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Supercliques in a Graph
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Abstract. A set S C V(G) of a (simple) undirected graph G is a superclique in G if it is a
clique and for every pair of distinct vertices v,w € S, there exists u € V(G) \ S such that
u € Ng(v) \ Ng(w) or u € Ng(w) \ Ng(v). The maximum cardinality among the supercliques
in G, denoted by ws(G), is called the superclique number of G. In this paper, we determine
the superclique numbers of some graphs including those resulting from some binary operations of
graphs. We will also show that the difference of the clique number and the superclique number
can be made arbitrarily large.
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1. Introduction

Clique is one of the basic concepts in graph theory. This concept was used in many
mathematical problems and constructions on graphs. The term clique was introduced
by Luce and Perry [12]. In a study in [8], Gaquing and Canoy characterized the cliques
in the lexicographic and Cartesian products of graphs. From the characterizations, the
corresponding clique numbers of these graphs have been subsequently determined. Some
studies involving cliques can be found in [5], [6], [14], and [17].

With the objective of identifying the exact location of an intruder in a network, Slater
[19] introduced the concepts of resolving set and metric dimension. These concepts were
independently considered by Harary and Melter in [10]. Later, Chartrand et al. (see [4])
also studied resolving set and metric dimension of a graph. Oellermann and Fransen [15]
considered the metric dimension of Cartesian products of graphs. It is known that the
problem of finding the metric dimension of a graph is NP-hard (see [9]). In 2003, Brigham
et al. [2] combined the concepts of resolving and domination. In their article, they defined
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resolving dominating set as a set that is both resolving and dominating. Along with the
concept, they also studied the parameter called resolving domination number of a graph.

A more restrictive concept of resolving set, called strong resolving set, and its associ-
ated invariant (the strong metric dimension) were introduced in [18]. The invariant was
revisited and studied by Oellermann and Fransen in [16] for graphs and digraphs. Recently,
Acal, Sumaoy, and Rara in [1], [13], and [20] investigated the concepts of strong connected
resolving domination and restrained resolving domination of graphs under some binary
operations. In these studies, they specifically introduced the concept of superclique and
determined the values of the invariants for the join and corona, and lexicographic product
of two graphs in terms of the superclique number of a graph. This work is therefore mo-
tivated by the recent studies on these variations of strong resolving set and strong metric
dimension that utilize the concepts of superclique and superclique number. Other works
on graph-theoretic parameters that involved some binary operations can be found in [3],
[7], and [11].

2. Terminologies and Notations

Let G = (V(G),E(G)) be a simple undirected graph. The distance between two
vertices v and v of G, denoted by dg(u,v), is equal to the length of a shortest path
connecting u and v. Any path connecting u and v of length dg(u, v) is called a u-v geodesic.
The open neighbourhood of a vertex v of G is the set Ng(v) = {u € V(G) : wv € E(G)}
and its closed neighbourhood is the set Ng[v] = Ng(v) U{v}. The open neighbourhood of
a subset S of V(G) is the set Ng(S) = UpyesNg(v) and its closed neighbourhood is the set
N¢g[S] = Ng(S)US. The degree of v, denoted by degg(v), is equal to |[Ng(v)].

A set S C V(G) is a dominating set of G if Ng[S] = V(G). The smallest cardinality
of a dominating set of G, denoted by v(G), is called the domination number of G. A
dominating set of G with with cardinality v(G) is called a v-set of G.

A set S C V(G) is a clique in a graph G if the graph G[S] induced by S is a complete
subgraph of G. A clique C in G is called a superclique if for every pair of distinct vertices
u,v € C, there exists w € V(G)\ C such that w € Ng(u)\ Ng(v) or w € Ng(v)\ Na(u). A
superclique C'in G is called a point-wise non-dominated superclique if for every u € C, there
exists v € V(G) \ C such that uv ¢ E(G). A superclique (resp. point-wise non-dominated
superclique) C' is mazimum in G if |C| > |C'| for all supercliques (resp. pointwise non-
dominated supercliques) C’ in G. The superclique number (resp. pointwise non-dominated
superclique number), denoted by wg(G) (resp. wpnas(G)) of G is the cardinality of a
maximum superclique (resp. maximum pointwise non-dominated superclique) in G.

The shadow graph S(G) of a graph G is the graph obtained by taking two copies of G,
say G1 and G2, and joining each vertex u € V(G1) to the neighbors of the corresponding
vertex v’ € V(Gs). For a graph G, the complementary prism, denoted by GG, is formed
from the disjoint union of G and its complement G by adding a perfect matching between
corresponding vertices of G and G. For each v € V(G), let ¥ denote the vertex corre-
sponding to v in G. In simple terms, the graph GG is formed from G U G by adding the
edge vv for every vertex v € V(G).
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Let G and H be graphs. The join of G and H, denoted by G + H is the graph with
vertex set V(G + H) =V (G)UV(H) and edge set E(G+ H) = E(G)UE(H)U{uv :u €
V(G),v € V(H)}. The corona of G and H, denoted by GoH, is the graph obtained from G
by taking a copy H" of H and forming the join (v) + H" = v+ H" for each v € V(G). The
lezicographic product of graphs G and H, denoted by G[H], is the graph with vertex set
V(G[H]) = V(G) x V(H) such that (v,a)(u,b) € E(G[H]) if and only if either uwv € E(Q)
or u = v and ab € F(H). The Cartesian product of G and H, denoted by GOH, is
the graph with vertex set V(G[H]) = V(G) x V(H) such that (v,a)(u,b) € E(G[H]) if
and only if either wv € F(G) and a = b or v = v and ab € E(H). We note that every
non-empty subset C' of V(G) x V(H) can be expressed as C = Uzeg[{z} x T], where
SCV(G)and T, ={a € V(H) : (z,a) € C} for each x € S.

3. Results

Two adjacent vertices v and w of a graph G are true twins if Ng[v] = Ng[w].
Theorem 1. Let G be any graph. Then each of the following statements holds:
(1) G admits a superclique and 1 < ws(G) < w(G).
(17) ws(G) =1 if and only if every component of G is complete.

(1i1) ws(G) = w(G) if and only if G has a mazximum clique containing no true twin
vertices.

Proof. G admits a superclique because every singleton subset of V(G) is a superclique
in G. Moreover, since every superclique is a clique, (i) holds. Suppose that ws(G) = 1.
Suppose further that G has a component H which is not complete. Then there exist
vertices x,y € V(H) such that dy(z,y) = dg(x,y) = 2. Let z € Ng(z) N Ng(y). Then
S = {z, 2z} is a superclique in G. Hence, ws(G) > |S| =2 > 1, contrary to our assumption
that ws(G) = 1. Thus, every component of G is complete. The converse is easy.

Next, suppose that ws(G) = w(G). Let S be a superclique in G such that |S| = ws(G).
The assumption ws(G) = w(G) would imply that S is a maximum clique of G. Suppose S
contains true twin vertices, say v and w. Then

(V(G)\ S) N (Na(v) \ N (w)) = (V(G)\ S) N (Na(w) \ Na(v) = 2,

contrary to the assumption that S is a superclique in G. Thus, S does not contain true
twin vertices.

Conversely, suppose that G has a maximum clique S containing no true twin vertices.
Then clearly, S is a superclique in G. This implies that ws(G) = w(G). O

Remark 1. Fach of the following statements holds:

(1) For any positive integer n, ws(Ky) = 1.
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(1) For any positive integer n > 2,

Py 1 ifn=2
ws(Fn) = 2 if n>3.

1 ifn=3
2 if n> 4

Theorem 2. Let a and b be positive integers such that 2 < a < b. Then there exists a
connected graph G such that ws(G) = a and w(G) = b.

Proof. Consider the following cases:

Case 1. a = b.

Consider the graph G in Figure 1 obtained from the complete graph K, by adding the a
pendant vertices. Then clearly, ws(G) = w(G) = a.

Lq

T3

Figure 1: A graph G with w,(G) = w(G)

Case 2. a < b.

Consider the graph G in Figure 2 where G[{z1,z2,...,2.}] = K, and G[{y1,y2, ...,y }] =
Ky. Let S1 = {x1,22,...,2,} and S2 = {y1,¥2,...,yp}. Clearly, S is the (only) maximum
clique in G and so w(G) = b. Since Sy has true twin vertices, it is not a superclique in
G (hence, ws(G) # w(@)) by Theorem 1(4i7). Also, the only subsets of Sy that are
supercliques in G are the singletons and the sets {y1,v;} where i € {2,3,...,b}. It can
easily be verified that S; is a maximum superclique in G. Consequently, ws(G) = a.
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Figure 2: A graph G with ws(G) < w(G)

Therefore, the assertion holds. O

Corollary 1. Let n be a positive integer. Then there exists a connected graph G such that
w(G) — ws(G) =n. In other words, the difference w — ws can be made arbitrarily large.

Proof. Let n be a positive integer. By Theorem 2, there exists a connected graph G
with ws(G) =n+ 1 and w(G) = 2n + 1. Thus, w(G) — ws(G) = n. O

Theorem 3. Let G be a non-trivial connected graph and let G1 and Gy be two copies of
G in the definition of S(G). Then C is a superclique in S(G) if and only if one of the
following holds:

(i) C is a clique in Gi.
(13) C is a clique in Gs.

(tit) C = Cg, U Cg,, where Cg, and Cgq, are cliques in G1 and Ga, respectively, and
satisfy the following conditions:

(a) V' ¢ Cq, whenever v € Cg,, and
(b) vw € E(Gy) for each v € Cg, and w' € Cg,.
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Proof. Let C be a superclique in S(G) and set Cg, = CNV(G;) and Cg, = CNV (Ga).
If Cq, = @ or Cg, = @, then (i) or (i) holds. So suppose that Cg, # @ and Cg, #
@. Then Cg, and Cg, are cliques in GG; and G2, respectively. Let v € Cg,. Then
v’ ¢ V(S(G)) by definition of S(G). Hence, v' ¢ Cg,, showing that (a) holds. Next, let
v € Cg, and w' € Cg,. Since C is a clique in S(G), vw' € E(S(G)). The definition of
S(G) will now imply that vw € E(G;) showing that (b) holds. Therefore, (ii7) holds.

For the converse, suppose that (i) holds. Let v,w € C with v # w. Then v’ €
V(S(G)) \ C and v € Ng(gy(w) \ Ng()(v) by the adjacency in S(G). Hence, C' is a
superclique in S(G). The same conclusion can be made if (i) holds.

Next, suppose that (i7i) holds. Then, by (a) and (b), C'is a clique of S(G). Let x,y € C
with  # y. If z,y € Cg,, then 2’ € V(S(G)) \ C by (a) and 2" € Ng)(y) because
ry € E(Gy). It follows that 2’ € Ng(g)(y) \ Ng(@)(z). Suppose z,y € Cg,, say = v and

= w’ where v,w € V(G1). Then v € V(S(G)) \ C by (a) and v € Ng()(w') because
v'w' € E(Gg). Hence, v € Ngg)(w') \ Ng)(v'). Suppose z € Cg, and y € Cg,, say
y = 2/, where z € V(G1). By (b), z € [V(S(G))\C]NNg(z). Thus, z € Ng(c)(2)\Ns)(y)-
This shows that C is a superclique in S(G). O

Corollary 2. Let G be a connected graph. Then
ws(5(G)) = w(G).

Proof. If G = K1, then S(G) = K5 (empty graph). It follows that ws(S(G)) = w(G) =
1. Next, suppose that G is non-trivial. Let C' be a superclique in S(G) of the form given
in Theorem 3(iii). Then C' = Cg, U Cg,, where Cg, and Cg, are cliques in G and Gb,
respectively, and satisfy conditions (a) and (b). Set Cf, = {v € V(G1) : v' € Cg,}. Then
|C&, | = |Ca,|. By condition (a), Cg, N Cg, = . Let C* = Cg, UCE, and let z,y € C*
with x # y. If 2,y € Cg,, then zy € E(G1). Suppose z,y € Cf,. Then 2y € Cq,.
Since Cg, is a clique in Gg, 'y’ € E(G2). This implies that xy € E(G1). Finally, suppose
that x € Cg, and y € C,. Then 3’ € Cg,. By condition (b), it follows that xy € E(G1).
Therefore, C* is a clique in G; and |C| = |C*| < w(G1) = w(G). The desired result now
follows from Theorem 3. O

Theorem 4. Let G be a non-trivial graph. Then C is a superclique in GG if and only if
one of the following holds:

(i) C is a clique in G.
(ii) C is a clique in G.
(t31) C = {v,v} for some v € V(G).

Proof. Let C be a superclique in GG and set Cg = CNV(G) and Cg = CNV(G). If
Cgz =@ or Cg = &, then C is a clique in G or G, showing that (i) or (i) holds. Suppose
that Cq # @ and Cgz # @. Let v € Cg and W € Cg. Since C is a clique, vw € E(GG).
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Hence, by definition of GG, w = v. Now, because U ¢ Neg(u) for all u € Ng(v), it follows
that Cg = {v}. Similarly, Cz = {v}. Thus, C = {v, 7}, showing that (iii) holds.

For the converse, suppose first that (i) holds. Then C is a clique in GG. Let p,q € C
with p # ¢. Then p € Nz(p) \ Ngz(q). This implies that C' is a superclique in GG. The
same conclusion holds if (i7) is assumed. Suppose now that (i77) holds, i.e., C = {v,v} for
some v € V(G). Pick any w € V(G) \ {v}. If w € Ng(v), then w € Nz (v) \ Ngg(0). If
w ¢ Ng(v), then W € N5(0) \ Nyg(v). Thus, C is a superclique in GG. O

The next results are immediate from Theorem 4.

Corollary 3. Let G be a non-trivial graph. Then
ws(GG) = max{2, w(G), w(G)}.

Corollary 4. Let G be any graph. Then C is a superclique in GG if and only if it is a
clique in GG. In particular,

ws(GG) = w(GqQ).

Theorem 5. Let G and H be any two graphs. Then C C V(G + H) is a superclique in
G + H if and only if one of the following statements holds:

(i) C is a superclique in G.
(13) C is a superclique in H.

(tit) C' = Cqg U Cq, where Cg and Cyg are supercliques in G and H, respectively, and at
least one of them is pointwise non-dominated.

Proof. Suppose C'is a superclique in G+ H. Set Cg = CNV(G) and Cy = CNV (H).
If one of Cg and Cy is empty, say Cy = &, then clearly, Cq is a superclique in G. Thus,
(¢) or (it) holds. Suppose that Cq # @ and Cy # @. Since C is a clique, Cg and Cg
are cliques in G and H, respectively. Let v,w € Cg such that v # w. Since C is a
superclique in G + H, there exists z € V(G + H) \ C such that z € Ngyu(v) \ Notp(w)
or z € Noym(w)\ Natm(v). Since V(H)\ Cy C Ng+u(v) N Nagtu(w), it follows that
z € V(G)\ Cq. Hence, z € Ng(v) \ Ng(w) or z € Ng(w) \ Ng(v), showing that C¢ is a
superclique in G. Similarly, C'y is a superclique in H. Suppose now that both Cg and Cy
are not pointwise non-dominated supercliques in G and H, respectively. Then there exist
a € Cg and b € Cp such that V(G) \ Cqg € Ng(a) and V(H) \ Cg € Ng(b). This would
imply that V(G + H)\ C C Ngt+m(a) N Ngym(b), contradicting the assumption that C' is
a superclique in G + H. Therefore, Cg or Cy is a pointwise non-dominated superclique,
showing that (7i7) holds.

For the converse, suppose that (i) or (i7) holds. Then clearly, C' is a superclique in
G + H. Next, suppose that (7i7) holds, i.e., C' = Cg U Cp and satisfies the given property.
Assume that Cp is a pointwise non-dominated superclique in H. Let v,w € V(G+ H)\ C
such that v # v. Suppose first that v,w € Cg. Since Cg is a superclique in G, there
exists y € V(G) \ Cg such that y € Ng(v) \ Ng(w) or y € Ng(w) \ Ng(v). Hence,



R. Dela Cerna, S. Canoy, Jr. / Eur. J. Pure Appl. Math, 15 (3) (2022), 1217-1228 1224

yeV(G+H)\Candy € Nagrug(v) \ Noru(w) or y € Narpg(w) \ Ngym(v). Similarly,
if v,w € V(H) \ Cpg, then there exists p € V(G + H) \ C and p € Ng+pg(v) \ Natm(w)
or p € Ngypg(w) \ Ng+g(v). Suppose now that v € Cg and w € Cg. Since Cy is
pointwise non-dominated, there exists ¢ € V(H) \ Cy such that ¢ ¢ Ng(v). It follows
that ¢ € Ny (v) \ Ngipg(w). Accordingly, C' is a superclique in G + H. O

Corollary 5. Let G be a non-complete graph and let n be a positive integer. Then C' C
V(K,+G) is a superclique in K, + G if and only if one of the following statements holds:

(i) C is a superclique in G.
(1) C ={p} for somep e V(K,).
(17i) C = CqU{p} for some pointwise non-dominated superclique Cq in G andp € V(K,,).

Proof. Since the only supercliques in K, are the singleton subsets of V(K,,) and none
of these sets is pointwise non-dominated, C' C V(K,, + G) is a superclique in K,, + G if
and only if (), (¢7), or (éi7) holds by Theorem 5. O

The next result is a consequence of Theorem 5 and Corollary 5.

Corollary 6. Let G and H be any two graphs and let n be a positive integer. Then

(

max{ws(G) + wpnds(H), ws(H) 4+ wpnds(G)} if G and
H are
non-complete
max{ws(G), wpnds(G)+ 1} if Gis
non-complete

and H = K,,.

ws(G+ H) =

\

Theorem 6. Let G be a non-trivial connected graph and let H be any graph. Then
C C V(G o H) is a superclique in G o H if and only if one of the following statements
holds:

(i) C is a clique in G.
(1) C is a superclique in HY for some v € V(G).
(ii1) C = CyU{v} for some v € V(G) and superclique C, in H.

Proof. Suppose C is a superclique in Go H. If C C V(G), then C is a clique in G. So
suppose that C NV (H"Y) # @ for some v € V(G). Then C is a clique in v + H. Suppose
first that C C V(H"Y) and let z,y € C where = # y. Since C is a superclique in G o H,
there exists z € V(GoH)\ C such that z € Ngop () \ Ngor (y) or 2 € Naor (y) \ Ngor ().
Since v € Ngom(z) N Ngor (y), z # v. Hence, z € V(H")\ C and z € Ngv(z) \ Ngv(y)
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or z € Ngv(y) \ Nyv(z). This shows that C is a superclique in H". Next, suppose that
v € C. Then C = {v} UC, where C, = C NV (H"). It is routine to show that C, is a
superclique in H".

For the converse, suppose first that C' is a clique in G. Let a,b € C where a # b. Pick
any ¢ € V(H®). Then ¢ € V(Go H)\ C and ¢ €€ Ngom(a) \ Ngom(b). Thus, C is a
superclique in G o H. Next, suppose that C' is a superclique in H" for some v € V(G).
Then clearly, C' is a superclique in G o H. Finally, suppose that C' = C, U {v} for some
v € V(Q) and superclique C,, in H". Let p,q € C where p # q. If p,q € C,, then there
exists t € V(H") \ C, such that t € Ngv(p) \ Ngv(q) or t € Nyv(q) \ Ngv(p) because C,
is a superclique in H". It follows that ¢t € V(G o H) \ C and t € Ngon(p) \ Naor(q) or
t € Ngor(q) \ Naor(p). Suppose p = v. Choose any w € Ng(v). Then w € Ngou(p) \
Ngor(q). This proves that C' is a superclique in G o H. O

The next result is a consequence of Theorem 6.

Corollary 7. Let G be a non-trivial connected graph and let H be any graph. Then
ws(G o H) = max{w(G), ws(H) + 1}.

Gaquing and Canoy in [8] obtained the next result.

Theorem 7. Let G and H be any connected non-trivial graphs. Then C' = |J [{z} x T%],
zeS
where S C V(G) and T, C V(H) for each x € S, is a clique in G[H| if and only if S a

cliqgue in G and T is a cliqgue in H for each x € S. In particular, w(G[H]) = w(G)w(H).

Theorem 8. Let G and H be any connected non-trivial graphs. Then C' = |J [{z} x Ty],
zeSs
where S C V(G) and T, C V(H) for each x € S, is a superclique in G[H] if and only if S

a superclique in G and T, is a superclique in H for each x € S.

Proof. Suppose C is a superclique in G[H]. Then S and each T, are cliques in G and
H, respectively, by Theorem 7. Let x,y € S with x # y. Choose any a € T}, and b € T,.
Then (z,a), (y,b) € C. Since C is a superclique in G[H], there exists (z,¢) € V(G[H])\ C
such that (2,¢) € Nag () \ Negm((©,5)) or (5,¢) € Nega () \ Nog (2, 0))-
Since {z} x (V(H)\ Tx) € Ngig)((y,b)) and {y} x (V(H)\T,) € Ngim((z,b)), it follows
that z ¢ {z,y} and z € V(G) \ S. Hence, z € Ng(x) \ Ng(y) or z € Ng(y) \ Na(x),
showing that S is a superclique in G.

Next, let z € S and let p,q € T, with p # q. Then (z,p),(x,q) € C. Since C is a
superclique in G[H], there exists (w,t) € V(G[H]) \ C such that (w,t) € Ngim((z,p)) \
Ngia)((z,q)) or (w,t) € Ngm((x,q)) \ Nga)((z,p)). This would imply that w = =,
te V(H)\T,,and t € Ng(p)\Ng(q) ort € Ng(q)\ Ng(p). Therefore, T, is a superclique
in H.

For the converse, suppose that S a superclique in G and T is a superclique in H for
each x € S. By Theorem 7, C'is a clique in G[H]. Let (v,a), (w,b) € C with (v,a) # (w,b)

and consider the following cases:
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Case 1. v = w.

Then a,b € T, and a # b. Since T, is a superclique in H, there exists d € V(H) \ T, such
that d € Ng(a) \ Ng(b) or d € Ny (b) \ Nu(a). It follows that (v,d) € V(G[H]) \ C and
(v,d) € Nemy((v, @) \ Nepay (v, ) or (v,d) € Nem((v,0)) \ Nepm) (v, a)).

Case 2. v # w.
Since v, w € S and S is a superclique in G, there exists u € V(G)\ S such that u € Ng(v)\
Ng(w) or u € Ng(w) \ Ng(v). Then (u,a) € V(G[H])\ C and (u,a) € Ngg)((v,a))

\
Nem)((v,0)) or (u,a) € Ngimj((v,0)) \ Ngpm (v, a)).
Accordingly, C' is a superclique in G[H]. O

Corollary 8. Let G and H be any connected non-trivial graphs. Then
ws(GH]) = ws(Gws(H).

Proof. Let S and D be ws-sets in G and H, respectively. Then Cyp = S x D is a
superclique in G[H| by Theorem 8. It follows that

ws(GH]) = [Co| = |S[|D] = ws(G)ws(H).

Now, let C' be an ws-set in G[H|. Then C = |J [{z} x T;] and S and each T, are
z€eS
supercliques in G and H, respectively, by Theorem 8. Hence,

ws (G| =|C| = Z |Te| < ws(Gws(H).

€S

This establishes the desired equality. O

The next result is also obtained from [§].

Theorem 9. Let G and H be any connected graphs. Then C' is a clique in GOH if and
only if C = S x {a} for some a € V(H) and cligue S in G or C = {x} x R for some
x € V(G) and clique R in H. In particular,

w(GOH) = max{w(G),w(H)}.

Theorem 10. Let G and H be any connected non-trivial graphs. Then C' is a superclique
in GOH if and only if C = S x {a} for some a € V(H) and clique S in G or C = {z} xR
for some x € V(G) and clique R in H.

Proof. Suppose C'is a superclique in G[H]. Since C'is a clique, C' = S x {a} for some
a € V(H) and clique S in G or C' = {z} x R for some z € V(G) and clique R in H by
Theorem 9.

For the converse, suppose that C' = S x {a} for some a € V(H) and clique S in G.
Then C' is a clique in GOH by Theorem 9. Let (v,a), (w,a) € C such that v # w. Choose
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any b € Ng(a). Then (v,b) € V(GOH) \ C and (v,b) € Ngou((v,a)) \ Neon((w,a)).
Next, suppose that C' = {z} x R for some z € V(G) and clique R in H. Again, C is a
clique in GOH by Theorem 9. Let (x,p), (z,q) € C with p # ¢q. Choose any y € Ng(x).
Then (y,p) € V(GOH) \ C and (y,p) € Neou((x,p)) \ Neou((z,q)). In either case, we
find that C is a superclique in GUJH. O

The next result follows from Theorem 9 and Theorem 10.

Corollary 9. Let G and H be non-trivial connected graphs. Then

ws(GOH) = w(GOH) = max{w(G),w(H)}.

4. Conclusion

Any graph admits a superclique and the superclique number of a graph does not exceed
the clique number of the graph. It is shown that the difference of the clique number
and superclique number can be made arbitrarily large. Supercliques in the join, corona,
lexicographic product, and Cartesian product of two graphs have been characterized. From
these characterizations, respective superclique numbers have been determined. This new
invariant can also be studied for graphs under other binary operations. Moreover, it may
be possible that the invariant has relationship with other graph-theoretic parameters apart
from the ones involving the strong metric dimension.
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