let F be any (Λ, sp) -closed set of X. By Lemma 3, we have $F\subseteq \Lambda_{(\Lambda, sp)}(F)$. Next, we show $F\supseteq \Lambda_{(\Lambda, sp)}(F)$. Let $x\not\in F$. Then, $x\in X-F\in \Lambda_{sp}O(X,\tau)$ and by (2), there exists a (Λ, sp) -closed set K such that $x\in K$ and $K\subseteq X-F$. Now, put U=X-K. Then, $F\subseteq U\in \Lambda_{sp}O(X,\tau)$ and $x\not\in U$. Thus, $x\not\in \Lambda_{(\Lambda, sp)}(F)$. This shows that $F\supseteq \Lambda_{(\Lambda, sp)}(F)$. - $(3) \Rightarrow (4): \text{ Let } x \in X \text{ and let } y \notin \Lambda_{(\Lambda,sp)}(\{x\}). \text{ Then, there exists } U \in \Lambda_{sp}O(X,\tau) \text{ such that } x \in U \text{ and } y \notin U. \text{ Thus, } U \cap \{y\}^{(\Lambda,sp)} = \emptyset. \text{ By } (3), \ U \cap \Lambda_{(\Lambda,sp)}(\{y\}^{(\Lambda,sp)}) = \emptyset. \text{ Since } x \notin \Lambda_{(\Lambda,sp)}(\{y\}^{(\Lambda,sp)}), \text{ there exists } V \in \Lambda_{sp}O(X,\tau) \text{ such that } \{y\}^{(\Lambda,sp)} \subseteq V \text{ and } x \notin V. \text{ Thus, } V \cap \{x\}^{(\Lambda,sp)} = \emptyset. \text{ Since } y \in V, \ y \notin \{x\}^{(\Lambda,sp)} \text{ and hence } \{x\}^{(\Lambda,sp)} \subseteq \Lambda_{(\Lambda,sp)}(\{x\}). \text{ Moreover, } \{x\}^{(\Lambda,sp)} \subseteq \Lambda_{(\Lambda,sp)}(\{x\}) \subseteq \Lambda_{(\Lambda,sp)}(\{x\}). \text{ This shows that } \{x\}^{(\Lambda,sp)} = \Lambda_{(\Lambda,sp)}(\{x\}).$ - $(4) \Rightarrow (5)$: The proof is obvious. - (5) \Rightarrow (1): Let $U \in \Lambda_{sp}O(X,\tau)$ and let $x \in U$. If $y \notin U$, then $U \cap \{y\}^{(\Lambda,sp)} = \emptyset$ and $x \notin \{y\}^{(\Lambda,sp)}$. By Lemma 4, $y \notin \Lambda_{(\Lambda,sp)}(\{x\})$ and by (5), $y \notin \{x\}^{(\Lambda,sp)}$. Thus, $\{x\}^{(\Lambda,sp)} \subseteq U$ and hence (X,τ) is (Λ,sp) - R_0 . Corollary 2. A topological space (X, τ) is (Λ, sp) - R_0 if and only if $\Lambda_{(\Lambda, sp)}(\{x\}) \subseteq \{x\}^{(\Lambda, sp)}$ for each $x \in X$. *Proof.* This is obvious by Theorem 4. Conversely, let $x \in \{y\}^{(\Lambda,sp)}$. Thus, by Lemma 4, we have $y \in \Lambda_{(\Lambda,sp)}(\{x\})$ and hence $y \in \{x\}^{(\Lambda,sp)}$. Similarly, if $y \in \{x\}^{(\Lambda,sp)}$, then $x \in \{y\}^{(\Lambda,sp)}$. It follows from Theorem 3 that (X,τ) is (Λ,sp) - R_0 . **Definition 3.** [3] Let (X, τ) be a topological space and $x \in X$. A subset $\langle x \rangle_{sp}$ is defined as follows: $\langle x \rangle_{sp} = \Lambda_{(\Lambda, sp)}(\{x\}) \cap \{x\}^{(\Lambda, sp)}$. **Corollary 3.** A topological space (X, τ) is (Λ, sp) - R_0 if and only if $\langle x \rangle_{sp} = \{x\}^{(\Lambda, sp)}$ for each $x \in X$. *Proof.* Let $x \in X$. By Theorem 4, $\Lambda_{(\Lambda,sp)}(\{x\}) = \{x\}^{(\Lambda,sp)}$. Thus, $$\langle x \rangle_{sp} = \Lambda_{(\Lambda, sp)}(\{x\}) \cap \{x\}^{(\Lambda, sp)} = \{x\}^{(\Lambda, sp)}.$$ Conversely, let $x \in X$. By the hypothesis, $$\{x\}^{(\Lambda,sp)} = \langle x \rangle_{sp} = \Lambda_{(\Lambda,sp)}(\{x\}) \cap \{x\}^{(\Lambda,sp)} \subseteq \Lambda_{(\Lambda,sp)}(\{x\}).$$ It follows from Theorem 4 that (X, τ) is (Λ, sp) - R_0 . ## 4. Characterizations of (Λ, sp) - R_1 topological spaces We begin this section by introducing the notion of (Λ, sp) - R_1 topological spaces. **Definition 4.** A topological space (X, τ) is said to be (Λ, sp) - R_1 if, for each points x, y in X with $\{x\}^{(\Lambda, sp)} \neq \{y\}^{(\Lambda, sp)}$, there exist disjoint (Λ, sp) -open sets U and V such that $\{x\}^{(\Lambda, sp)} \subseteq U$ and $\{y\}^{(\Lambda, sp)} \subseteq V$. **Theorem 5.** A topological space (X, τ) is (Λ, sp) - R_1 if and only if, for any points x, y in X with $\{x\}^{(\Lambda, sp)} \neq \{y\}^{(\Lambda, sp)}$, there exist (Λ, sp) -closed sets F and K such that $x \in F$, $y \notin F$, $y \in K$, $x \notin K$ and $X = F \cup K$. *Proof.* Let x and y be any points in X with $\{x\}^{(\Lambda,sp)} \neq \{y\}^{(\Lambda,sp)}$. Then, there exist disjoint $U,V \in \Lambda_{sp}O(X,\tau)$ such that $\{x\}^{(\Lambda,sp)} \subseteq U$ and $\{y\}^{(\Lambda,sp)} \subseteq V$. Now, put F = X - V and K = X - U. Then, F and K are (Λ,sp) -closed sets of X such that $x \in F$, $y \notin F$, $y \in K$, $x \notin K$ and $X = F \cup K$. Conversely, let x and y be any points in X such that $\{x\}^{(\Lambda,sp)} \neq \{y\}^{(\Lambda,sp)}$. Then, $\{x\}^{(\Lambda,sp)} \cap \{y\}^{(\Lambda,sp)} = \emptyset$. In fact, if $z \in \{x\}^{(\Lambda,sp)} \cap \{y\}^{(\Lambda,sp)}$, then $\{z\}^{(\Lambda,sp)} \neq \{x\}^{(\Lambda,sp)}$ or $\{z\}^{(\Lambda,sp)} \neq \{y\}^{(\Lambda,sp)}$. In case $\{z\}^{(\Lambda,sp)} \neq \{x\}^{(\Lambda,sp)}$, by the hypothesis, there exists a (Λ,sp) -closed set F such that $x \in F$ and $z \notin F$. Then, $z \in \{x\}^{(\Lambda,sp)} \subseteq F$. This contradicts that $z \notin F$. In case $\{z\}^{(\Lambda,sp)} \neq \{y\}^{(\Lambda,sp)}$, similarly, this leads to the contradiction. Thus, $\{x\}^{(\Lambda,sp)} \cap \{y\}^{(\Lambda,sp)} = \emptyset$, by Corollary 1, (X,τ) is (Λ,sp) - R_0 . By the hypothesis, there exist (Λ,sp) -closed sets F and K such that $x \in F$, $y \notin F$, $y \in K$, $x \notin K$ and $X = F \cup K$. Put U = X - K and V = X - F. Then, $x \in U \in \Lambda_{sp}O(X,\tau)$ and $y \in V \in \Lambda_{sp}O(X,\tau)$. Since (X,τ) is (Λ,sp) - R_0 , we have $\{x\}^{(\Lambda,sp)} \subseteq U$, $\{y\}^{(\Lambda,sp)} \subseteq V$ and also $U \cap V = \emptyset$. This shows that (X,τ) is (Λ,sp) - R_1 . **Definition 5.** [2] Let A be a subset of a topological space (X, τ) . The $\theta(\Lambda, sp)$ -closure of A, $A^{\theta(\Lambda, sp)}$, is defined as follows: $$A^{\theta(\Lambda,sp)} = \{x \in X \mid A \cap U^{(\Lambda,sp)} \neq \emptyset \text{ for each } U \in \Lambda_{sp}O(X,\tau) \text{ containing } x\}.$$ **Lemma 5.** If a topological space (X,τ) is $(\Lambda, sp)-R_1$, then (X,τ) is $(\Lambda, sp)-R_0$. Proof. Let $U \in \Lambda_{sp}O(X,\tau)$ and let $x \in U$. If $y \notin U$, then $U \cap \{y\}^{(\Lambda,sp)} = \emptyset$ and $x \notin \{y\}^{(\Lambda,sp)}$. Therefore, $\{x\}^{(\Lambda,sp)} \neq \{y\}^{(\Lambda,sp)}$. Since (X,τ) is (Λ,sp) - R_1 , there exists $V \in \Lambda_{sp}O(X,\tau)$ such that $\{y\}^{(\Lambda,sp)} \subseteq V$ and $x \notin V$. Thus, $V \cap \{x\}^{(\Lambda,sp)} = \emptyset$ and hence $y \notin \{x\}^{(\Lambda,sp)}$. Therefore, $\{x\}^{(\Lambda,sp)} \subseteq U$. This shows that (X,τ) is (Λ,sp) - R_0 . **Theorem 6.** A topological space (X, τ) is (Λ, sp) - R_1 if and only if $\langle x \rangle_{sp} = \{x\}^{\theta(\Lambda, sp)}$ for each $x \in X$. Proof. Let (X, τ) be (Λ, sp) - R_1 . By Lemma 5, (X, τ) is (Λ, sp) - R_0 and by Corollary 3, $\langle x \rangle_{sp} = \{x\}^{(\Lambda, sp)} \subseteq \{x\}^{\theta(\Lambda, sp)}$ for each $x \in X$. Thus, $\langle x \rangle_{sp} \subseteq \{x\}^{\theta(\Lambda, sp)}$ for each $x \in X$. In order to show the opposite inclusion, suppose that $y \notin \langle x \rangle_{sp}$. Then, $\langle x \rangle_{sp} \neq \langle y \rangle_{sp}$. Since (X, τ) is (Λ, sp) - R_0 , by Corollary 3, $\{x\}^{(\Lambda, sp)} \neq \{y\}^{(\Lambda, sp)}$. Since (X, τ) is (Λ, sp) - R_1 , there exist disjoint (Λ, sp) -open sets U and V of X such that $\{x\}^{(\Lambda, sp)} \subseteq U$ and $\{y\}^{(\Lambda, sp)} \subseteq V$. Since $\{x\} \cap V^{(\Lambda, sp)} \subseteq U \cap V^{(\Lambda, sp)} = \emptyset$, $y \notin \{x\}^{\theta(\Lambda, sp)}$. Thus, $\{x\}^{\theta(\Lambda, sp)} \subseteq \langle x \rangle_{sp}$ and hence $\{x\}^{\theta(\Lambda, sp)} = \langle x \rangle_{sp}$. Conversely, suppose that $\{x\}^{\theta(\Lambda,sp)} = \langle x \rangle_{sp}$ for each $x \in X$. Then, $$\langle x \rangle_{sp} = \{x\}^{\theta(\Lambda,sp)} \supseteq \{x\}^{(\Lambda,sp)} \supseteq \langle x \rangle_{sp}$$ and $\langle x \rangle_{sp} = \{x\}^{(\Lambda,sp)}$ for each $x \in X$. By Corollary 3, (X,τ) is (Λ,sp) - R_0 . Suppose that $\{x\}^{(\Lambda,sp)} \neq \{y\}^{(\Lambda,sp)}$. Thus, by Corollary 1, $\{x\}^{(\Lambda,sp)} \cap \{y\}^{(\Lambda,sp)} = \emptyset$. By Corollary 3, $\langle x \rangle_{sp} \cap \langle y \rangle_{sp} = \emptyset$ and hence $\{x\}^{\theta(\Lambda,sp)} \cap \{y\}^{\theta(\Lambda,sp)} = \emptyset$. Since $y \notin \{x\}^{\theta(\Lambda,sp)}$, there exists a (Λ,sp) -open set U of X such that $y \in U \subseteq U^{(\Lambda,sp)} \subseteq X - \{x\}$. Let $V = X - U^{(\Lambda,sp)}$, then $x \in V \in \Lambda_{sp}O(X,\tau)$. Since (X,τ) is (Λ,sp) - R_0 , $\{y\}^{(\Lambda,sp)} \subseteq U$, $\{x\}^{(\Lambda,sp)} \subseteq V$ and $U \cap V = \emptyset$. This shows that (X,τ) is (Λ,sp) - R_1 . **Corollary 4.** A topological space (X, τ) is (Λ, sp) - R_1 if and only if $\{x\}^{(\Lambda, sp)} = \{x\}^{\theta(\Lambda, sp)}$ for each $x \in X$. *Proof.* Let (X, τ) be (Λ, sp) - R_1 . By Theorem 6, we have $$\{x\}^{(\Lambda,sp)} \supset \langle x \rangle_{sp} = \{x\}^{\theta(\Lambda,sp)} \supset \{x\}^{(\Lambda,sp)}$$ and hence $\{x\}^{(\Lambda,sp)} = \{x\}^{\theta(\Lambda,sp)}$ for each $x \in X$. Conversely, suppose that $\{x\}^{(\Lambda,sp)} = \{x\}^{\theta(\Lambda,sp)}$ for each $x \in X$. First, we show that (X,τ) is (Λ,sp) - R_0 . Let $U \in \Lambda_{sp}O(X,\tau)$ and $x \in U$. Let $y \notin U$. Then, $$U \cap \{y\}^{(\Lambda,sp)} = U \cap \{y\}^{\theta(\Lambda,sp)} = \emptyset.$$ Thus, $x \notin \{y\}^{\theta(\Lambda,sp)}$. There exists $V \in \Lambda_{sp}O(X,\tau)$ such that $x \in V$ and $y \notin V^{(\Lambda,sp)}$. Since $\{x\}^{(\Lambda,sp)} \subseteq V^{(\Lambda,sp)}$, $y \notin \{x\}^{(\Lambda,sp)}$. This shows that $\{x\}^{(\Lambda,sp)} \subseteq U$ and hence (X,τ) is (Λ,sp) - R_0 . By Corollary 3, $\langle x \rangle_{sp} = \{x\}^{(\Lambda,sp)} = \{x\}^{\theta(\Lambda,sp)}$ for each $x \in X$. Thus, by Theorem 6, (X,τ) is (Λ,sp) - R_1 . REFERENCES 885 ## Acknowledgements This research project was financially supported by Mahasarakham University. ## References - [1] D. Andrijević. On b-open sets. Matematički Vesnik, 48:59–64, 1996. - [2] C. Boonpok. (Λ, sp) -closed sets and related topics in topological spaces. WSEAS Transactions on Mathematics, 19:312–322, 2020. - [3] C. Boonpok and C. Viriyapong. On generalized (Λ, sp) -closed sets. European Journal of Pure and Applied Mathematics, (accepted). - [4] M. Caldas, D. N. Georgiou, S. Jafari, and T. Noiri. On (Λ, θ) -closed sets. Questions and Answers in General Topology, 23:69–87, 2005. - [5] M. Caldas, S. Jafari, and T. Noiri. Characterizations of Λ_{θ} - R_0 and Λ_{θ} - R_1 topological spaces. Acta Mathematica Hungarica, 103(1-2):89–95, 2004. - [6] F. Cammaroto and T. Noiri. On Λ_m -sets and related topological spaces. Acta Mathematica Hungarica, 109:261–279, 2005. - [7] A. S. Davis. Indexed systems of neighborhoods for general topological spaces. *The American Mathematical Monthly*, 68:886–893, 1961. - [8] C. Dorsett. R_0 and R_1 topological spaces. Matematički Vesnik, 2(15)(30):117-122, 1978. - [9] K. K. Dube. A note on R_0 topological spaces. Matematički Vesnik, 11:203–208, 1974. - [10] K. K. Dube. A note on R_1 topological spaces. Periodica Mathematica Hungarica, 13:267–271, 1982. - [11] M. E. Abd El-Monsef, S. N. El-Deeb, and R. A. Mahmoud. β -open sets and β -continuous mappings. Bulletin of the Faculty of Science. Assist University, 12:77–90, 1983. - [12] S. Lugojan. Generalized topology. Studii și Cercetări de Matematică, 34:348–360, - [13] S. N. Maheshwari and R. Prasad. On $(R_0)_s$ -spaces. Portugaliae Mathematica, 34:213–217, 1975. - [14] M. G. Murdeshwar and S. A. Naimpally. R_1 topological spaces. Canadian Mathematical Bulletin, 9:521–523, 1966. - [15] S. A. Naimpally. On R_0 topological spaces. Annales Universitatis Scientiarum Budapestinensis de Rolando Eötvös Nominatae Sectio Mathematica, 10:53–54, 1967. REFERENCES 886 [16] T. Noiri. Unified characterizations for modifications of R_0 and R_1 topological spaces. Rendiconti del Circolo Matematico de Palermo (2), 60:29–42, 2006. - [17] T. Noiri and E. Hatir. Λ_{sp} -sets and some weak separation axioms. Acta Mathematica Hungarica, 103(3):225-232, 2004. - [18] N. A. Shanin. On separation in topological spaces. *Doklady Akademii Nauk SSSR*, 38:110–113, 1943. - [19] N. V. Veličko. *H*-closed topological spaces. *American Mathematical Society Translations: Series* 2, 78:102–118, 1968.