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Abstract. In this paper, we provided a new fourth-order optimal method. This method demands
three functional evaluations, and according to Kung-Traub it is considered as one of the optimal
methods with efficiency indicator I that reaches 1.587. Furthermore, we can extend its convergence
to obtain a new sixth-order method where its efficiency indicator is 1.565. In this paper, we also
discuss the convergence analysis of our new methods as it was established that the new methods
have convergence orders four and six. Moreover, we will illustrate our study of the stability criterion
of the new methods, and we will present the stability theorems along with some examples which
prove that our methods are stable. Finally, we have discussed attraction basins for those suggested
methods and compared them with methods that have the same order, and we have applied them
for numerical examples to clarify the performance and efficiency of the proposed methods.
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1. Introduction

It seems that a non-linear equation f(x) = 0 is one of the most important problems
in numerical analysis in which you can find the root for these equations using iterative
methods. One of these methods is Newton’s classic method where it converges to the
second order. In recent years, researchers suggested a large number of iterative methods
that solve the non-linear equations with different orders in which they constructed iterative
methods that consist of two steps with the third, fourth and fifth convergence order in
[1, 5, 7], as well as iterative methods constructed of three steps with the sixth, seventh
and eighth convergence order in [10, 16, 17] and references therein. Efficiency indicator
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EI is measured for iterative methods by pm form, where p is the convergence order and m
is the number of evaluation functions [6].

In this paper, our main objective is to theoretically prove that the error equations
are of fourth-order from Jarrett type for solving non-linear equations where the efficiency
indicator E1 for this method is 1.578 and this method is optimal according to Kung-Traub
conjecture [6]. In addition to expanding the fourth-order method to the sixth-order method
by adding a third step which is mentioned in [14]; this method is not optimal because the
efficiency indicator EI will be 1.565. And the final objective is to study theories for the
stability of fixed point in map f for the new methods.

The rest of the paper will be organized in sections, as in Section 2, the iterative method
of the fourth-order and the equation error is given theoretically to show that the proposed
method has fourth-order convergence. Section 3 will expand the fourth-order method to
the sixth-order method. Section 4 will include the study of iterative methods stability
and will introduce stability theories analysis for the proposed methods. In Section 5, the
results of our methods for some examples in the real domain and their comparison with
different methods of the same order will be shown. In Section 6, the attraction basins for
the fourth-order and sixth-order methods and comparing them with ones from the same
order will be fully discussed.

2. Construction of the new fourth order method

In this section, we will introduce a new fourth-order optimal method. We have con-
structed the following iterative scheme via two steps; the first one is by the Jarratt method
step. In the second one we have involved weight function (W ) depending on k. The iter-
ative expression is

yn = xn − 2

3

f (xn)

f ′ (xn)

xn+1 = xn −W (kn)
f (xn)

f ′ (xn) + f ′ (yn)

(1)

Where the weight function is W (k) =
Ak +Bk2

C + k
, k = f ′(y)

f ′(x) . We can notice that the

probability functions in the iterative scheme (1) are three. Thus, the efficiency indicator

will be I = 4
1
3 = 1.587.

2.1. Convergence Analysis

The convergence analysis will be discussed for the iterative method in the following
theorem, where we used mathematica program 11 to prove that the convergence order for
this method is four.

Theorem 1. Letf : I ⊂ R → R be a real sufficiently differentiable function in an open
interval I and let a ∈ I be a simple root of f(x) = 0. If x0 is close enough to a when
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W (k) =
Ak +Bk2

C + k
satisfies A =

17

24
, B = − 41

120
and C = − 9

20
, then iterative family

(1) converges to a with order of convergence four, and its error equation is:

en+1 =

(
43

99
c32 − c2c3 +

1

9
c4

)
e4n +O

(
e5n
)

(2)

Proof. Using Taylor expansion, f (xn) and f ′ (xn) can be obtained as

f (xn) = f ′(a)
[
en + c2e

2
n + c3e

3
n + c4e

4
4

]
+O

(
e5n
)

(3)

and

f ′ (xn) = f ′(a)
[
1 + 2c2en + 3c3e

2
n + 4c4e

3
4

]
+O

(
e4n
)

(4)

then from (3) and (4), we have

f (xn)

f ′ (xn)
=en − c2e

2
n +

(
2c22 − 2c3

)
e3n +

(
−4c32 + 7c2c3 − 3c4

)
e4n +O(e5n) (5)

Now from (1) and (5) , we get

yn − a = en − 2

3

f (xn)

f ′ (xn)

=
1

3
en +

2

3
c2e

2
n −

(
4

3
c22 −

4

3
c3

)
e3n +

(
8

3
c32 −

14

3
c2c3 + 2c4

)
e4n +O(e5n) (6)

From (6), we calculate f ′ (yn) as:

f ′ (yn) =f ′ (a)
[
1 +

2

3
c2en +

(
4

3
c22 −

1

3
c3

)
e2n +

(
−8

3
c32 + 4c2c3 +

4

27
c4

)
e3n

+

(
16

3
c42 −

32

3
c22c3 +

8

3
c23 +

44

9
c2c4 +

5

81
c5

)
e4n +O(e5n)

]
(7)

The expansion of the weight function varible k is

k =
f ′(y)

f ′(x)
= 1− 4

3
c2en +

(
4c22 −

8

3
c3
)
e2n +

(−32

3
c32 +

40

3
c2c3 −

104

27
c4
)
e3n

+
(80
3
c42 −

148

3
c22c3 +

32

3
c23 +

484

27
c2c4 −

400

81
c5
)
e4n +O(e5n)

and, therefore, weight W (k) around one results in

W (k) =
Ak +Bk2

C + k
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=
A+B

1 + C
−
(
4 (B +AC + 2BC)

3 (1 + C)2

)
c2en +

4

9 (1 + C)3

[(
AC (5 + 9C) +B

(
9 + 27C

+ 22C2
))
c22 − 6

(
AC (1 + C) +B

(
1 + 3C + 2C2

))
c3

]
e2n − 8

27 (1 + C)4
[(
4AC

(
2 + 9C

+ 9C2
)
+ 4B

(
9 + 36C + 52C2 + 27C3

) )
c32 − 3 (1 + C)

(
AC (7 + 15C) +B

(
15 + C

(
45

+ 38C
)))

c2c3 + 13 (1 + C)2 (B +AC + 2BC) c4
]
e3n +

4

81 (1 + C)5
[
AC

(
4 (2 + 3C)

(1 + 15C (2 + 3C)) c42 − 9 (1 + C) (15 + C (94 + 111C)) c22c3 + (1 + C)2 (155 + 363C) c2c4

+ 4 (1 + C)2
(
18 (1 + 3C) c23 − 25 (1 + C) c5

))
+B

(
4
(
135 + C

(
675 + C

(
1348

+ 99C (13 + 5C)
)))

c42 − 9 (1 + C) (111 + C (444 + 7C (93 + 50C))) c22c3 + (1 + C)2

(363 + C (1089 + 934C)) c2c4 + 4 (1 + C)2
(
18 (3 + C (9 + 8C)) c23 − 25 (1 + C)

(1 + 2C) c5
))]

e4n +O(e5n) (8)

And so, from (4),(5) and (7) we have

f (xn)

f ′ (xn) + f ′ (yn)
=
1

2
en − 1

6
c2e

2
n +

1

9

(
−c22 − 3c3

)
e3n

+
1

54

(
50c32 − 15c2c3 − 29c4

)
e4n +O(e5n)

(9)

Finally, when using (8) and (9), the error equation of any method of (1) becames:

en+1 = yn − a−W (k)
f(xn)

f ′(xn) + f ′(yn)

=

(
1

3
− A+B

2 + 2C

)
en +

(
2

3
+

A+ 5AC +B (5 + 9C)

6 (1 + C)2

)
c2e

2
n +

1

9 (1 + C)3

[
c22

(
− 12 (1 + C)3

−A
(
−1 + 10C + 19C2

)
−B

(
19 + 58C + 47C2

) )
+ 3 (1 + C) c3

(
A+ 5AC + 4 (1 + C)2

+B (5 + 9C)
)]
e3n +

1

54 (1 + C)4

[
c32
(
144 (1 + C)4 + 2A

(
−25− 37C + 89C2 + 133C3

)
+ 2B

(
133 + 557C + 835C2 + 443C3

) )
− 3 (1 + C) c2c3

(
84 (1 + C)3 +A

(
− 5 + 62C

+ 131C2
)
+B

(
131 + 398C + 331C2

) )
+ (1 + C)2 c4

(
108 (1 + C)2 +A (29 + 133C)

+B (133 + 237C)
)]
e4n +O(e5n) (10)

From (10) the conditions on the wight function W are:

2 (1 + C)− 3 (A+B) = 0

4 (1 + C)2 +A (1 + 5C) +B (5 + 9C) = 0

−12 (1 + C)3 +A
(
−1 + 10C + 19C2

)
−B

(
19 + 58C + 47C2

)
= 0





M.Q. Khirallah, Asma.M. Alkhomsan / Eur. J. Pure Appl. Math, 15 (3) (2022), 971-991 975

Now by solving the system above one gets the values A,B and C we get A =
17

24
, B =

− 41

120
and C = − 9

20
. Replacing these values on (10),the error equation of any method

of (1) is

en+1 =

(
43

99
c32 − c2c3 +

1

9
c4

)
e4n +O

(
e5n
)

(11)

Consequently, the typical method for our proven theory can be stated in the following:

yn = xn − 2

3

f (xn)

f ′ (xn)

xn+1 = yn −

[
85f ′ (yn) f

′ (xn)− 41f ′ (yn)
2

−54f ′ (xn)
2 + 120f ′ (yn) f ′ (xn)

]
f (xn)

f ′ (xn) + f ′ (yn)
(12)

We will call our new method (12) by AMF1, note that it requires three functional evalu-
ations per step.

3. Extension of the fourth order method to a sixth order method

This section presents the development we have made on the new fourth-order method
AMF1 into a sixth-order method by adding one step as shown in [14]. We can notice
that, this method requires four probability functions for each step thus, their efficiency
indication is I = 6

1
4 = 1.565 and it is worse than I = 1.587. We consider another method

consisting of three steps as follows:

yn = xn − 2

3

f (xn)

f ′ (xn)

zn = yn −

[
85f ′ (yn) f

′ (xn)− 41f ′ (yn)
2

−54f ′ (xn)
2 + 120f ′ (yn) f ′ (xn)

]
f (xn)

f ′ (xn) + f ′ (yn)

xn+1 = zn −
(

1

3f ′ (xn)
− 8

15f ′ (xn)− 27f ′ (yn)

)
· f (zn) (13)

Here, we will clarify-through the following theory- that the convergence order of this (13)
method will reach the sixth order, we have proved that using Mathematica 11.

Theorem 2. Let f : I ⊂ R → R be a smooth function with continuous derivatives up
to fourth order. If f(x)=0 has a simple root a in the open interval I where x0 is chosen
in a sufficiently small neighborhood of a, then the iterative scheme given by (13) has a
sixth-order convergence and the error equation is:

en+1 =

(
−43

99
c32c3 − c2c

2
3 −

1

9
c3c4

)
e6n +O

(
e7n
)



M.Q. Khirallah, Asma.M. Alkhomsan / Eur. J. Pure Appl. Math, 15 (3) (2022), 971-991 976

Proof. Using Taylor epansion f (zn) about a gives :

f (zn) = f ′(a)
[(43

99
c32 − c2c3 +

1

9
c4

)
e4n +

(
−148

121
c42 +

152

33
c22c3 − 2c23 −

20

9
c2c4 +

8

27
c5

)
e5n

+
2

107811

(
114071c52 − 602613c32c3 + 394581c22c4 + 16335c2

(
37c23 − 11c5

)
+ 3993 (−99c3c4 + 7c6)

)
e6n

]
+O

(
e7n
)

(14)

though the use of equations (4), (7) and (14) in equation (13) we obtain:

en+1 =

(
−43

99
c32c3 − c2c

2
3 −

1

9
c3c4

)
e6n +O

(
e7n
)

(15)

Thus (15) shows that method (13) has sixth-order convergence.

As a result, from the theory (2) we can verify that the iterative method (13) which will
be denoted as AMF2 is a convergent method of sixth-order. It considered as an extension
of the method AMF1.

4. Stability Analysis

Lately, many researchers have steadily studied iterative methods to solve nonlinear
equations Najmuddin Ahmad and Vimal Pratap have studied the stability of some iterative
methods mentioned in [11]; as they have set some simple-but powerful criteria- for the
local stability of a fixed point and provided stability analysis theories to the methods as
well as compared them with many other methods through their stability and have also
clarified that their methods are more stable. In addition, in research [2], the researchers
have studied suggested family stability with sixth-order where stability is studied through
complex dynamics and numerical examples.

Now, we will discuss the stability of our new methods (AMF1 and AMF2). We will
present some theories to prove whether the new methods are stable or not, and we will
perform several numerical tests, in order to check the theoretical stability results of our
new methods. Before we present the stability theorems, we will introduce the theorem of
the hyperbolic fixed point.

Theorem 3 (hyperbolic fixed point [4]). If f is map continuously differentiable at a and
let a be a hyperbolic fixed point of f. The following statements then hold true

• If |f ′ (a)| < 1, then a is asymptotically stable

• If |f ′ (a)| > 1, then a is unstable

Theorem 4. (Stability Analysis of AMF1) Let f : I ⊂ R → R be a real sufficiently
differentiable function in an open interval I and let a ∈ I be a simple root of f(x) = 0. If
x0 is sufficiently close to a then the method (12) is stable
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Proof. Considering

yN (x) = x− 2

3

f (x)

f ′ (x)

fN (x) = yN (x)−

[
85f ′ (yN (x)) f ′ (x)− 41f ′ (yN (x))2

−54f ′ (x)2 + 120f ′ (yN ) f ′ (x)

]
f (x)

f ′ (x) + f ′ (yN (x))
(16)

Let a be a simple zero of f and x∗ is a fixed points of f . We need to make sure that the
fixed point x∗ = a is stable.
To do this, we evaluate f ′

N (a) as follows:

y′N (x) =
1

3
+

2f (x) f ′′ (x)

3 [f ′ (x)]2

We put the root a instead of x

y′N (a) =
1

3
+

2f (a) f ′′ (a)

3 [f ′ (a)]2

Since a is simple zero of f then f (a) = 0 and we get

y′N (a) =
1

3

Now we calculate f ′
N (x)

f ′
N (x) =

1

3
+

2f (x) f ′′ (x)

3f ′ (x)2
−

f ′(x)

(
121f ′(x)f ′

(
x− 2f(x)

3f ′(x)

)
− 61f ′

(
x− 2f(x)

3f ′(x)

)2
)

(
2f ′(x) + f ′

(
x− 2f(x)

3f ′(x)

))(
114f ′(x)f ′

(
x− 2f(x)

3f ′(x)

)
− 54f ′(x)2

)

+

f(x)

(
121f ′(x)f ′

(
x− 2f(x)

3f ′(x)

)
− 61f ′

(
x− 2f(x)

3f ′(x)

)2
)(

2f ′′(x) +
(
2f(x)f ′′(x)
3f ′(x)2 + 1

3

)
f ′′

(
x− 2f(x)

3f ′(x)

))
(
2f ′(x) + f ′

(
x− 2f(x)

3f ′(x)

))2 (
114f ′(x)f ′

(
x− 2f(x)

3f ′(x)

)
− 54f ′(x)2

)

+

f(x)

(
121f ′(x)f ′

(
x− 2f(x)

3f ′(x)

)
− 61f ′

(
x− 2f(x)

3f ′(x)

)2
)

(
2f ′(x) + f ′

(
x− 2f(x)

3f ′(x)

))
·

(
−108f ′(x)f ′′(x) + 114f ′

(
x− 2f(x)

3f ′(x)

)
f ′′(x) + 114f ′(x)

(
2f(x)f ′′(x)
3f ′(x)2 + 1

3

)
f ′′

(
x− 2f(x)

3f ′(x)

))
(
114f ′(x)f ′

(
x− 2f(x)

3f ′(x)

)
− 54f ′(x)2

)2

−
f(x)

(
121f ′

(
x− 2f(x)

3f ′(x)

)
f ′′(x) + 121f ′(x)

(
2f(x)f ′′(x)
3f ′(x)2 + 1

3

))
(
2f ′(x) + f ′

(
x− 2f(x)

3f ′(x)

))
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·
f(x)

(
f ′′

(
x− 2f(x)

3f ′(x)

)
− 122f ′

(
x− 2f(x)

3f ′(x)

)(
2f(x)f ′′(x)
3f ′(x)2 + 1

3

)
f ′′

(
x− 2f(x)

3f ′(x)

))
(
114f ′(x)f ′

(
x− 2f(x)

3f ′(x)

)
− 54f ′(x)2

)
put x = a in the first step of equation (16), we get yN (a) = a
Substituting the value yN (a) and x = a in fN (x), we get f ′

N (a) = 0 and |f ′
N (a)| < 1

Then from the theorem of hyperbolic fixed point we get that a is asymptotically stable
This shows that the method AMF1 is stability for the fixed point x = a of fN .

Theorem 5. (Stability Analysis of AMF2) Let f : I ⊂ R → R be a real sufficiently
differentiable function in an open interval I and let a ∈ I be a simple root of f(x) = 0.If
x0 is sufficiently close to a then the method (13) is stable

Proof. Considering

yN (x) = x− 2

3

f (x)

f ′ (x)

zN (x) = yN (x)−

[
85f ′ (yN (x)) f ′ (x)− 41f ′ (yN (x))2

−54f ′ (x)2 + 120f ′ (yN ) f ′ (x)

]
f (x)

f ′ (x) + f ′ (yN (x))

fN (x) = zN (x)−
(

1

3f ′ (x)
− 8

15f ′ (x)− 27f ′ (yN (x))

)
· f (zN (x)) (17)

Let a be a simple zero of f and x∗ is a fixed points of f . We need to prove that the fixed
point x∗ = a is stable.
To do this, we evaluate f ′

N (a) as:

yN (a) = a− 2

3

f (a)

f ′ (a)

Since a is simple zero of f then f (a) = 0 and we get

yN (a) = a and zN (a) = a

Now f ′
N (a) = 0, |f ′

N (a)| < 1.
Then from the theorem of hyperbolic, fixed point we get that a is asymptotically stable
This shows that the method AMF2 is stability for the fixed point x = a of fN .

4.1. Numerical Results to study stability analysis to the new methods

We present some examples existing in research [2] to check the stability results of the
new methods obtained in the previous section. These new methods are applied on four
nonlinear equations, which their given expressions and correspondence roots are:

f1(x) = sin (x)− x2 + 1, a = −0.6367326508
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f2(x) = cos (x)− xex + x2, a = 0.6391540963

f3(x) = x3 + 4x2 − 10, a = 1.3652300134

f4(x) =
√

x2 + 2x+ 5− 2sin (x)− x2 + 3, a = 2.3319676559

We carried out a stability analysis of the new methods of orders four and six where
we start the iterations with different initial estimates: close (x0 ≈ a), far (x0 ≈ 10a),
and very far (x0 ≈ 100a) to the root x = a, respectively. This enables us to measure,
how demanding the methods related to the initial estimation for finding a solution are.
Numerical computations have been carried out in the Mathematica 11 with 128 significant
digits of mantissa. We analyze the required number of iterations (iter) to converge to
the solution, so that the stopping criteria |xn+1 − xn| < 10−15 or |f (xn+1)| < 10−15 are
satisfied, we note that |xn+1 − xn| represents the error estimation between two consecutive
iterations and |f (xn+1)| is the residual error of the nonlinear test function.

In order to check the theoretical order of convergence, we calculate the approximate
computational order of convergence (ACOC) given by Cordero and Torregrosa in [1].

In Tables 1 and 2, we illustrate the numerical performance of the new iterative methods
associated with close, far, and very far initial estimations. On one hand, we observe
that the methods always converge to the solution, although the number of iterations
(iter) needed differs from initial guess and nonlinear equation to another. As a result, in
estimations close to the root, the methods converge to a with number iterations 3 ≤ iter ≤
4. When the initial guess is far from the root, they converge to a with a 4 ≤ iter ≤ 6.
When the starting guess is very far from the root, the iterative methods converge to a
with a 5 ≤ iter ≤ 11.

Table 1: Numerical performance of AMF1 method for some nonlinear equations

Function x0 |xn+1 − xn| |f(xn+1)| iter ACOC

Close to a
f1 -1.6 4.8721× 10−41 0.× 10−127 4 3.99
f2 -0.4 8.3094× 10−20 1.3× 10−77 4 4.02
f3 0.4 3.1224× 10−24 3.4× 10−95 4 3.99
f4 1.3 5.6497× 10−49 0.× 10−125 4 4.00

Far from a
f1 −6 9.1996× 10−48 0.× 10−125 5 3.99
f2 6 3.2676× 10−45 0.× 10−121 6 4.00
f3 14 1.7088× 10−17 3.0× 10−68 5 3.97
f4 23 6.4591× 10−32 0.× 10−122 5 3.98

Very far from a
f1 -60 3.8177× 10−34 0.× 10−122 6 3.99
f2 60 1.6463× 10−42 0.× 10−109 11 4.00
f3 140 2.2842× 10−49 0.× 10−118 8 3.99
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f4 230 6.8461× 10−29 3.5× 10−115 7 3.97

Table 2: Numerical performance of AMF2 method for some nonlinear equations

Function x0 |xn+1 − xn| |f(xn+1)| iter ACOC

Close to a
f1 -1.6 2.1467× 10−23 0.× 10−126 3 5.80
f2 -0.4 2.7202× 10−68 0.× 10−124 4 5.99
f3 0.4 3.4437× 10−58 0.× 10−124 4 6.01
f4 1.3 1.1276× 10−25 0.× 10−124 3 5.86

Far from a
f1 6 1.4799× 10−41 0.× 10−124 4 6.10
f2 6 4.7400× 10−19 1.4× 10−111 5 5.50
f3 14 2.0648× 10−17 1.7× 10−102 4 5.66
f4 23 1.8704× 10−19 6.7× 10−116 4 6.29

Very far from a
f1 -60 1.5327× 10−21 0.× 10−121 5 5.72
f2 -60 7.2911× 10−19 0.× 10−106 10 5.68
f3 140 2.2199× 10−37 0.× 10−118 6 5.72
f4 230 4.7705× 10−81 0.× 10−117 6 6.00

The above tables confirm that the new methods are stable, and always converge to the
solution for any initial guess and nonlinear test function used.

4.2. Some existing fourth and sixth order methods

Consider the following fourth-order and sixth-order methods for the purpose of com-
paring results:
Method of Francisco I. Chicharro, Alicia Cordero, Neus Garrido and Juan Torregrosa(G1)
[5]

yn = xn − f (xn)

f ′ (xn)

xn+1 = xn − f2 (xn) + f (xn) f (yn) + 2f2 (yn)

f (xn) f ′ (xn)

(18)

Method of M.Hafiz, M.Khirallaha(MHK) [9]

yn = xn − 2

3

f (xn)

f ′ (xn)

xn+1 = yn − f (xn)

6 (f ′ (xn) + f ′ (yn))
·
[
1 + 3

f ′ (xn)

f ′ (yn)
− 4 ln

(
2− f ′ (xn)

f ′ (yn)

)] (19)



M.Q. Khirallah, Asma.M. Alkhomsan / Eur. J. Pure Appl. Math, 15 (3) (2022), 971-991 981

Method of Ekta Sharma, Sunil Panday and Mona Dwivedi (NPM)[3]

yn = xn − 2

3
un

xn+1 = xn − 4f (xn)

f ′ (xn) + 3f ′ (yn)

(
1 + u3n

)
− 9

16

(
ϕ

f ′ (xn)

)2

u3n

(20)

Where

un =
f (xn)

f ′ (xn)
, ϕ =

f ′ (xn)− f ′ (yn)

un

Method of Kalyanasundaram Madhu and Jayakumar Jayaraman (PM1)[8]

yn = xn − 2

3

f (xn)

f ′ (xn)

xn+1 = xn − 4f (xn)

f ′ (xn) + 3f ′ (yn)

(
1 +

5

16
(τ − 1)2

)(
1 +

1

4
(η − 1)2 +

1

6
(η − 1)3

) (21)

Where τ =
f ′ (yn)

f ′ (xn)
, η =

f ′ (xn)

f ′ (yn)

Method of P. Maroju · Á. Magreñán· S.Motsa. Í. Sarŕıa2 (Method(8))[13]

yn = xn − f (xn)

f ′ (xn)

zn = xn −
(
1 +

f (yn)

f (xn)

(f (xn) + (α− 1) f (yn))

(f (xn)− f (yn))

)
f (xn)

f ′ (xn)

xn+1 = zn − f (zn)

f ′ (xn) + g′′ (xn) (zn − xn)

(22)

Where α = 2, g′′ (xn) =
2f (yn) f

′ (xn)
2

f (xn)
2

Method of Alicia Cordero, Marlon-Mart́ınez and Juan Torregrosa(GMT(1)) [2]

yn = xn − f (xn)

f ′ (xn)

zn = yn − f (yn)

2f [xn, yn]− f ′ (xn)

xn+1 = zn − (α+ (1 + α)un + (1− α) vn)
f (zn)

f ′ (xn)

(23)

Where un = 1− f [xn, yn]

f ′ (xn)
, vn =

f ′ (xn)

f [xn, yn]
if α = 1
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5. Numerical examples in complex domain

The attraction basins technique is a method to show how different starting points affect
the behaviour of the function. In this way, we can compare different iterative methods
depending on the convergence area of the basins of attraction of the roots, where the
iterative method is better if it has a larger area of convergence, which means that the
number of black dots is less.

Many scholars and researchers have compared their iterative methods using the attrac-
tion basins. For example, Obadah Solaiman in [12], has compared six iterative methods
with a different order for solving non-linear equations, and he concluded that getting a
better attraction basin does not only depend on convergence order as there are many other
factors that affect the result, like the number of arithmetic operations which is needed at
each iteration, number of steps in the iterative scheme, and number of functional eval-
uations in each iteration. We aim here to use the attraction basins as an indicator for
comparing the iterative methods which have been mentioned above with the new meth-
ods AMF1 and AMF2. We have drawn the attraction basins for the iterative methods
and have also applied them to some polynomial functions in the examples from 1 to 3 as
described below.

We used the rectangular D to draw the attraction basins and D is a subset of C; we
take the rectangular [−2, 2]× [−2, 2] from 256× 256 in example 1 and 3; and in example
2, we take the rectangular [−3, 3] × [−3, 3] where it contains all nonlinear equation roots
f (z) = 0; we assigned special and different colours for basins for better visibility; each root
takes a special colour. We allocate the colour black if the method was unsuccessful to find
the solution under the conditions established for convergence, such as tolerance ε = 10−3

and the maximum of 20 iterations. In Tables 3 to 8, we compared the methods in the
complex domain, where the first column represents the number of black dots (NB). The
fewer black dots indicate that the method is better since the black colour denotes lack of
convergence to any of the roots with 20 iterations. The second column (BI) represents the
brightness indicator as the brighter the colour, the better the method, in which reaching
the solution takes fewer repetitions. The third column (T) represents the time that the
method had taken to reach the solution. At last, the fourth column(I/P) is the mean
of iterations, measured in iterations/point, (I is for iterations and P is for points). The
Figures and tables below were generated with Mathematica 11.

Example 1. We consider the nonlinear equation

f1 (z) = z3 − z

A polynomial has three roots which are 0, 1,−1. The fourth-order methods basins of attrac-
tion are depicted in Figure 1 and the sixth-order methods are in Figure 2. The fourth-order
methods are compared in Table 3. We can notice that the best methods are AMF1 and
MHK and followed by the method PM1. Table 2 compared the results of the sixth order
methods and. From the results in Table 4 AMF2 is the best.
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Table 3: Comparison of different methods in complex plane in Example 1

Method NB BI T I/P

NPM 6060 0.44707 49.19 4.09

PM1 24 0.484127 39.16 3.91

G1 470 0.479182 22.39 4.68

MHK 0 0.479169 22.22 3.39

AMF1 0 0.478249 24.48 3.05

Table 4: Comparison of different methods in complex plane in Example 1

Method NB BI T I/P

GMT (1) 30 0.490129 27.08 3.48

Method8 0 0.414513 31.25 2.98

AMF2 0 0.4784 30.59 2.55
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Figure 1: Basins of attraction to iterative methods for f1 (z) = z3 − z
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Figure 2: Basins of attraction to iterative methods for f1 (z) = z3 − z

Example 2: We consider the equation

f2 (z) = z4 − z + i

Which has four roots which are −0.759845 + 0.592595i,−0.532605− 1.08829i, 0.181924 +
0.732098i, 1.11052− 0.236405i. The basins of attraction for the fourth-order methods are
depicted in Figure 3 and the sixth-order methods are presented in Figure 4. Based on
comparing the fourth-order methods in Table 5, we can notice that, the best methods are
MHK and AMF1 in terms of the number of black points and followed by PM1. As for the
brightness index and average repetitions, the new method AMF1 is the best. From Table
6 for comparing sixth-order methods, we notice that the best method is the new method
AMF2

Table 5: Comparison of different methods in complex plane in Example 2

Method NB BI T I/P

NPM 8866 0.435429 89.09 3.53

PM1 203 0.515396 57.64 3.88

G1 3222 0.470937 61.08 4.98

MHK 0 0.530415 49.41 3.06

AMF1 0 0.542123 43.59 2.55

Table 6: Comparison of different methods in complex plane in Example 2

Method NB BI T I/P

GMT (1) 451 0.515123 52.70 3.66

Method8 15968 0.410117 119.8 2.17

AMF2 0 0.546137 52.70 2.14
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Figure 3: Basins of attraction to iterative methods for f2 (z) = z4 − z + i
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Figure 4: Basins of attraction to iterative methods for f2 (z) = z4 − z + i

Example 3: We consider the equation

f3 (z) =
(
z5 + 10

) (
10z5 − 1

)
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Which has ten roots which are−1.58489,−0.51046−0.37087i,−0.51046+0.37087i,−0.48976−
1.50732i,−0.48976 + 1.50732i, 0.19498 − 0.60008i, 0.19498 + 0.60008i, 0.63096, 1.28221 −
0.93158i, 1.28221 + 0.93158i. The basins of attraction for the fourth-order methods are
depicted in Figure 5 and the sixth-order methods are in Figure 6. Based on Table 7, one
can notice that the best methods are the new method AMF1 and from Table 8, one notice
that the new method AMF2 is the best.

Table 7: Comparison of different methods in complex plane in Example 3

Method NB BI T I/P

NPM 13256 0.385073 157.0 5.57

PM1 6926 0.435844 110.4 5.49

G1 16627 0.363342 85.75 5.29

MHK 325 0.486447 77.29 4.97

AMF1 209 0.489694 66.88 3.99

Table 8: Comparison of different methods in complex plane in Example 3

Method NB BI T I/P

GMT (1) 4738 0.453943 91.23 4.89

Method8 48555 0.168974 255.9 2.07

AMF2 1772 0.475139 137.2 3.84
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Figure 5: Basins of attraction to iterative methods forf3 (z) =
(
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6. Numerical examples in real domain

In numerical analysis, many methods produce sequences of real numbers such as the
iterative methods for solving nonlinear equations. At times, the sequences’ convergence is
slow and their use in solving practcal problems is limited a fast convergent one [9].

We give several examples in the real domain to check the performance of our new
iterative methods and to clarify their effectiveness. We will apply our new methods to the
following equations:

f1(x) = x3 + 4x2 − 10, x0 = 1 f2(x) = sin2x− x2 + 1, x0 = 2

f3(x) = ex − 3x, x0 = 1

Where x0 is the initial approximation; we made two tables for comparisons, where the
first table represents a comparison for the new fourth-order method (AMF1) with four
methods of the fourth-order mentioned above and referred to by numbers (18), (19), (20)
and (21), while the second table represents comparisons for the new sixth-order method
(AMF2) with iterative methods from the same order mentioned above and referred to
by numbers(22) and (23). All numerical computations have been carried out by using
Mathematica 11, rounding to 128 significant digits. Depending on the precision of the
computer, we use the stopping criteria for the iterative process:

The error = |xn − xn−1| < ε , where ε = 10−15 and n is the number of iterations
required for convergence. The computational order of convergence (COC)is given by :

COC ≈ ln |(xn+1 − xn) / (xn − xn−1)|
ln |(xn − xn−1) / (xn−1 − xn−2)|

(24)

where n ∈ N [15].
Tables 9, and 10, show |xn − xn−1| indicating the error estimation between two con-

secutive iteration, the absolute values of the function f(xn) being the residual error of the
nonlinear test function; the computational order of convergence (COC) and the time the
iterative method take to reach the solution (Time). We note that n = 4 in Table 9 and
n = 3 in Table 10. In the numerical examples presented in all Tables, if any of the used
methods fail to reach convergence in a maximum of 15 iterations, it is labeled as ˝NC ˝.

Table 9: Comparing of the iterative methods over some the examples in real domain to
order 4

Method x0 x4 COC |x4 − x3| |f(x4)| Time

f1 1
NPM 1.36523001341409 4.00 3.0901× 10−36 0.× 10−126 0.0006

PM1 1.36523001341409 3.99 1.085× 10−37 0.× 10−126 0.0008

G1 1.36523001341409 3.99 2.3872× 10−25 3.× 10−98 0.001

MHK 1.36523001341409 3.99 6.528× 10−44 0.× 10−126 0.024
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AMF1 1.36523001341409 3.99 2.2869× 10−62 0.× 10−126 0.0009

f2 2
NPM 1.40449164821534 4.02 5.0074× 10−26 1.3× 10−101 0.003

PM1 1.40449164821534 3.99 2.4206× 10−29 6.7× 10−115 0.002

G1 1.40449164821534 3.98 1.7464× 10−23 5.4× 10−91 0.001

MHK 1.40449164821534 3.99 2.0152× 10−31 2.1× 10−123 0.002

AMF1 1.40449164821534 3.99 1.9720× 10−37 0.× 10−126 0.001

f3 1
NPM NC NC NC NC NC

PM1 0.61906128673594 3.93 0.6× 10−4 3.9× 10−17 0.001

G1 0.61906128673594 3.99 0.3× 10−2 3.9× 10−10 0.001

MHK 0.61906128673594 3.99 3.5218× 10−12 1.56× 10−46 0.11

AMF1 0.61906128673594 3.96 4.8330× 10−20 2.9× 10−78 0.001

Table 10: Comparing of the iterative methods over some the examples in real domain to
order 6

Method x0 x3 COC |x3 − x2| |f(x3)| Time

f1 1
GMT(1) 1.36523001341409 6.23 2.5423× 10−19 5.4× 10−112 0.0006

Method 8 1.36523001341409 5.96 2.2889× 10−29 0.× 10−125 0.0011

AMF2 1.36523001341409 6.11 1.0770× 10−33 0.× 10−125 0.0007

f2 1.3
GMT (1) 1.40449164821534 6.05 2.6192× 10−33 .× 10−125 0.0009

Method 8 1.40449164821534 6.02 9.798× 10−42 0.× 10−125 0.018

AMF2 1.40449164821534 6.05 1.8458× 10−47 0.× 10−126 0.001

f3 0
GMT (1) 0.61906128673594 5.99 4.1130× 10−15 1.7× 10−86 0.0007

Method 8 0.61906128673594 5.53 1.8381× 10−17 2.2× 10−101 0.0018

AMF2 0.61906128673594 5.72 6.0785× 10−19 7.2× 10−111 0.0007

7. Conclusion

In this paper, we have proposed a new optimal method of fourth order, and modified
it to sixth-order method, for solving nonlinear equations; the error equations have been
proven theoretically to show that the proposed techniques have fourth and sixth-order
convergence. A stability analysis has been performed by proving the stability theories of
the proposed methods and applying them to numerical examples. Finally, the proposed
methods have been tested in complex and real planes on some of examples published in
the literature, and the numerical results confirm that the new methods are comparable
with the other methods and in most cases give better or equal results.
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[16] R.Thukral and M.S.Petković. A family of three-point methods of optimal order for
solving nonlinear equations. Journal of Computational and Applied Mathematics,
233(9):2278–2284, 2010.

[17] S.Singh and D.K.Gupta. A new sixth order method for nonlinear equations in R. The
Scientific World Journal, 2014.


