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Abstract. If (X, T) is a topological space, then the semi-regularization topology 7 on X of T
is the coarser topology on X generated by the family of all open domains of ( X, 7 ) where a subset
U is called an open domain if U = int(U). In this paper, we study the semi-regularity of some
generated spaces and some properties of weaker version of normality of the semi-regularization

space (X, Ty) of a space (X, T).
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If (X, T) is a topological space, then the semi-regularization topology Ts on X of
T is the coarser topology on X generated by the family of all open domains of (X, 7))
where a subset U is called an open domain if U = int(U). In this paper, we study some
properties of weaker version of normality of the semi-regularization space (X, T4 ) of a
space (X, 7). Also, we study the semi-regularity of some generated spaces. This paper
may considered as a continuation of the study of Mrsevi¢, Reilly and Vamanamurthy in
[10].

Throughout this paper, we denote the set of positive integers by N, the rationals by
Q, the irrationals by P, and the set of real numbers by R. A T} space is a 11 normal space
and a Tychonoff space (T} %) is a T1 completely regular space. We do not assume 75 in
the definition of compactness and countable compactness. For a subset A of a space X,
intA and A denote the interior and the closure of A, respectively. If two topologies 7 and
T’ on a set X are considered, we denote the interior of A in (X, 7) by int . A and int A

for the interior of A in (X, 7'). We denote the closure of A in (X, 7') by a and,
similarly, A" denotes the closure of A in (X, 7). We denote an order pair by (z,7).
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1. Semi-Regularity

We have to start by recalling some basic definitions.

Definition 1. A subset A of a space X is called closed domain [6], called also regular
closed, k-closed [9],if A =intA. A subset A of a space X is called open domain [6], called

also regular open, k-open, if A =1int( A).

It is easy to see that a subset is an open domain if and only if it is the interior of a
closed set, a subset is a closed domain if and only if it is the closure of an open set, the
complement of a closed domain is an open domain and the complement of an open domain
is a closed domain [6]. Now, let (X, 7 ) be a topological space and let OD denotes the
family of all open domains in (X, 7). Since X is an open domain and an intersection of
two open domains is an open domain [6, 1.1.C], then we have the following definition [6].

Definition 2. If (X, T) is a topological space, then the semi-regularization topology T s
on X of T is the coarser topology on X generated by the family of all open domains of ( X ,
T). (X, T) is called semi-reqular if T= T4 (X, Ts) is called the semi-reqularization
topological space of (X, T), see [10].

Since any open domain is an open set, then for any space (X, 7 ), we have that T
is coarser than T, that is, T4 C 7. Note that if ) ## U C X, then U € T, if and only if
U = Uqen Va with V, is an open domain in (X, 7 ) for each a € A. Equivalently U €
T, if and only if for each € U there exists an open domain G in (X, 7) such that
reGCU,|11].

If CF is the finite complement topology on an infinite set, then CF; = Z, where 7 is
the indiscrete topology. If CC is the countable complement topology on an uncountable
set, then CCs = Z. If X = {(x,y) : y > 0}, the closed upper half plan, then the semi-
regularization topology of the Half-Disc topology on X [12, Example 78|, is the usual
metric topology U on X. If X is regular, then it is semi-regular [6, 1.1.8]. The converse is
not always true. As an example the simplified Arens square [12, Example 81].

2. Semi-regularity of generated spaces

There are many ways of generating new spaces from old ones. In this section, we
study the semi-regularity of the Alexandroff duplicate, the closed extension, the discrete
extension, and the open extension of a given space X.

Recall that the Alexandroff Duplicate space A(X) of a space X is defined as follows:
Let X be any topological space. Let X’ = X x {1}, so X’ is just a copy of X. Note that
XNX' =0. Let A(X) =X UX'. For simplicity, for an element x € X, we will denote the
element (z,1) in X’ by 2’ and for a subset B C X, let B’ ={2/: x € B} = Bx {1} C X".
For each 2/ € X', let B(2') = {{a'}}. Foreachx € X, let B(x) = {UU(U'\E) : U is open in
X with z € U and F is a finite subset of X’ }. Then B = {B(z) : € X}U{B(2') : 2’ € X'}
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will generate a unique topology on A(X) such that B is its neighborhood system. A(X)
with this topology is called the Alexandroff Duplicate of X [2, 5].

Our goal is to show that “if X is semi-reqular, then so is its Alexandroff duplicate
A(X)”. In order to show this we will follow five steps expressed in the following Lemmas
and Theorem 1. As a notation we will call a subset which is closed and open by clopen.

Lemma 1. For each 2/ € X', {2’} is clopen in A(X).

Proof. Let 2/ € X’ be arbitrary. We need only to show that {2’} is closed. So, let
a € A(X)\ {2/} be arbitrary. If a € X’ then {a} is an open neighborhood of a in A(X)
with {a} € A(X)\ {2'}. If a € X, pick any open neighborhood U C X of a. Then
U U (U'"\ {2'}) is an open neighborhood of a in A(X) with UU (U"\ {z'}) C A(X) \ {«'}.
Thus A(X) \ {2’} is open in A(X). Therefore, {2’} is closed.

Lemma 2. Let (X, T) be any topological space. If C is clopen in X and B is an open
domain in X , then B\ C is an open domain in X.

Proof. we want to show that, int(B\ C) = B\ C. We always have B\ C C B\ C , by
taking the interior in both sides we get int(B\ C) C int(B\ C). But int(B\ C) = int(B N
(X\C)) =int(B)Nint(X\ C) = BN (X\ C) = B\ C, because C is clopen and B is an open
domain so B is an open set, thus B\ C' is an open set. Thus, B\ C' C int(B \ C). Now, we
always have int( B\ C') € B\ C. Thusint(B\ C) CB\C=BnN(X\C) CBN(X\C) =
BN (X\ C), because C is clopen in X. int(B\ C)C BN (X \ C) then, int(int(B\ C))
C int(BN(X\ C)) thus, int(B\ C) C int(B) Nint(X \ C) hence, int(B\ C) C BN (X\C) =
B\ C, because B is an open domain and C is clopen in X. Thus, int(B\ C) € B\ C.
Therefore, int(B\ C) = B\ C. Thus, B\ C is an open domain .

Notice that, if U is any non-empty open set in X, then U U (U"\ () = UUU’ is a basic
open neighborhood in A(X) of any x € U. So, we establish that the following lemma.

Lemma 3. IfU is an open set in X, then UUU’ is an open set in A(X)

Theorem 1. If U is an open domain in X, then UUU’ is an open domain in A(X).

Proof. Let U be an open domain in X. We show that U U U’ = int 4(x)(U U g7 4%

first, we show that int 4 x)(U U U’A(X)) CUUU" Let x € int 4 x)(U U g7 A0
trary, then x € U U U’ A(X). There are only two cases.

Case 1: x € X'. So, {z} is an open set in A(X) with z € {z} and {z} N (U UU’) # 0,
thenzx € U CUUU’'. Thus, x e UUU'.
Case 2: x € X. Since x € int 4(x)(U U o
xEVsuchthatxeVU(V’\E)QUUU’A =U
subset of X’/. Thus, z € V C UA(X), but UA(X) U, So,z eV C UX, by taking the
interior of both sides with respect to X we get, int x(V) C intX(UX) , then V C U as
V is an open set in X and U is an open domain in X. Thus, x € U C U U U’. Hence

)
) be arbi-

(X))

, then there exist an open set V' in X with

X _ gAX) U WA(X) where E' is a finite
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int 40T OT ) cuu.

Now, we show that U U U’ C int 4(x)(U U U’ A(X)). Note that we always have U U U’ C

vu U/A(X). Since U is an open domain in X, then U is an open set in X , so by Lemma
3, UUU’ is an open set in A(X). Then by taking the interior of both sides with respect

to A(X) we get, UUU" = int 4x) (U UU') C int A(X)(WA(X)).
Hence, UuU U/ — mtA(X)(WA(X)) Therefore, Uu UI is an open domain in A(X)

As an immediate consequence of the Theorem 1 is the following Corollary 1.

Corollary 1. If U is an open domain in X, then UU(U'\ E) is an open domain in A(X)
where E is a finite subset of X' .

Proof. Let U be any open domain in X. By Lemma 1, we have any singleton in X’
is clopen in A(X), then E is clopen in A(X) because finite union of closed sets is closed
and arbitrary union of open sets is open. Also, by Theorem 1, we have U U U’ is an open
domain in A(X). But, U U{U'\ E) = (UUU’)\ E is an open domain in A(X) by Lemma
2.

Theorem 2. If (X, T) is semi-reqular, then so is its Alexandroff duplicate A(X).

Proof. Let (X, T) be any semi-regular topological space. Let ) # W be any open set
in A(X) and let x € W be arbitrary. To show that A(X) is semi-regular, it is enough to
exhibit an open domain subset G in A(X) such that x € G C W. For such an z, we have
only two cases.

Case 1: € X'. Since any clopen subset is an open domain, then by Lemma 1, there exist
an open domain G = {z} in A(X) such that x € G C W.

Case 2: x € X. Since W is an open set in A(X) with z € W, then there exists an open set
Uin X withz € U and UU (U’ \ E) C W , where E is a finite subset of X’. Now, since
(X, T) is semi-regular, then there exists an open domain V in X such that z € V C U.
Thus, z € (VU(V\E)) C(UU(U\E)) C W By Corollary 1, we get VU(V'\E) =G
is an open domain in A(X) such that x € G C W.

Therefore, A(X) is semi-regular.

Definition 3. Let (X, T ) be a topological space and let p be an object not in X, that is,
p & X. Put XP = X U{p}. Define a topology T* on XP by T* ={0tU{UU{p}:U €
T }. The space (XP, T*) is called the closed extension space of (X , T ), see [12, Example
12)].

Consider the particular point topology 7, = {W C X? :p € W } on XP, [12, Example
10]. It is easy to see that T is coarser than T, that is, 7* C 7,. Notice that the closed
extension ( XP, 7*) of a space (X, T) is not semi-regular regardless wither (X, 7) is
semi-regular or not.
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Example 1. Let ( X, 7 ) be the Simplified Arens Square topological space, [12, Example
81]. So, X ={(0,0),(1,0) } U{(x,y) : 0 <x,y < 1}. The topology T on X is generated
by the following neighborhood system: For each (x,y) € {(z,y) : 0 < x,y < 1}, let
B((x,y)) = { Ba((z,y);€) C S :€> 0} where d is the usual metric on R? and By({z, y); )
is the open ball centered at (x,y) of radius € > 0 so that € is small enough to make the
open ball B;({x,y);€) is contained in { (z,y) : 0 < z,y < 1 }. Let B((0,0)) = { U,((0,0)) :
n € N}, where for each n € N, we have
Un((0,0)) = {{(0,0) }U{(z,y) € S: 0 <z < % and 0 < y < %} Let 9B((1,0)) =
{Un((1,0)) : n € N}, where for each n € N, we have
Upn((1,0)) = {{(1,0) }U{(z,9) € S: s <a<land 0 <y < 1} In [12, Example 81], it
was shown that the Simplified Arens Square space ( X, T ) is semi-regular.

Let U be any non-empty proper open subset (31C X, then U U {p} is an open set in XP

such that U # XP. Now, U U {p} = U U{p}  =U" UXP = XP because {p} is dense
in (XP, 7%). Hence, int+(U U{p} ) = intq (XP) = X? # U U {p}. Thus the only
open domains in ( X?, 7*) are X? and ), then 7% = Z on X?, where Z is the indiscrete

topology. Therefore, the closed extension topological space (XP, 7*) of the Simplified
Arens Square space (X, T) is not semi-regular. B

Definition 4. Let M be a non-empty proper subset of a topological space (X , T ). Define
a new topology T nry on X as follows: Ty ={UUK:U €T and K C X\ M} (X,
T (wmy) is called a discrete extension of (X , T) and we denote (X, T () ), simply, by Xy
[1], see also [6, Example 5.1.22].

Observe that if U is an open set in X, then U is also open in Xj; because we can write
U = U U(. The space X)s has the following neighborhood system: For each z € X \ M,
let B(z) = {{z}} and for each x € M, let B(z) = {U € T: 2 € U}. If X is a semi-
regular topological space and () # M C X, then the discrete extension Xj; may not be
semi-regular as can be shown in the following example.

Example 2. Consider, (R, Z) where Z is the indiscrete topology. It is clear that (R ,
T) is semi-regular. Put M = R\ {0}. Then, the discrete extension Xj; can be describe as
follows: B(0) = { {0} } and for each = # 0, B(xz) = { R }. X} is not semi-regular because
{0} is an open set in X, but int x,, (@XM) = int x,, (R)= R # {0}. Thus, {0} is not
an open domain in Xj;. Hence, 0 € {0} with {0} is an open set and there is no open
domain G in X, satisfies 0 € G C {0}. Therefore, X, is not semi-regular. B

Lemma 4. Let (X, T) be a topological space. Let M be any non-empty proper subset of
X. Then, for any open domain U in X, U is an open domain in Xy;.

Proof. Let U be any open domain in X, we always have U C T By taking the
interior of both sides with respect to X we get, intx,, (U) C intx,, (UXM). But since
U is an open domain in X, then U is an open set in X. Thus, U is an open set in Xj,.
Hence, intx,, (U) = U, therefore U C intx,, (UXM) K

Now, let z € intx,, (ﬁXM) be arbitrary, then z € (UXM). There are only two cases.
Case 1: z € X \ M. Since {z} is an open neighborhood of z in X, satisfies {x} NU # 0,
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then z € U.

. . =X . .
Case 2: € M. Since x € intx,,(U" "), then there exist an open set V in X such that
77X
reV CU

than the topology on Xj;. Therefore, we have x € V' C T , then by taking the interior

of both sides with respect to X we have, x € intxV =V C intX(UX) = U because U is an

. . : . =X
open domain in X and V is an open set in X. Hence, x € U, thus intx,, (U~ ") C U ... xx.
XM
)

By % and »*x we get U = intx,, (U

C T and the last inclusion is true because the topology on X is coarser

. Therefore, U is an open domain in Xj;.

In the next theorem, we will use the following fact which was proved in [1]: “If X is
T1, then so is Xpr for any non-empty proper subset M of X 7.

Theorem 3. If X is 11 and semi-regular, then for any non-empty proper subset M of X,
we have that the discrete extension Xy; of X is semi-regular.

Proof. Assume the hypotheses. Let W be an arbitrary non-empty open set in Xpr. Let
x € W be arbitrary. There are only two cases.
Case 1: © € X \ M. Then we have {z} is an open neighborhood of x in Xps. Since X is
T, then Xy is also Ty. Thus {x} is also closed in Xpr. Hence {x} is clopen in Xy, thus
{z} is an open domain in Xy such that x € {x} CW.
Case 2: x € M. Since X is semi-reqular, then there is a base for X consisting of open
domains. Thus, there exists an open domain V in X such that x € V C W. By Lemma
4, we get 'V is an open domain in Xyr. Therefore, Xy is semi-regular.

Definition 5. Let (X, T) be a topological space and let p be an object not in X, that
is, p ¢ X. Put XP = X U{p}. Define a topology T' on XP by 7' ={XP}U{U :U €
T} ={XP}U T. The space (XP, T') is called the open extension space of (X, T), see
[12, Example 16].

Observe that (X, 7) and (XP, 7') have the same open sets except for X?. Also,

if U is an open domain in (X, 7), then U is an open domain in ( X?, T') because

T =T U {p} as the only open neighborhood of p in (X?, 7") is X? itself. Thus,

int x»( T ) = intx» (UX U{p}) = intX(UX) = U. It is easy to see that if U is an open
domain in (X?, 7") such that p ¢ U, then U is an open domain in (X, 7).

Theorem 4. (X, T ) is semi-reqular if and only if (XP, T') is semi-regular.

Proof. Assume that (X, 7) is semi-regular. To show that ( X?, 7’) is semi-regular,
we only need to prove that 7/ C 7.. Let W € T’ be an arbitrary such that () # W # XP,
then W € 7. Since (X, 7T ) is semi-regular, then T = T,. So, the family of all open
domains in (X, 7) is a base for (X, 7). Thus W can be written as a union of open
domains in (X, 7). So, W can be written as a union of open domains in ( X?, 7"). Thus
W e T.. Thus 7/ C T/. Therefore (X?, T') is semi-regular.

Conversely, Assume that ( X?, 7') is semi-regular, that is, 7/ = T/. To show that
(X, T) is semi-regular, we only need to show that T C T,. Let W € T be arbitrary,
then p ¢ W. But W € 7’ implies that W can be written as a union of open domains in
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(XP, T"). Since any open domain in ( X?, 7") which does not contain the element p is
also an open domain in (X, 7 ), then W € T, implies that T C T4 and hence (X, 7 ) is
semi-regular.

3. New results about semi-regularization spaces

In this section, we study the relationship between a topological space (X, 7 ) and its
semi-regularization space (X, T ) regarding a topological property. We start with the
property of scattered. Recall that a space X is scattered if any non-empty subset of X
has an isolated point, that is, if ) # A C X, then there exists an element a € A and there
exists an open set U such that a € U and UN A = {a}. It is easy to see that if (X,
Ts ) is scattered, then so is (X, 7). This follows from the containment 7, C 7. But the
converse is not always true as can be shown in the following example.

Example 3. Consider R with the particular point topology T which is scattered, see [12,
Example 10]. But the semi-regularization of (R, 7¢) is (R, Z) where Z is the indiscrete
topology which is not scattered. B

Definition 6. A topological space (X, T ) is called epi-normal if there exists a coarser
topology 7/ on X such that (X, 77) is Ty, see [3].

Lemma 5. Let (Y, v) be a regular space. If f : (X, T) — (Y, v) is continuous, then
f:(X,Ts) — (Y, v) is continuous, [8].

Theorem 5. (X, T) is epi-normal if and only if (X, Ts) is epi-normal.

Proof. Assume that (X, 7) is epi-normal. Pick a coarser topology 7’ on X such
that (X, 7") is Ty. Consider the identity function idx : (X, 7) — (X, 7") which is
continuous since 7/ C 7. Then, by Lemma 5, we have idx : (X, T5) — (X, 7") is
continuous, hence 7" C T5 . Thus, (X, Ts) is epi-normal.

Conversely, assume that (X, 75 ) is epi-normal. Then there exist a coarser topology
7' on X such that (X, 7’) is Ty. Since Ts C T, then result follows.

Definition 7. A topological space X is called submetrizable if there exists a metric d on
X such that 74 C T, [7].

Similar argument of the proof of Theorem 5 gives the following theorem.
Theorem 6. (X, T) is submetrizable if and only if (X, Ts) is submetrizable.

Definition 8. A topological space X is called C-normal if there exist a normal space Y
and a bijective function f : X — Y such that the restriction f|4 : A — f(A) is a
homeomorphism for each compact subspace A C X, [4].

The following example shows that, if (X, T4 ) is C-normal, then ( X, 7) may not be
C-normal.
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Example 4. Consider R with the particular point topology T which is not C-normal
see [4, Example 1.5]. But the semi-regularization topological space of (R, 7o) is (R, 7),
where 7 is the indiscrete topology, which is a normal space, thus C-normal. W

Lemma 6. If X is T1 and C-normal, then any witness Y of its C-normality is Ty.

Proof. Assume that X is T} and C-normal. Pick a normal space Y and a bijective
function f: X — Y such that f|, : A — f(A) is a homeomorphism for each compact
subspace A C X. Let z,y be any two distinct elements in Y. Since f is bijective, there are
unique elements a,b € X such that f(a) = x and f(b) = y such that a # b. Consider {a,b}
which is a compact subset of X. This implies f| s} {a,b} — {z,y} is a homeomorphism.
But X is 77, thus {a,b} is a discrete subspace of X, hence {x,y} is a discrete subspace
of Y, then there are two open neighborhoods U and V' of x and y respectively in Y such
that U N {x,y} = {z} and VN {z,y} = {y} where y ¢ U and = ¢ V. Thus Y is T} and
given that Y is normal, thus Y is Ty.

Recall that a topological space X is called a Fréchet space if for every A C X and
every & € A there exists a sequence (ay),cy of points of A such that a,, — , [6].

Lemma 7. If X is Fréchet and C-normal, then any witness function of its C-normality
18 continuous.

Proof. Assume that X is Fréchet and C-normal. Let f : X — Y be a witness
function of the C-normality of X. Let A C X and let y € f(A) be arbitrary. Pick
the unique element x € X such that f(z) = y. Thus * € A. Since X is a Fréchet
space, then there exist a sequence (a,) C A such that (a,) converges to x. The subspace
B = {z,an : n € N} of X is compact and thus f|, : B — f(B) is a homeomorphism.
Now, let W C Y be any open neighborhood of y, then W N f(B) is open in the subspace
f(B) containing y. Since f({an, : n € N}) C f(B) N f(A) and W N f(B) # 0, then

W N f(A) #0. Hence y € f(A) and thus f(A) C f(A). Therefore, f is Continuous.

Theorem 7. If (X, T) is Fréchet, T\ and C-normal, then its semi-regularization topo-
logical space (X, Ts) is C-normal

Proof. Assume the hypothesis. Pick a normal topological space (Y, 7') and a bijective
function f: (X, 7) — (Y, 7') such that fj, : A — f(A) is a homeomorphism for
any compact subspace A of X. As X is Fréchet, then by Lemma 7, f is continuous
and by Lemma 6, we get (Y, 7') is Ty. Pick the same bijection function f : (X,
Ts) — (Y, 7') which is continuous by Lemma 5. Let B be any compact subset of ( X ,
Ts), then f|, : B — f(B) is bijective and continuous, thus by [6, Theorem 3.1.13] fj,, is
a homeomorphism. Therefore, (X, T, ) is C-normal.
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