On Certain Sufficient Conditions for Analytic Univalent Functions

G. Murugusundaramoorthy ${ }^{1, *}$ and N. Magesh ${ }^{2}$
${ }^{1}$ School of Advanced Sciences, VIT University, Vellore - 632014, Tamilnadu, India.
${ }^{2}$ Department of Mathematics, Government Arts College(Men), Krishnagiri-635001, Tamilnadu, India.

Abstract

In this paper, we introduce a new class $B_{m}^{l}(\alpha, \delta)$ of functions which is defined by hypergeometric function and obtain its relations with some well-known subclasses of analytic univalent functions. Furthermore, as a special case, we show that convex functions of order $1 / 2$ are also members of the family $B_{m}^{l}(\alpha, \delta)$.

2000 Mathematics Subject Classifications: 30C45
Key Words and Phrases: Univalent functions, starlike functions, convex functions, Hadamard product, generalized hypergeometric functions.

1. Introduction

Let \mathscr{A} denote the class of functions of the form

$$
\begin{equation*}
f(z)=z+\sum_{n=2}^{\infty} a_{n} z^{n} \tag{1}
\end{equation*}
$$

which are analytic and univalent in the open disc $U=\{z:|z|<1\}$ and normalized by $f(0)=0=f \prime(0)-1$. We denote by $S^{*}(\alpha)$ and $K(\alpha)$ the subclasses of \mathscr{A} consisting of all functions which are, respectively starlike and convex of order α. Thus,

$$
S^{*}(\alpha)=\left\{f \in \mathscr{A}: \operatorname{Re}\left(\frac{z f \prime(z)}{f(z)}\right)>\alpha, 0 \leq \alpha<1, z \in U\right\}
$$

and

$$
K(\alpha)=\left\{f \in \mathscr{A}: \operatorname{Re}\left(1+\frac{z f \prime \prime(z)}{f \prime(z)}\right)>\alpha, 0 \leq \alpha<1, z \in U\right\} .
$$

[^0]We notice that $K(\alpha) \subset S^{*}(\alpha) \subset \mathscr{A}$. Further,

$$
R(\alpha)=\{f \in \mathscr{A}: \operatorname{Re}(f \prime(z))>\alpha, 0 \leq \alpha<1, z \in U\}
$$

If f and g are analytic functions in U, we say that f is subordinate to g, written $f \prec g$, if there is a function w analytic in U, with $w(0)=0,|w(z)|<1$, for all $z \in U$ such that $f(z)=g(w(z))$ for all $z \in U$. If g is univalent, then $f \prec g$ if and only if $f(0)=g(0)$ and $f(U) \subseteq g(U)$.

For functions $\Phi \in \mathscr{A}$ given by $\Phi(z)=z+\sum_{n=2}^{\infty} \phi_{n} z^{n}$ and $\Psi \in \mathscr{A}$ given by $\Psi(z)=z+\sum_{n=2}^{\infty} \psi_{n} z^{n}$, we define the Hadamard product (or Convolution) of Φ and Ψ by

$$
\begin{equation*}
(\Phi * \Psi)(z)=z+\sum_{n=2}^{\infty} \phi_{n} \psi_{n} z^{n}, z \in U \tag{2}
\end{equation*}
$$

For complex parameters $\alpha_{1}, \ldots, \alpha_{l}$ and $\beta_{1}, \ldots, \beta_{m}\left(\beta_{j} \neq 0,-1, \ldots ; j=1,2, \ldots, m\right)$ the generalized hypergeometric function ${ }_{l} F_{m}(z)$ is defined by

$$
\begin{align*}
{ }_{l} F_{m}(z) \equiv{ }_{l} F_{m}\left(\alpha_{1}, \ldots \alpha_{l} ; \beta_{1}, \ldots, \beta_{m} ; z\right) & :=\sum_{n=0}^{\infty} \frac{\left(\alpha_{1}\right)_{n} \ldots\left(\alpha_{l}\right)_{n}}{\left(\beta_{1}\right)_{n} \ldots\left(\beta_{m}\right)_{n}} \frac{z^{n}}{n!} \tag{3}\\
\left(l \leq m+1 ; l, m \in N_{0}\right. & :=N \cup\{0\} ; z \in U)
\end{align*}
$$

where N denotes the set of all positive integers and $(\alpha)_{n}$ is the Pochhammer symbol defined by

$$
(\alpha)_{n}=\left\{\begin{array}{lr}
1, & n=0 \tag{4}\\
\alpha(\alpha+1)(\alpha+2) \ldots(\alpha+n-1), & n \in N
\end{array}\right.
$$

Let $H\left(\alpha_{1}, \ldots \alpha_{l} ; \beta_{1}, \ldots, \beta_{m}\right): \mathscr{A} \rightarrow \mathscr{A}$ be a linear operator defined by

$$
\begin{align*}
{\left[\left(H\left(\alpha_{1}, \ldots \alpha_{l} ; \beta_{1}, \ldots, \beta_{m}\right)\right)(f)\right](z) } & :=z_{l} F_{m}\left(\alpha_{1}, \alpha_{2}, \ldots \alpha_{l} ; \beta_{1}, \beta_{2} \ldots, \beta_{m} ; z\right) * f(z) \\
& =z+\sum_{n=2}^{\infty} \Gamma_{n} a_{n} z^{n} \tag{5}
\end{align*}
$$

where

$$
\begin{equation*}
\Gamma_{n}=\frac{\left(\alpha_{1}\right)_{n-1} \ldots\left(\alpha_{l}\right)_{n-1}}{(n-1)!\left(\beta_{1}\right)_{n-1} \ldots\left(\beta_{m}\right)_{n-1}} \tag{6}
\end{equation*}
$$

For notational simplicity, we can use a shorter notation $H_{m}^{l}\left[\alpha_{1}\right]$ for $H\left(\alpha_{1}, \ldots \alpha_{l} ; \beta_{1}, \ldots, \beta_{m}\right)$ in the sequel. The linear operator $H_{m}^{l}\left[\alpha_{1}\right]$ is called Dziok-Srivastava operator (see [3]), includes (as its special cases) various other linear operators introduced and studied by Bernardi [1], Carlson and Shaffer [2], Libera [6], Livingston [7], Ruscheweyh [8] and Srivastava-Owa [9].

For $0 \leq \alpha<1$ and $\delta \geq 0$, let $B_{m}^{l}(\alpha, \delta)$ consisting of functions of the form (1) and satisfying the condition

$$
\begin{equation*}
\left|\frac{H_{m}^{l}\left[\alpha_{1}+1\right] f(z)}{z}\left(\frac{z}{H_{m}^{l}\left[\alpha_{1}\right] f(z)}\right)^{\delta}-1\right|<1-\alpha, z \in U \tag{7}
\end{equation*}
$$

The class $B_{m}^{l}(\alpha, \delta)$ is a unified class of analytic functions which includes various new subclasses of analytic univalent functions. We observe that

Example 1. If $l=2$ and $m=1$ with $\alpha_{1}=1, \alpha_{2}=1, \beta_{1}=1$ then

$$
B_{1}^{2}(\alpha, \delta):=\left\{f \in \mathscr{A}:\left|f \prime(z)\left(\frac{z}{f(z)}\right)^{\delta}-1\right|<1-\alpha, \delta \geq 0,0 \leq \alpha<1, z \in U .\right\}
$$

The class $B_{1}^{2}(\alpha, \delta)$ has been studied by Frasin and Jahangiri [5]. Further $B_{1}^{2}(\alpha, 2)$ has been studied by Frasin and Darus [4]. Also we note that $B_{1}^{2}(\alpha, 1) \equiv S^{*}(\alpha)$ and $B_{1}^{2}(\alpha, 0) \equiv R(\alpha)$.
Example 2. If $l=2$ and $m=1$ with $\alpha_{1}=\eta+1(\eta>-1), \alpha_{2}=1, \beta_{1}=1$, then
$B(\eta, \alpha, \delta):=\left\{f \in \mathscr{A}:\left|\frac{D^{\eta+1} f(z)}{z}\left(\frac{z}{D^{\eta} f(z)}\right)^{\delta}-1\right|<1-\alpha, \eta>-1, \delta \geq 0,0 \leq \alpha<1, z \in U.\right\}$,
where $D^{\eta} f(z)$ is called Ruscheweyh derivative operator [8] defined by

$$
D^{\eta} f(z):=\frac{z}{(1-z)^{\eta+1}} * f(z) \equiv H_{1}^{2}(\eta+1,1 ; 1) f(z)
$$

Also we observe that $B(0, \alpha, 1) \equiv K(\alpha)$.
Example 3. If $l=2$ and $m=1$ with $\alpha_{1}=\mu+1(\mu>-1), \alpha_{2}=1, \beta_{1}=\mu+2$, then
$B(\mu, \alpha, \delta):=\left\{f \in \mathscr{A}:\left|\frac{J_{\mu+1} f(z)}{z}\left(\frac{z}{J_{\mu} f(z)}\right)^{\delta}-1\right|<1-\alpha, \mu>-1, \delta \geq 0,0 \leq \alpha<1, z \in U\right\}$,
where J_{μ} is a Bernardi operator [1] defined by

$$
J_{\mu} f(z):=\frac{\mu+1}{z^{\mu}} \int_{0}^{z} t^{\mu-1} f(t) d t \equiv H_{1}^{2}(\mu+1,1 ; \mu+2) f(z) .
$$

Note that the operator J_{1} was studied earlier by Libera [6] and Livingston [7].
Example 4. If $l=2$ and $m=1$ with $\alpha_{1}=a(a>0), \alpha_{2}=1, \beta_{1}=c(c>0)$, then
$B(a, c, \alpha, \delta):=\left\{f \in \mathscr{A}:\left|\frac{L(a+1, c) f(z)}{z}\left(\frac{z}{L(a, c) f(z)}\right)^{\delta}-1\right|<1-\alpha, \delta \geq 0,0 \leq \alpha<1, z \in U\right\}$,
where $L(a, c)$ is a well-known Carlson-Shaffer linear operator [2] defined by

$$
L(a, c) f(z):=\left(\sum_{k=0}^{\infty} \frac{(a)_{k}}{(c)_{k}} z^{k+1}\right) * f(z) \equiv H_{1}^{2}(a, 1 ; c) f(z) .
$$

The object of the present paper is to investigate the sufficient condition for functions to be in the class $B_{m}^{l}(\alpha, \delta)$. Furthermore, as a special case, we show that convex functions of order $1 / 2$ are also members of the family $B_{m}^{l}(\alpha, \delta)$.

2. Main Results

To prove our results we need the following lemma.
Lemma 1. [5] Let p be analytic in U with $p(0)=1$ and suppose that

$$
\begin{equation*}
\operatorname{Re}\left\{1+\frac{z p \prime(z)}{p(z)}\right\}>\frac{3 \alpha-1}{2 \alpha} . \tag{8}
\end{equation*}
$$

Then $\operatorname{Re}\{p(z)\}>\alpha$ for $z \in U$ and $\frac{1}{2} \leq \alpha<1$.
Using Lemma 1, we first prove the following theorem.
Theorem 1. Let $f(z)$ be the functions of the form (1), $\delta \geq 0$ and $\frac{1}{2} \leq \alpha<1$. If

$$
\begin{equation*}
\left(\alpha_{1}+1\right) \frac{H_{m}^{l}\left[\alpha_{1}+2\right] f(z)}{H_{m}^{l}\left[\alpha_{1}+1\right] f(z)}-\delta \alpha_{1} \frac{H_{m}^{l}\left[\alpha_{1}+1\right] f(z)}{H_{m}^{l}\left[\alpha_{1}\right] f(z)}+\alpha_{1}(\delta-1) \prec 1+\beta z, \tag{9}
\end{equation*}
$$

where $\beta=\frac{3 \alpha-1}{2 \alpha}$, then $f(z) \in B_{m}^{l}(\alpha, \delta)$.
Proof. Define the function $p(z)$ by

$$
\begin{equation*}
p(z):=\frac{H_{m}^{l}\left[\alpha_{1}+1\right] f(z)}{z}\left(\frac{z}{H_{m}^{l}\left[\alpha_{1}\right] f(z)}\right)^{\delta} \tag{10}
\end{equation*}
$$

Then the function $p(z)$ is analytic in U and $p(0)=1$. Therefore, differentiating (10) logarithmically and the simple computation yields

$$
\frac{z p \prime(z)}{p(z)}=\left(\alpha_{1}+1\right) \frac{H_{m}^{l}\left[\alpha_{1}+2\right] f(z)}{H_{m}^{l}\left[\alpha_{1}+1\right] f(z)}-\delta \alpha_{1} \frac{H_{m}^{l}\left[\alpha_{1}+1\right] f(z)}{H_{m}^{l}\left[\alpha_{1}\right] f(z)}+\alpha_{1}(\delta-1)-1 .
$$

By the hypothesis of the theorem, we have

$$
\operatorname{Re}\left\{1+\frac{z p \prime(z)}{p(z)}\right\}>\frac{3 \alpha-1}{2 \alpha} .
$$

Hence by Lemma 1, we have

$$
\operatorname{Re}\left\{\frac{H_{m}^{l}\left[\alpha_{1}+1\right] f(z)}{z}\left(\frac{z}{H_{m}^{l}\left[\alpha_{1}\right] f(z)}\right)^{\delta}\right\}>\alpha, z \in U
$$

Therefore in view of definition $f(z) \in B_{m}^{l}(\alpha, \delta)$.
For $l=2$ and $m=1$ with $\alpha_{1}=a(a>0), \alpha_{2}=1, \beta_{1}=c(c>0)$, we obtain the following corollary.

Corollary 1. Let $\frac{1}{2} \leq \alpha<1$. If $f \in \mathscr{A}$ and

$$
\operatorname{Re}\left\{(a+1) \frac{L[a+2, c] f(z)}{L[a+1, c] f(z)}-\delta a \frac{L[a+1, c] f(z)}{L[a, c] f(z)}+a(\delta-1)\right\}>\frac{3 \alpha-1}{2 \alpha}, z \in U,
$$

then

$$
\operatorname{Re}\left\{\frac{L[a+1, c] f(z)}{z}\left(\frac{z}{L[a, c] f(z)}\right)^{\delta}\right\}>\alpha, z \in U .
$$

Therefore $f(z) \in B(a, c, \alpha, \delta)$.
Taking $l=2$ and $m=1$ with $\alpha_{1}=\mu+1(\mu>-1), \alpha_{2}=1, \beta_{1}=\mu+2$, we get
Corollary 2. Let $\frac{1}{2} \leq \alpha<1$. If $f \in \mathscr{A}$ and

$$
\operatorname{Re}\left\{(\mu+2) \frac{J_{\mu+2} f(z)}{J_{\mu+1} f(z)}-\delta(\mu+1) \frac{J_{\mu+1} f(z)}{J_{\mu} f(z)}+(\mu+1)(\delta-1)\right\}>\frac{3 \alpha-1}{2 \alpha}, z \in U,
$$

then

$$
\operatorname{Re}\left\{\frac{J_{\mu+1} f(z)}{z}\left(\frac{z}{J_{\mu} f(z)}\right)^{\delta}\right\}>\alpha, z \in U
$$

Therefore $f(z) \in B(\mu, \alpha, \delta)$.
Choosing $l=2$ and $m=1$ with $\alpha_{1}=\eta+1(\eta>-1), \alpha_{2}=1, \beta_{1}=1$, we have
Corollary 3. Let $\frac{1}{2} \leq \alpha<1$. If $f \in \mathscr{A}$ and

$$
\operatorname{Re}\left\{(\eta+2) \frac{D^{\eta+2} f(z)}{D^{\eta+1} f(z)}-\delta(\eta+1) \frac{D^{\eta+1} f(z)}{D^{\eta} f(z)}+(\eta+1)(\delta-1)\right\}>\frac{3 \alpha-1}{2 \alpha}, z \in U,
$$

then

$$
\operatorname{Re}\left\{\frac{D^{\eta+1} f(z)}{z}\left(\frac{z}{D^{\eta} f(z)}\right)^{\delta}\right\}>\alpha, z \in U .
$$

Therefore $f(z) \in B(\eta, \alpha, \delta)$.
Choosing $l=2$ and $m=1$ with $\alpha_{1}=1, \alpha_{2}=1$ and $\beta_{1}=1$, we have
Corollary 4. [5] If $f \in \mathscr{A}$ and

$$
\operatorname{Re}\left\{1+\frac{z f \prime \prime(z)}{f \prime(z)}+\delta\left(1-\frac{z f \prime(z)}{f(z)}\right)\right\}>\frac{3 \alpha-1}{2 \alpha}, z \in U
$$

then

$$
\operatorname{Re}\left\{f \prime(z)\left(\frac{z}{f(z)}\right)^{\delta}\right\}>\alpha, z \in U .
$$

Therefore $f(z) \in B_{1}^{2}(\alpha, \delta)$.

Choosing $l=2$ and $m=1$ with $\alpha_{1}=2, \alpha_{2}=1, \beta_{1}=1, \delta=1$ and $\alpha=\frac{1}{2}$ we have
Corollary 5. If $f \in \mathscr{A}$ and

$$
\operatorname{Re}\left\{\frac{z^{2} f \prime \prime \prime+6 z f \prime \prime(z)+6 f \prime(z)}{2 f \prime(z)+z f \prime \prime}-\frac{z f \prime \prime(z)}{f \prime(z)}\right\}>\frac{3}{2}, z \in U,
$$

then

$$
\operatorname{Re}\left\{1+\frac{z f \prime \prime(z)}{f \prime(z)}\right\}>0, z \in U .
$$

That is, $f(z) \in K$.
Choosing $l=2$ and $m=1$ with $\alpha_{1}=2, \alpha_{2}=1, \beta_{1}=1, \delta=0$ and $\alpha=\frac{1}{2}$ we have
Corollary 6. If $f \in \mathscr{A}$ and

$$
\operatorname{Re}\left\{\frac{z^{2} f \prime \prime \prime+4 z f \prime \prime(z)+2 f \prime(z)}{2 f \prime(z)+z f \prime \prime}\right\}>\frac{1}{2}, z \in U,
$$

then

$$
\operatorname{Re}\left\{f \prime(z)+\frac{z f \prime \prime(z)}{2}\right\}>\frac{1}{2}, z \in U .
$$

Choosing $l=2$ and $m=1$ with $\alpha_{1}=1, \alpha_{2}=1, \beta_{1}=1, \delta=1$ and $\alpha=\frac{1}{2}$ we have
Corollary 7. If $f \in \mathscr{A}$ and

$$
\operatorname{Re}\left\{\frac{z f \prime \prime(z)}{f \prime(z)}-\frac{z f \prime(z)}{f(z)}\right\}>\frac{-3}{2}, z \in U,
$$

then

$$
\operatorname{Re}\left\{\frac{z f \prime(z)}{f(z)}\right\}>\frac{1}{2}, z \in U .
$$

That is, $f(z)$ is starlike of order $1 / 2$.
Choosing $l=2$ and $m=1$ with $\alpha_{1}=1, \alpha_{2}=1, \beta_{1}=1, \delta=0$ and $\alpha=\frac{1}{2}$ we have
Corollary 8. If $f \in \mathscr{A}$ and

$$
\operatorname{Re}\left\{1+\frac{z f \prime \prime(z)}{f \prime(z)}\right\}>\frac{1}{2}, z \in U
$$

then

$$
\operatorname{Re}\{f \prime(z)\}>\frac{1}{2}, z \in U .
$$

That is $f(z) \in B(0,1 / 2)=R_{1 / 2}$.
ACKNOWLEDGEMENTS The authors would like to thank the referee(s) for their insightful comments and suggestions.

References

[1] S. D. Bernardi. Convex and starlike univalent functions. Trans. Amer. Math. Soc., 135:429U"446, 1969.
[2] B. C. Carlson and S. B. Shaffer. Starlike and prestarlike hypergeometric functions. SIAM J. Math. Anal., 15:737-U゙745, 1984.
[3] J. Dziok and H. M. Srivastava. Certain subclasses of analytic functions associated with the generalized hypergeometric function. Intergral Transform Spec. Funct., 14:7-Ǔ18, 2003.
[4] B.A. Frasin and M. Darus. On certain analytic univalent functions. Internat. J. Math. and Math. Sci., 25(5):305-Ü310, 2001.
[5] B.A. Frasin and Jay M. Jahangiri. A new and comprehensive class of analytic functions. Analele Univ. Oradea, XV:61U゙-64, 2008.
[6] R. J. Libera. Some classes of regular univalent functions. Proc. Amer. Math. Soc., 16:755758, 1965.
[7] A. E. Livingston. On the radius of univalence of certain analytic functions. Proc. Amer. Math. Soc., 17:352-357, 1966.
[8] St. Ruscheweyh. New criteria for univalent functions. Proc. Amer. Math. Soc., 49:109-115, 1975.
[9] H. M. Srivastava and S. Owa. Some characterization and distortion theorems involving fractional calculus, generalized hypergeometric functions, hadamard products, linear operators and certain subclasses of analytic functions. Nagoya Math. J., 106:1-28, 1987.

[^0]: *Corresponding author.
 Email addresses: gmsmoorthy@yahoo.com (G. Murugusundaramoorthy), nmagi_2000@yahoo.co.in (N.Magesh)
 http://www.ejpam.com 76 (c) 2010 EJPAM All rights reserved.

