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Abstract. A topological space X is called P-normal if there exist a normal space Y and a bijective
function f : X — Y such that the restriction f, : A — f(A) is a homeomorphism for each
paracompact subspace A C X. In this paper we present some new results on P-normality. We
study the invariance and inverse invariance of P-normality as a topological property. We also
investigate the Alexandroff Duplicate of a P-normal space, the closed extension of a P-normal
space, the discrete extension of a P-normal space and the Dowker topological space. Furthermore,
we introduce a new property related to P-normality which we call strong P-normality.

2020 Mathematics Subject Classifications: 54D15, 54C10

Key Words and Phrases: Normal, P-normal, L-normal, C-normal, Strong P-noramlity, Alexan-
droff Duplicate, Invariance, Closed extension, Discrete extension, Paracompact, Product

1. Introduction

We introduced P-normality in our previous paper [10]. The purpose of this paper is
to study some new results about P-normality. We investigate some types of invariance.
We also discuss the Alexandroff Duplicate, the closed extension space and the discrete
extension space of a P-normal space. We examine whether P-normality is preserved
in these spaces or not. Finally, we define a new topological property called strong P-
normality. Throughout this paper, we denote an ordered pair by (x,y), the set of positive
integers by N and the set of real numbers by R. A T space is a T7 normal space and a
Tychonoff space is a T} completely regular space. We do not assume 75 in the definition of
compactness, paracompactness and countable compactness. We do not assume regularity
in the definition of Lindelofness. For a subset A of a space X, intA and A denote the
interior and the closure of A, respectively. An ordinal «y is the set of all ordinal « such
that o < «y. The first infinite ordinal is wg, the first uncountable ordinal is wy, and the
successor cardinal of wy is we. We begin by recalling the following definitions:
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Recall that a topological space ( X , T) is paracompact if any open cover has a locally
finite open refinement. For a subspace A of X, A is paracompact if (A, T 4 ) is paracom-
pact, i.e., any open (open in the subspace) cover of A has a locally finite open (open in
the subspace) refinement. We do not assume 75 in the definition.

Definition 1. A topological space X is called P-normal if there exist a normal space Y
and a bijective function f : X — Y such that the restriction fj, : A — f(A) is a
homeomorphism for each paracompact subspace A C X [10].

2. New Results on P-normality

In [10], we proved P-normality is a topological property, studied its independence of
other topological properties, and investigated whether or not P-normality was an additive
property, a multiplicative property and a hereditary property. Until now, we still don’t
know if P-normality is hereditary with respect to closed subspaces. But under some con-
ditions it is hereditary with respect to compact subspaces. Before we state such conditions
we introduce some results:

Proposition 1. If X is a T} space, f: X — Y is a one to one and onto map, and the
restriction of f on any finite subset of X is a homeomorphism. Then 'Y is also T.

Proof. Since X is T1 and f is a bijection then Y has more than one element. Let a,b € Y
be arbitrary such that a # b. Then there exist unique ¢,d € X such that f(¢) = a and
f(d) =band c # d. Now, {c,d} C X is a finite subset of X. So f[(cqy : {c,d} — {a,b} is
a homeomorphism. Now, a = f(c) and ¢ is isolated in {¢, d} because {c,d} C X is discrete.
Also, b = f(d) and d is isolated in {c,d}. So there exist Y-open subset U containing a
such that U N {a,b} = {a}, and there exists Y-open subset V' containing b such that
VNn{a,b} ={b}. Then b ¢ U > a and a ¢ V > b. Which implies that Y is T7.

Corollary 1. If X is a Ty, P-normal space then the witness Y is Ty.
Using the previous proposition we can state the following theorems:

Corollary 2. If X is T1 and the only paracompact subspaces of X are the finite subspaces,
then X is P-normal.

Theorem 1. Let X be a Ty, Fréchet P-normal space. Then, any compact subspace of X
1s P-normal.

Proof. Let Y and f be a witness space and function respectively of the P-normality
of X. Since X is 11, then Y is Ty by the above corollary. Now, f is continuous since X
is Fréchet by [10, Theorem 5|. Let A C X be any compact subset of X. The continuous
image of a compact subset is compact so f(A) C Y is compact in Y. Moreover, since Y is
T that means f(A) is closed in Y. Y is normal and normality is hereditary with respect
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to closed sets so f(A) is normal and hence will be a witness for the P-normality of A. Let
g=fla:A— f(A). Let C C A be any paracompact subspace of A. Since a subspace
of a subspace is a subspace, then C'is paracompact in X. Therefore, g|c = f| A, = flo s
a homeomorphism. Which means A, the arbitrary compact subset of X, is P-normal and
we are done.

In the same way we proved the previous theorem, we can deduce the following corollary
about P-normality being hereditary with respect to countably compact subspaces with
additional conditions. recall that a C-closed space Y is a T3 space where every countably
compact subset A CY is closed [9].

Corollary 3. Let X be a Ty, Fréchet P-normal space. LetY a witness of the P-normality
of X be a C-closed space. Then, any countably compact subspace of X is P-normal.

Recall that a topological space ( X, T ) is called epinormal if there is a coarser topology
7' on X such that (X, 77) is Ty [3].

Theorem 2. Let X be a 11, Fréchet P-normal space, then X is epinormal.

By the above discussion we have seen that if X is 77 and P-normal then Y, the
witness of P-normality, is Ty. Now, since X is Fréchet that means the witness function f
is continuous by [10, Theorem 5]. This allows us to consider Y as a coarser space of X [7,
2.4].

Note that since in this case Y is coarser than X and Y is T4 hence T, then X has to be
T5. Which means, if a space X is not T5, but 77 and Fréchet then it cannot be P-normal.

3. Invariance

We begin by studying the invariant properties of P-normality. P-normality is not
invariant in general.

Example 1. In [10] we showed that the Dieudonné plank (X,T) is not P-normal. Now,
consider (X,T'), where T' is generated by making any element on the right side of the
plank A isolated. Consider idx : (X,T") — (X,T). Since T is coarser than T' then
idx : (X, T") — (X,T) is continious, one to one and onto. (X,T') is P-normal being
Ts-paracompact i.e normal but the Dieudonné plank (X,T) is not.

By a theorem of Ponomarev [7, 4.2.D] which says: “ a Tj) space X is first countable if and
only if X is a continuous image of a metrizable space under an open mapping”’. Consider
(R,RS), which we have shown is not P-normal in [10], but it is Tychonoff and first
countable. So there exists a metrizable space X and an open function g : X — (R, RS).
Since any metrizable space is P-normal, then this example shows that P-normality is not
open invariant and hence cannot be quotient invariant either.
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Example 2.
The function f: (R,RS) — ({0,1}, D) defined by

f(:v):{[l) BN

sif >0

18 both closed and open. Where D is the discrete topology. Now, as we previously mentioned
(R,RS) is not P-normal but ({0,1}, ®) is P-normal since it is normal. This example
shows that P-normality is not inverse invariant in general. Moreover, it is not inverse
open invariant nor inverse closed invariant.

4. Generating Spaces and P-normality

In this section, we start with the study of the Alexandroff Duplicate space of a P-
normal space. Let us first recall the definition of the Alexandroff Duplicate topological
space. Let X be an infinite topological space. We denote the family of all finite subsets
of X by [ X ]<¥0, i.e.,

[X ] = {E C X : E is finite }.

Put X’ = X x {1}. So, X’ is just a copy of X and we have X N X’ = (). The ground
set of the Alexandroff duplicate space A(X) of X is A(X) = X U X'. To simplify the
symbols, we do the following: For an element x € X, we denote the element (x,1) in X’
by z’ and for any subset B C X, put B’ = {2/ : x € B} = B x {1} € X’'. For each
2 e X', put B(2') = {{2'}}, so any element in X’ will be isolated in A(X). For each
x € X, put B(x) ={UU(U'\ E'):Uisopenin X withz € U and F € [ X ]<* }.
Then B = {B(y) : y € A(X)} generates a unique topology on A(X) such that B is its
neighborhood system. A(X) with this topology is called the Alezandroff Duplicate of X,
see [2] and [6]. Observe that for any open set U in X, we have that U U U’ is open in
A(X) and for any x € U, we have U U (U’ \ {2’} ) is a basic open neighborhood of z.

Theorem 3. If X is P-normal, then so is its Alexandroff Duplicate A(X).

Proof. Let X be any P-normal space. Pick a normal space Y and a bijective function
f X — Y such that fi, : C — f(C) is a homeomorphism for each paracompact
subspace C' C X. Consider the Alexandroff Duplicate spaces A(X) and A(Y) of X and YV
respectively. Y is normal then so is A(Y) [2].

Let us define g : A(X) — A(Y) by g(a) = f(a) ifa € X. If a € X', let b be the unique
element in X such that b’ = a, then define g(a) = (f(b))’. Then g is a bijective function.
Now, a subspace C' C A(X) is paracompact in A(X) if and only if C'N X is paracompact
in X. To prove this, assume that C' is paracompact in A(X). Let U = {U, C CNX : U, is
open in CN X for each & € A} be any open cover (open in C'NX) for CNX. That means
for each av € A there exists V, € X open in X such that U, = V,N(CNX). Now, for every
a € \, V, is open in X and therefore V, UV, is open in A(X). So (V,UV.)NC is open in C.
This implies (Vo,UV.)NC = (VoNC) J(VLNC) is open in C. Take the unions of these sets
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: (Uaex(VanNC) UUaer(VZNC)). For each 2’ € C\ (Uger(VaNC)) consider the singleton
{2'}. Consider W = {(V, NCYUJ(VLNC), {2’} : a € X\, and 2/ € C\ (Uner (VL N C))}.
This is an open cover of C'in A(X) (open in C). Since C' is assumed to be paracompact in
A(X) then this cover W has a locally finite open refinement (in C'). That is, there exists
{Gs : s € 8} such that for each s € S, G is open in C and for each s € S there exists a € A
such that either G5 C (V,NC)UJ(VLNC) or G5 = {2’} for some 2’ € C'\ (Uaen(V2ZNC))}.
Let ' ={s €S :Gs CV,nNC}. Then {Gs: s € §'} is a sub-family of {Gs : s € S}
which is locally finite, hence {G; : s € 8’} is locally finite as well. So {Gs:s € S’} isa
locally finite open (open in C' N X) refinement of &. On the other hand, assume C' N X
is a paracompact subset in X. Let G = {G,NC : a € \;G, € A(X) open in A(X) for
each o € A} be an arbitrary open (open in C') cover of C'in A(X). So C C |JG. Consider
Gx ={(GaNC)NX :a e X} ={G,N(CNX):a€ A}.Then CNX C |JGyx, i.e, this
is an open (open in C'N X) cover for C N X. By assumption there exists {Hs : s € S}
locally finite open (open in C'N X) refinement of Gx. That is, for each s € S there exists
as € A such that H; C G,,. For every s € § there exists K C X open in X such that
K,N(XNC)= H,. Consider {( KUK, )UC :5€ S}={(K;NC)UK.NC):seS}.
Since {KsNC : s € S} is locally finite then so is {(KsNC)J(K.NC) : s € S}. For
every o' € (CNX')\ (Nyes(EENC)) there exists oy € A such that 2’ € G, . Consider
K={(K,nC)U(K;NC), {2’} :s €S2’ € (CNX')\ (Nyes(K;NC))}. K is alocally
finite open refinement (open in C) of G.

Now, let C' C A(X) be any paracompact subspace. We show g, : €' — g(C) is a
homeomorphism. Let a € C be arbitrary. If a € C N X', let b € X be the unique element
such that ¥’ = a. For the smallest basic open neighborhood {(f(b))'} of the point g(a) we
have that {a} is open in CNX" and g({a}) C {(f(b))'}. If a € CNX. Let W be any open
set in Y such that g(a) = f(a) € W. Consider H = (W U (W' \ {f(a)'})) N g(C) which
is a basic open neighborhood of f(a) in g(C). Since f, ., : CNX — f(CNX) is a
homeomorphism, then there exists an open set U in X with a € U and fj, . (UNC) CW.
Now, (UU(U"\{a'}))NC = G is open in CNX such that a € G and g|,(G) € H. Therefore,
9|, is continuous. Now, we show that g, is open. Let K U (K'\ {k'}), where k € K and
K is open in X, be any basic open set in A(X), then (KNC)U ((K'NC)\ {k'}) is a basic
open set in C. Since X NC' is compact in X, then g, (KN (XNC)) = f, . (KN(XNC))
is open in YN f(CNX) as f,,. is a homeomorphism. Thus K NC'is open in YN f(XNC).
Also, g((K'NC)\ {k'}) is open in Y’ N g(C') being a set of isolated points. Thus g, is an
open function. Therefore, g|, is a homeomorphism.

Next, we present a result about Dowker topological spaces. This result may seem
repeated as it was mentioned about L-normality in [11] but it is so interesting that we
mention it again with regards to P-normality. Recall that a Dowker space is a T space
whose product with I, I = [0, 1] with its usual metric, is not normal. M. E. Rudin used
the existence of a Suslin line to obtain a Dowker space which is hereditarily separable and
first countable [12]. Using CH, I. Juhdsz, K. Kunen, and M. E. Rudin constructed a first
countable hereditarily separable real compact Dowker space [8]. Weiss constructed a first
countable separable locally compact Dowker space whose existence is consistent with MA
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+ — CH [14]. We already know that such spaces are consistent examples of Dowker spaces
whose product with I are not L-normal [11]. This means that they cannot be P-normal
either; since any regular P-normal space is L-normal [10].

We move on to studying the P-normality of the closed extension. Let (X, 7) be a
topological space and let p be an object not in X, i.e., p ¢ X. Put X? = X U{p}. Define
a topology 7* on XP by 7* = {0 }U{UU{p}:U € T}. The space (XP, 7*) is called
the closed extension space of (X, T), [13, Example 12].

Since characterizing all paracompact subspaces [10] is a core subject in the notion of
P-normality, we will start with characterizing all paracompact subspaces of the closed
extension space ( X?, 7*) of a given space (X, 7).

Proposition 2. Let (X, T) be a topological space. Consider the closed extension space
(XP, 7*)of (X, T). Let AC XP.

Ifp & A, then A is a paracompact subset in ( XP, T*) if and only if A is a paracompact
subset in (X, T).

If p € A, then A is a paracompact subset in (XP, T*) if and only if A\ {p} is a
compact subset in (X, T).

The proof of this proposition can be found in [5]. A space is called ultra-connected if
any two non-empty closed sets intersect [13]. Since any normal space is P-normal (just by
taking in Definition 1, Y = X and f to be the identity function) then by [5, Theorem 1.4]
, we get the following theorem: If (X, 7) is ultra-connected, then its closed extension
(XP, 7*) is P-normal [5]. Recall that a topological space X is called C-normal if there
exist a normal space Y and a bijective function f : X — Y such that the restriction
fio : € — f(C) is a homeomorphism for each compact subspace C' C X [4]. Now, in [5]
it was proved that the closed extension space ( X?, 7*) is not C-normal if ( X, 7 ) is not
ultra-connected. In [10], we showed that P-normality implies C-normality. Combining all
the information above together we get:

Theorem 4. If (X, T) is not ultra-connected, then the closed extension space ( XP, T*)
is not P-normal .

Now, we discuss a new result about P-normality and whether it’s preserved or not in
the discrete extension space. To do this let us recall the definition of the discrete extension
space: Let M be a non-empty proper subset of a topological space (X, 7). Define a new
topology T () on X as follows: T ={UUK:U € Tand K C X\ M} (X, Tyy)
is called a discrete extension of (X, T) and we denote it by Xy [13], see also [7, 5.1.22].
We will now show that P-normality is not preserved by a discrete extension. That is, the
discrete extension of a P-normal space need not be P-normal.

Example 3. We know that (R, RS) where RS is the rational sequence topology on R,
is a Tychonoff locally compact non compact space [18, Example 65]. Thus R with the
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rational sequence topology has a one-point compactification. Let X = R U {p}, where
p € R, be a one-point compactification of R. Since X is To-compact, then it is Ty, hence
P-normal [10]. Now, take the discrete extension of X denoted by Xg. Observe that in Xg,
the singleton {p} is closed-and-open. Xy is first countable and Tychonoff because R with
the rational sequence topology is, thus Xg is of countable tightness. Xg is also separable
because (R, RS) is separable and Q U {p} is a countable dense subset of Xg [1]. Now, R
with the rational sequence topology is not normal. Since R is closed in Xgr, we conclude
that Xg is not normal. Using the theorem: “If Y is T3, separable, P-normal and of
countable tightness, then' Y is normal.” [10], we conclude that Xk cannot be P-normal.

This example shows that [1, Theorem 12] is not true for P-normality. That is if Y is a
Tychonoff space, then a discrete extension Xj; of any compactification X of Y need not
be P-normal.

5. Strong P-Normality

Definition 2. A topological space X is called strongly P-normal if there exists a bijective
function f : X — I, where I = [0, 1] the closed unit interval considered with its usual
metric topology, such that the restriction f|, : A — f(A) is a homeomorphism for each
paracompact subspace A C X.

It is clear from the definition that any strongly P-normal space is P-normal. The
converse is not always true.

Example 4. ws + 1 with its usual ordered topology is P-normal because it is normal being
Ty compact. But wa + 1 cannot be strongly P-normal because |[0, 1]] = |R| = ¢ < wy =
lwo +1]. W

Example 5. (R,U) is not strongly P-normal. (R,U) is homeomorphic to the open interval
(0,1) with the usual topology. So, if (R,U) is strongly P-normal, then there will be a
bijection f : (0,1) — [0,1] such that f|a is a homeomorphism for every paracompact
subset A C (0,1). Since (0,1) is Fréchet, f is continuous by [10, Theorem 5]. Since f is
bijection, there is unique a,b € (0,1) such that f(a) = 0 and f(b) = 1. Assume without
loss of generality that a < b. Then, (0,1) \ [a,b] # 0 and clearly [ is continuous on
[a,b]. Now using the Intermediate Value, for every y € (f(a), f(b)) = (0,1), there exists
x € (a,b) such that f(x) = y. Hence, f~1([0,1]) C [a,b] C (0,1). This implies that for
every € (0,1) \ [a,b] (which is non-empty), = has no image in [0,1] which contradicts
that f is a function. Hence there is no continuous bijection between R and I. Therefore,
(R,U) is not strongly P-normal. A

Theorem 5. Strong P-normality is a topological property.
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Proof. Let X be any strongly P-normal space. Assume that X = Z, so there exists a
homeomorphism k£ : Z — X. Since X is strongly P-normal then there exists a witness
function h : X — I which is a bijection with the restriction hlc : C — f(C) is a
homeomorphism for any paracompact subspace C' of X. . Then hok : Z — [ satisfies
the requirements.

Theorem 6. If X is Fréchet and strongly P-normal, then any function witnessing the
strong P-normality of X is continuous.

Proof. Assume that X is strongly P-normal and Fréchet. Let f : X — I be a witness
of the strong P-normality of X. Let A C X and pick y € f(A). Pick the unique x € X
such that f(r) =y. Thus z € A. Since X is Fréchet, there exist a sequence (a,) C A such
that a, — x. The subspace B = {z,a, : n € N} of X is paracompact being compact ,
thus f|, : B — f(B) is a homeomorphism. Now, let W C I be any open neighborhood
of y, then W N f(B) is open in the subspace f(B) containing y. By continuity of the
homeomorphism f|,, YW N f(B)) = f~Y(W) N B is an open neighborhood of = in B.
Then,(f*(W)N B)N{an : n € N} # 0. So (f~1(W) N B)N A # (). Therefore we have,
0+ f(fFAW)NB)NA) C f(fTLW)NA) = Wn f(A) then W N f(A) # (. Hence

y € f(A), thus f(A) C f(A). Therefore, f is continuous.

Example 6. It is clear that I with its usual metric topology is strongly P-normal. We
show that the product I X I is not strongly P-normal.

Proof. Suppose to the contrary that I x I is strongly P-normal. Pick a bijection
f:IxI — I such that fla : A — f(A) is a homeomorphism for each paracompact
subspace A C I x I. Now I x I is first countable and hence Fréchet. This implies that f
is continuous, see Theorem 6, which contradicts the fact that there exists no continuous
bijection f : I x I — I. Because if there were, then f would be a homeomorphism since
I x I is compact and I is Ts. This is a contradiction since I x I is connected with no cut
points (I x I)\ {{(z,y)} is connected for every point (x,y) € I x I, while I is connected
with cut points (Take any x € (0,1) C I, then I\ {x} =[0,z) U (x, 1] where both [0, x)
and (z,1] are non-empty disjoint open subsets of I).

Therefore, I x I is not strongly P-normal. A

So, a product of two strongly P-normal spaces may not be strongly P-normal. But,
a product of two strongly P-normal spaces is P-normal. To show this, we start with a
lemma.

Lemma 1. If A is a paracompact subset of the product X x Z, then pi1(A) and p2(A) are
both paracompact in X and Z respectively. Where p1 and pa are the natural projection
functions.

Proof. Let A be a paracompact subset of the product X x Z. Suppose that p;(A) is not
paracompact subset in X, i.e., p1(A) as a subspace of X is not paracompact. Then there
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exist an open cover U = { U, C p1(A) : U, is open in p;(A) for each a € A } for p;(A) such
that any open (open in p;(A)) refinement of U is not locally finite. Now, let x € pi(A)
and fix an o, € A such that x € U,,. For each z € Z such that there exists = € p;(A)
with (z,z) € A, let W, be an open neighborhood of z in Z. Note that A C p;(A) x p2(A).
Consider the family K = { (U)o, x W,)N A : (x,z) € A} which is an open (open in A)
cover for A.

Claim: K has no locally finite open refinement.

Proof of Claim: Suppose that K has a locally finite open refinement, say { Gs x Hy :
s € S} (we can assume that this refinement is of the basic open set form in the product
X x Z), then the family { Gs N py(A) : s € S} would be a locally finite open refinement
of U which is a contradiction and Claim is proved.

So, K is an open (open in A) cover for A which has no locally finite open refinement
and this contradicts that A is a paracompact subset in X x Z. Therefore, p;(A) is a
paracompact subset in X.

Similarly, p2(A) is a paracompact subset of Z.

Theorem 7. If X and Z are both strongly P-normal, then X X Z is P-normal.

Proof. Assume that X and Z are both strongly P-normal. Pick two bijection func-
tions f: X — T and g : Z — [ such f|, : A — f(A) is a homeomorphism for
each paracompact subspace A C X and g, : A — f(A) is a homeomorphism for each
paracompact subspace A C Z. I x [ is normal being T5 compact. Put h = f X g, i.e.,
h: X xZ — IxIisdefined by h({(z,2)) = (f(x), g(2)) for each (z,z) € X x Z. It is clear
that h is a bijection function. Let A be any paracompact subset of X x Z. By Lemma 1,
we have that pj(A) is a paracompact subset of X and pa(A) is a paracompact subset of Z.
Thus f|, , :p1 (A) — f(p1(A)) is a homeomorphism and Ity i p2(A) — g(p2(A)) is
a homeomorphism. Since a product of two homeomorphisms is a homeomorphism [7], we
get that iy, (a)xpaa) = (], () X (9], ) ¢ P1(A) X P2(A) — (F(pL(A))) x (9(pa(A)) =
h(p1(A) x p2(A)) is a homeomorphism. Since A C p;1(A4) x p2(A) and a restriction of a
homeomorphism is a homeomorphism, we conclude that hy : A — h(A) is a homeomor-
phism. Therefore, X x Z is P-normal.

The following problems are still open:
1. Is P-normality hereditary with respect to closed sets?

2. Is there a Tychonoff P-normal space which is not normal?
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