Differential Sandwich Theorems of Analytic Functions Defined by Linear Operators

M. K. Aouf ${ }^{1, *}$, Tamer M. Seoudy ${ }^{2}$
${ }^{1}$ Department of Mathematics, Faculty of Science, Mansoura University, Mansoura 35516, Egypt
${ }^{2}$ Department of Mathematics, Faculty of Science, Fayoum University, Fayoum 63514, Egypt

Abstract

In this paper, we obtain some applications of first order differential subordination and superordination results involving a linear operator and other linear operators for certain normalized analytic functions. Some of our results generalize previously known results.

2000 Mathematics Subject Classifications: 30C45
Key Words and Phrases: Analytic function, Hadamard product, differential subordination, superordination, linear operator

1. Introduction

Let $H(U)$ be the class of analytic functions in the open unit disk $U=\{z \in \mathbb{C}:|z|<1\}$ and let $H[a, k]$ be the subclass of $H(U)$ consisting of functions of the form:

$$
\begin{equation*}
f(z)=a+a_{k} z^{k}+a_{k+1} z^{k+1} \ldots(a \in \mathbb{C}) . \tag{1}
\end{equation*}
$$

For simplicity $H[a]=H[a, 1]$. Also, let \mathscr{A} be the subclass of $H(U)$ consisting of functions of the form:

$$
\begin{equation*}
f(z)=z+\sum_{k=2}^{\infty} a_{k} z^{k} . \tag{2}
\end{equation*}
$$

If $f, g \in H(U)$, we say that f is subordinate to g or f is superordinate to g, written $f(z) \prec g(z)$ if there exists a Schwarz function ω, which (by definition) is analytic in U with $\omega(0)=0$ and $|\omega(z)|<1$ for all $z \in U$, such that $f(z)=g(\omega(z)), z \in U$. Furthermore, if the function g is univalent in U, then we have the following equivalence, [cf., e.g., 6, 16, 17]:

$$
f(z) \prec g(z) \Leftrightarrow f(0)=g(0) \text { and } f(U) \subset g(U) .
$$

*Corresponding author.
Email addresses: mkaouf127@yahoo.com (M. Aouf), tms00@fayoum.edu.eg (T. Seoudy)

Let $\phi: \mathbb{C}^{2} \times U \rightarrow \mathbb{C}$ and $h(z)$ be univalent in U. If $p(z)$ is analytic in U and satisfies the first order differential subordination:

$$
\begin{equation*}
\phi\left(p(z), z p^{\prime}(z) ; z\right) \prec h(z), \tag{3}
\end{equation*}
$$

then $p(z)$ is a solution of the differential subordination (3). The univalent function $q(z)$ is called a dominant of the solutions of the differential subordination (3) if $p(z) \prec q(z)$ for all $p(z)$ satisfying (3). A univalent dominant \tilde{q} that satisfies $\tilde{q} \prec q$ for all dominants of (3) is called the best dominant. If $p(z)$ and $\phi\left(p(z), z p^{\prime}(z) ; z\right)$ are univalent in U and if $p(z)$ satisfies first order differential superordination:

$$
\begin{equation*}
h(z) \prec \phi\left(p(z), z p^{\prime}(z) ; z\right), \tag{4}
\end{equation*}
$$

then $p(z)$ is a solution of the differential superordination (4). An analytic function $q(z)$ is called a subordinant of the solutions of the differential superordination (4) if $q(z) \prec p(z)$ for all $p(z)$ satisfying (4). A univalent subordinant \tilde{q} that satisfies $q \prec \tilde{q}$ for all subordinants of (4) is called the best subordinant.Using the results of Miller and Mocanu [17], Bulboaca [5] considered certain classes of first order differential superordinations as well as superordinationpreserving integral operators [6]. Ali et al. [1], have used the results of Bulboaca [5] to obtain sufficient conditions for normalized analytic functions to satisfy:

$$
q_{1}(z) \prec \frac{z f^{\prime}(z)}{f(z)} \prec q_{2}(z),
$$

where q_{1} and q_{2} are given univalent functions in U with $q_{1}(0)=q_{2}(0)=1$. Also, Tuneski [25] obtained a sufficient condition for starlikeness of f in terms of the quantity $\frac{f^{\prime \prime}(z) f(z)}{\left(f^{\prime}(z)\right)^{2}}$. Recently, Shanmugam et al. [24] obtained sufficient conditions for the normalized analytic function f to satisfy

$$
q_{1}(z) \prec \frac{f(z)}{z f^{\prime}(z)} \prec q_{2}(z)
$$

and

$$
q_{1}(z) \prec \frac{z^{2} f^{\prime}(z)}{\{f(z)\}^{2}} \prec q_{2}(z) .
$$

They [24] also obtained results for functions defined by using Carlson-Shaffer operator [7], Ruscheweyh derivative [20] and Sălăgean operator [22].

For functions f given by (1) and $g \in \mathscr{A}$ given by $g(z)=z+\sum_{k=2}^{\infty} b_{k} z^{k}$, the Hadamard product (or convolution) of f and g is defined by

$$
\begin{equation*}
(f * g)(z)=z+\sum_{k=2}^{\infty} a_{k} b_{k} z^{k}=(g * f)(z) . \tag{5}
\end{equation*}
$$

For functions $f, g \in \mathscr{A}$, we define the linear operator
$D_{\lambda}^{n}: \mathscr{A} \rightarrow \mathscr{A}\left(\lambda \geq 0, n \in \mathbb{N}_{0}=\mathbb{N} \cup\{0\}, \mathbb{N}=\{1,2, \ldots\}\right)$ by:

$$
D_{\lambda}^{0}(f * g)(z)=(f * g)(z),
$$

$$
\begin{equation*}
D_{\lambda}^{1}(f * g)(z)=D_{\lambda}(f * g)(z)=(1-\lambda)(f * g)(z)+\lambda z((f * g)(z))^{\prime}, \tag{6}
\end{equation*}
$$

and (in general)

$$
\begin{align*}
D_{\lambda}^{n}(f * g)(z) & =D_{\lambda}\left(D_{\lambda}^{n-1}(f * g)(z)\right) \\
& =z+\sum_{k=2}^{\infty}[1+\lambda(k-1)]^{n} a_{k} b_{k} z^{k} \quad\left(\lambda \geq 0 ; n \in \mathbb{N}_{0}\right) . \tag{7}
\end{align*}
$$

From (7), we can easily deduce that

$$
\begin{equation*}
\lambda z\left(D_{\lambda}^{n}(f * g)(z)\right)^{\prime}=D_{\lambda}^{n+1}(f * g)(z)-(1-\lambda) D_{\lambda}^{n}(f * g)(z)(\lambda>0) . \tag{8}
\end{equation*}
$$

The linear operator $D_{\lambda}^{n}(f * g)(z)$ was introduced by Aouf and Seoudy [3] and we observe that $D_{\lambda}^{n}(f * g)(z)$ reduces to several interesting many other linear operators considered earlier for different choices of n, λ and the function $g(z)$:
(i) For $b_{k}=1\left(\right.$ or $\left.g(z)=\frac{z}{1-z}\right)$, we have $D_{\lambda}^{n}(f * g)(z)=D_{\lambda}^{n} f(z)$, where D_{λ}^{n} is the generalized Sălăgean operator (or Al-Oboudi operator [2] which yield Sălăgean operator D^{n} for $\lambda=1$ introduced and studied by Sălăgean [21];
(ii) For $n=0$ and

$$
\begin{equation*}
g(z)=z+\sum_{k=2}^{\infty} \frac{\left(a_{1}\right)_{k-1} \ldots\left(a_{l}\right)_{k-1}}{\left(b_{1}\right)_{k-1} \ldots\left(b_{m}\right)_{k-1}(1)_{k-1}} z^{k} \tag{9}
\end{equation*}
$$

$\left(a_{i} \in \mathbb{C} ; i=1, \ldots, l ; b_{j} \in \mathbb{C} \backslash \mathbb{Z}_{0}^{-}=\{0,-1,-2, \ldots\} ; j=1, \ldots, m ; l \leq m+1 ; l, m \in \mathbb{N}_{0} ; z \in U\right)$, where

$$
(x)_{k}= \begin{cases}1 & \left(k=0 ; x \in \mathbb{C}^{*}=\mathbb{C} \backslash\{0\}\right) \\ x(x+1) \ldots(x+k-1) & (k \in N ; x \in \mathbb{C})\end{cases}
$$

we have $D_{\lambda}^{0}(f * g)(z)=(f * g)(z)=H_{l, m}\left(a_{1} ; b_{1}\right) f(z)$, where the operator $H_{l, m}\left(a_{1} ; b_{1}\right)$ is the Dziok-Srivastava operator introduced and studied by Dziok and Srivastava [10] ([see also 11, 12]). The operator $H_{l, m}\left(a_{1} ; b_{1}\right)$, contains in turn many interesting operators such as, Hohlov linear operator (see [13]), the Carlson-Shaffer linear operator (see [7, 21]), the Ruscheweyh derivative operator (see [20]), the Bernardi-Libera-Livingston operator (see [4, 14, 15]) and Owa-Srivastava fractional derivative operator (see [19]);
(iii) For $n=0$ and

$$
\begin{equation*}
g(z)=z+\sum_{k=2}^{\infty}\left[\frac{1+l+\lambda(k-1)}{1+l}\right]^{s} z^{k}\left(\lambda \geq 0 ; l, s \in N_{0}\right), \tag{10}
\end{equation*}
$$

we see that $D_{\lambda}^{0}(f * g)(z)=(f * g)(z)=I(s, \lambda, l) f(z)$, where $I(s, \lambda, l)$ is the generalized multiplier transformations which was introduced and studied by Cătaş et al. [8]. The operator $I(s, \lambda, l)$, contains as special cases, the multiplier transformation $I(s, l)$ (see [9]) for $\lambda=1$, the generalized Sălăgean operator D_{λ}^{n} introduced and studied by AlOboudi [2] which in turn contains as special case the Sălăgean operator D^{n} (see [21]);
(iv) For $g(z)$ of the form (9), the operator $D_{\lambda}^{n}(f * g)(z)=D_{\lambda}^{n}\left(a_{1}, b_{1}\right) f(z)$, introduced and studied by Selvaraj and Karthikeyan [23].

In this paper, we will derive several subordination results, superordination results and sandwich results involving the operator $D_{\lambda}^{n}(f * g)(z)$ and some of its special operators by some choices of n, λ and the function $g(z)$.

2. Preliminaries

In order to prove our subordinations and superordinations, we need the following definition and lemmas.

Definition 1. [17] Denote by Q, the set of all functions f that are analytic and injective on $U \backslash E(f)$, where

$$
E(f)=\left\{\zeta \in \partial U: \lim _{z \rightarrow \zeta} f(z)=\infty\right\}
$$

and are such that $f^{\prime}(\zeta) \neq 0$ for $\zeta \in \partial U \backslash E(f)$.
Lemma 1. [17] Let $q(z)$ be univalent in the unit disk U and θ and φ be analytic in a domain D containing $q(U)$ with $\varphi(w) \neq 0$ when $w \in q(U)$. Set

$$
\begin{equation*}
\psi(z)=z q^{\prime}(z) \varphi(q(z)) \text { and } h(z)=\theta(q(z))+\psi(z) . \tag{11}
\end{equation*}
$$

Suppose that
(i) $\psi(z)$ is starlike univalent in U,
(ii) $\mathfrak{R}\left\{\frac{z h^{\prime}(z)}{\psi(z)}\right\}>0$ for $z \in U$.

If $p(z)$ is analytic with $p(0)=q(0), p(U) \subset D$ and

$$
\begin{equation*}
\theta(p(z))+z p^{\prime}(z) \varphi(p(z)) \prec \theta(q(z))+z q^{\prime}(z) \varphi(q(z)), \tag{12}
\end{equation*}
$$

then $p(z) \prec q(z)$ and $q(z)$ is the best dominant.
Taking $\theta(w)=\alpha w$ and $\varphi(w)=\gamma$ in Lemma 1, Shanmugam et al. [24] obtained the following lemma.

Lemma 2. [24] Let $q(z)$ be univalent in U with $q(0)=1$. Let $\alpha \in \mathbb{C} ; \gamma \in \mathbb{C}^{*}$, further assume that

$$
\begin{equation*}
\Re\left\{1+\frac{z q^{\prime \prime}(z)}{q^{\prime}(z)}\right\}>\max \left\{0,-\Re\left(\frac{\alpha}{\gamma}\right)\right\} . \tag{13}
\end{equation*}
$$

If $p(z)$ is analytic in U, and

$$
\alpha p(z)+\gamma z p^{\prime}(z) \prec \alpha q(z)+\gamma z q^{\prime}(z),
$$

then $p(z) \prec q(z)$ and $q(z)$ is the best dominant.

Lemma 3. [5] Let $q(z)$ be convex univalent in U and ϑ and ϕ be analytic in a domain D containing $q(U)$. Suppose that
(i) $\Re\left\{\frac{\vartheta^{\prime}(q(z))}{\phi(q(z))}\right\}>0$ for $z \in U$,
(ii) $\Psi(z)=z q^{\prime}(z) \phi(q(z))$ is starlike univalent in U.

If $p(z) \in H[q(0), 1] \cap Q$, with $p(U) \subseteq D$, and $\vartheta(p(z))+z p^{\prime}(z) \phi(p(z))$ is univalent in U and

$$
\begin{equation*}
\vartheta(q(z))+z q^{\prime}(z) \phi(q(z)) \prec \vartheta(p(z))+z p^{\prime}(z) \phi(p(z)), \tag{14}
\end{equation*}
$$

then $q(z) \prec p(z)$ and $q(z)$ is the best subordinant.
Taking $\vartheta(w)=\alpha w$ and $\phi(w)=\gamma$ in Lemma 3, Shanmugam et al. [24] obtained the following lemma.

Lemma 4. [24] Let $q(z)$ be convex univalent in $U, q(0)=1$. Let $\alpha \in \mathbb{C} ; \gamma \in \mathbb{C}^{*}$ and $\Re\left(\frac{\alpha}{\gamma}\right)>0$. If $p(z) \in H[q(0), 1] \cap Q, \alpha p(z)+\gamma z p^{\prime}(z)$ is univalent in U and

$$
\alpha q(z)+\gamma z q^{\prime}(z) \prec \alpha p(z)+\gamma z p^{\prime}(z)
$$

then $q(z) \prec p(z)$ and $q(z)$ is the best subordinant.

3. Sandwich Results

Unless otherwise mentioned, we assume throughout this paper that $\lambda>0$ and $n \in \mathbb{N}_{0}$.
Theorem 1. Let $q(z)$ be univalent in U with $q(0)=1$, and $\gamma \in \mathbb{C}^{*}$. Further, assume that

$$
\begin{equation*}
\Re\left\{1+\frac{z q^{\prime \prime}(z)}{q^{\prime}(z)}\right\}>\max \left\{0,-\Re\left(\frac{1}{r}\right)\right\} . \tag{15}
\end{equation*}
$$

If $f, g \in \mathscr{A}$ satisfy the following subordination condition:

$$
\begin{align*}
\left(1+\frac{\gamma}{\lambda}\right) \frac{z D_{\lambda}^{n+1}(f * g)(z)}{\left[D_{\lambda}^{n}(f * g)(z)\right]^{2}}+ & \frac{\gamma}{\lambda}\left\{\frac{z D_{\lambda}^{n+2}(f * g)(z)}{\left[D_{\lambda}^{n}(f * g)(z)\right]^{2}}-2 \frac{z\left[D_{\lambda}^{n+1}(f * g)(z)\right]^{2}}{\left[D_{\lambda}^{n}(f * g)(z)\right]^{3}}\right\} \\
& \prec q(z)+\gamma z q^{\prime}(z) \tag{16}
\end{align*}
$$

then

$$
\frac{z D_{\lambda}^{n+1}(f * g)(z)}{\left[D_{\lambda}^{n}(f * g)(z)\right]^{2}} \prec q(z)
$$

and $q(z)$ is the best dominant.

Proof. Define a function $p(z)$ by

$$
\begin{equation*}
p(z)=\frac{z D_{\lambda}^{n+1}(f * g)(z)}{\left[D_{\lambda}^{n}(f * g)(z)\right]^{2}} \quad(z \in U) \tag{17}
\end{equation*}
$$

Then the function $p(z)$ is analytic in U and $p(0)=1$. Therefore, differentiating (17) logarithmically with respect to z and using the identity (8) in the resulting equation, we have

$$
\left(1+\frac{\gamma}{\lambda}\right) \frac{z D_{\lambda}^{n+1}(f * g)(z)}{\left[D_{\lambda}^{n}(f * g)(z)\right]^{2}}+\frac{\gamma}{\lambda}\left\{\frac{z D_{\lambda}^{n+2}(f * g)(z)}{\left[D_{\lambda}^{n}(f * g)(z)\right]^{2}}-2 \frac{z\left[D_{\lambda}^{n+1}(f * g)(z)\right]^{2}}{\left[D_{\lambda}^{n}(f * g)(z)\right]^{3}}\right\}=p(z)+\gamma z p^{\prime}(z),
$$

that is,

$$
p(z)+\gamma z p^{\prime}(z) \prec q(z)+\gamma z q^{\prime}(z) .
$$

Therefore, Theorem 1 now follows by applying Lemma 2 .
Putting $q(z)=\frac{1+A z}{1+B z}(-1 \leq B<A \leq 1)$ in Theorem 1, we obtain the following corollary.
Corollary 1. Let $\gamma \in \mathbb{C}^{*}$ and

$$
\mathfrak{R}\left\{\frac{1-B z}{1+B z}\right\}>\max \left\{0,-\Re\left(\frac{1}{r}\right)\right\} .
$$

If $f, g \in \mathscr{A}$ satisfy the following subordination condition:

$$
\begin{aligned}
\left(1+\frac{\gamma}{\lambda}\right) \frac{z D_{\lambda}^{n+1}(f * g)(z)}{\left[D_{\lambda}^{n}(f * g)(z)\right]^{2}} & +\frac{\gamma}{\lambda}\left\{\frac{z D_{\lambda}^{n+2}(f * g)(z)}{\left[D_{\lambda}^{n}(f * g)(z)\right]^{2}}-2 \frac{z\left[D_{\lambda}^{n+1}(f * g)(z)\right]^{2}}{\left[D_{\lambda}^{n}(f * g)(z)\right]^{3}}\right\} \\
& \prec \frac{1+\mathscr{A} z}{1+B z}+\gamma \frac{(A-B) z}{(1+B z)^{2}},
\end{aligned}
$$

then

$$
\frac{z D_{\lambda}^{n+1}(f * g)(z)}{\left[D_{\lambda}^{n}(f * g)(z)\right]^{2}} \prec \frac{1+A z}{1+B z}
$$

and the function $\frac{1+A z}{1+B z}$ is the best dominant.
Remark 1. Taking $g(z)=\frac{z}{1-z}$ in Theorem 1, we obtain the subordination result of Nechita [18, Theorem 14].

Remark 2. Taking $\lambda=1$ and $g(z)=\frac{z}{1-z}$ in Theorem 1, we obtain the subordination result for Sălăgean operator which was obtained by Shanmugam et al. [24, Theorem 5.4] and also obtained by Nechita [18, Corollary 16].
M. Aouf, T. Seoudy / Eur. J. Pure Appl. Math, 4 (2011), 1-13

Taking $n=0, \lambda=1$ and $g(z)$ of the form (9) in Theorem 1, we obtain the following subordination result for Dziok-Srivastava operator.

Corollary 2. Let $q(z)$ be univalent in U with $q(0)=1$, and $\gamma \in \mathbb{C}^{*}$. Further assume that (15) holds. If $f \in \mathscr{A}$ satisfies the following subordination condition:

$$
\frac{z^{2}\left(H_{l, m}\left(a_{1} ; b_{1}\right) f(z)\right)^{\prime}}{\left[H_{l, m}\left(a_{1} ; b_{1}\right) f(z)\right]^{2}}-\gamma z^{2}\left(\frac{z}{\left(H_{l, m}\left(a_{1} ; b_{1}\right) f(z)\right)}\right)^{\prime \prime} \prec q(z)+\gamma z q^{\prime}(z),
$$

then

$$
\frac{z^{2}\left(H_{l, m}\left(a_{1} ; b_{1}\right) f(z)\right)^{\prime}}{\left[H_{l, m}\left(a_{1} ; b_{1}\right) f(z)\right]^{2}} \prec q(z)
$$

and $q(z)$ is the best dominant.
Taking $g(z)$ of the form (9) in Theorem 1, we obtain the following subordination result for the operator $D_{\lambda}^{n}\left(a_{1} ; b_{1}\right)$.
Corollary 3. Let $q(z)$ be univalent in U with $q(0)=1$, and $\gamma \in \mathbb{C}^{*}$. Further assume that [15] holds. If $f \in \mathscr{A}$ satisfies the following subordination condition:

$$
\begin{aligned}
&\left(1+\frac{\gamma}{\lambda}\right) \frac{\left.z D_{\lambda}^{n+1}\left(a_{1} ; b_{1}\right) f(z)\right)}{\left[D_{\lambda}^{n}\left(a_{1} ; b_{1}\right) f(z)\right]^{2}}+\frac{\gamma}{\lambda}\left\{\frac{z D_{\lambda}^{n+2}\left(a_{1} ; b_{1}\right) f(z)}{\left[D_{\lambda}^{n}\left(a_{1} ; b_{1}\right) f(z)\right]^{2}}-2 \frac{z\left[D_{\lambda}^{n+1}\left(a_{1} ; b_{1}\right) f(z)\right]^{2}}{\left[D_{\lambda}^{n}\left(a_{1} ; b_{1}\right) f(z)\right]^{3}}\right\} \\
& \prec q(z)+\gamma z q^{\prime}(z),
\end{aligned}
$$

then

$$
\frac{\left.z D_{\lambda}^{n+1}\left(a_{1} ; b_{1}\right) f(z)\right)}{\left[D_{\lambda}^{n}\left(a_{1} ; b_{1}\right) f(z)\right]^{2}} \prec q(z)
$$

and $q(z)$ is the best dominant.
Taking $n=0, \lambda=1$ and

$$
\begin{equation*}
g(z)=z+\sum_{k=2}^{\infty}\left(\frac{l+k}{1+l}\right)^{s} z^{k}\left(l, s \in N_{0}\right) \tag{18}
\end{equation*}
$$

in Theorem 1, we obtain the following subordination result for the multiplier transformations $I(s, l)$.

Corollary 4. Let $q(z)$ be univalent in U with $q(0)=1$, and $\gamma \in \mathbb{C}^{*}$. Further assume that (15) holds. If $f \in \mathscr{A}$ satisfies the following subordination condition:

$$
\frac{z^{2}(I(s, l) f(z))^{\prime}}{[I(s, l) f(z)]^{2}}-\gamma z^{2}\left(\frac{z}{I(s, l) f(z)}\right)^{\prime \prime} \prec q(z)+\gamma z q^{\prime}(z),
$$

then

$$
\frac{z^{2}(I(s, l) f(z))^{\prime}}{[I(s, l) f(z)]^{2}} \prec q(z)
$$

and $q(z)$ is the best dominant.
Remark 3. Taking $n=0, \lambda=1$ and $g(z)=\frac{z}{1-z}$ in Theorem 1, we obtain the subordination result of Shanmugam et al. [24, Theorem 3.4] and also obtained by Nechita [18, Corollary 17].

Now, by appealing to Lemma 4 it can be easily prove the following theorem.
Theorem 2. Let $q(z)$ be convex univalent in U with $q(0)=1$. Let $\gamma \in \mathbb{C}$ with $\mathfrak{R}(\gamma)>0$. If $f, g \in \mathscr{A}, \frac{z D_{\lambda}^{n+1}(f * g)(z)}{\left[D_{\lambda}^{n}(f * g)(z)\right]^{2}} \in H[1,1] \cap Q$,

$$
\left(1+\frac{\gamma}{\lambda}\right) \frac{z D_{\lambda}^{n+1}(f * g)(z)}{\left[D_{\lambda}^{n}(f * g)(z)\right]^{2}}+\frac{\gamma}{\lambda}\left\{\frac{z D_{\lambda}^{n+2}(f * g)(z)}{\left[D_{\lambda}^{n}(f * g)(z)\right]^{2}}-2 \frac{z\left[D_{\lambda}^{n+1}(f * g)(z)\right]^{2}}{\left[D_{\lambda}^{n}(f * g)(z)\right]^{3}}\right\}
$$

is univalent in U, and the following superordination condition
$q(z)+\gamma z q^{\prime}(z) \prec\left(1+\frac{\gamma}{\lambda}\right) \frac{z D_{\lambda}^{n+1}(f * g)(z)}{\left[D_{\lambda}^{n}(f * g)(z)\right]^{2}}+\frac{\gamma}{\lambda}\left\{\frac{z D_{\lambda}^{n+2}(f * g)(z)}{\left[D_{\lambda}^{n}(f * g)(z)\right]^{2}}-2 \frac{z\left[D_{\lambda}^{n+1}(f * g)(z)\right]^{2}}{\left[D_{\lambda}^{n}(f * g)(z)\right]^{3}}\right\}$
holds, then

$$
q(z) \prec \frac{z D_{\lambda}^{n+1}(f * g)(z)}{\left[D_{\lambda}^{n}(f * g)(z)\right]^{2}}
$$

and $q(z)$ is the best subordinant.
Taking $q(z)=\frac{1+A z}{1+B z}(-1 \leq B<A \leq 1)$ in Theorem 2 , we have the following corollary.
Corollary 5. Let $\gamma \in \mathbb{C}$ with $\mathfrak{R}(\gamma)>0$. If $f, g \in \mathscr{A}, \frac{z D_{\lambda}^{n+1}(f * g)(z)}{\left[D_{\lambda}^{n}(f * g)(z)\right]^{2}} \in H[1,1] \cap Q$,

$$
\left(1+\frac{\gamma}{\lambda}\right) \frac{z D_{\lambda}^{n+1}(f * g)(z)}{\left[D_{\lambda}^{n}(f * g)(z)\right]^{2}}+\frac{\gamma}{\lambda}\left\{\frac{z D_{\lambda}^{n+2}(f * g)(z)}{\left[D_{\lambda}^{n}(f * g)(z)\right]^{2}}-2 \frac{z\left[D_{\lambda}^{n+1}(f * g)(z)\right]^{2}}{\left[D_{\lambda}^{n}(f * g)(z)\right]^{3}}\right\}
$$

is univalent in U, and the following superordination condition

$$
\frac{1+A z}{1+B z}+\gamma \frac{(A-B) z}{(1+B z)^{2}} \prec\left(1+\frac{\gamma}{\lambda}\right) \frac{z D_{\lambda}^{n+1}(f * g)(z)}{\left[D_{\lambda}^{n}(f * g)(z)\right]^{2}}+\frac{\gamma}{\lambda}\left\{\frac{z D_{\lambda}^{n+2}(f * g)(z)}{\left[D_{\lambda}^{n}(f * g)(z)\right]^{2}}-2 \frac{z\left[D_{\lambda}^{n+1}(f * g)(z)\right]^{2}}{\left[D_{\lambda}^{n}(f * g)(z)\right]^{3}}\right\}
$$

holds, then

$$
\frac{1+A z}{1+B z} \prec \frac{z D_{\lambda}^{n+1}(f * g)(z)}{\left[D_{\lambda}^{n}(f * g)(z)\right]^{2}}
$$

and $q(z)$ is the best subordinant.
Remark 4. Taking $g(z)=\frac{z}{1-z}$ in Theorem 2, we obtain the superordination result of Nechita [18, Theorem 19].
Remark 5. Taking $\lambda=1$ and $g(z)=\frac{z}{1-z}$ in Theorem 2, we obtain the following superordination result for Sălăgean operator which is obtained Shanmugam et al. [24, Theorem 5.5].

Taking $n=0, \lambda=1$ and $g(z)$ of the form (9) in Theorem 2, we obtain the following superordination result for Dziok-Srivastava operator.

Corollary 6. Let $q(z)$ be convex univalent in U with $q(0)=1$. Let $\gamma \in \mathbb{C}$ with $\Re(\gamma)>0$. If

$$
\begin{aligned}
& f \in \mathscr{A}, \frac{z^{2}\left(H_{l, m}\left(a_{1} ; b_{1}\right) f(z)\right)^{\prime}}{\left[H_{l, m}\left(a_{1} ; b_{1}\right) f(z)\right]^{2}} \in H[1,1] \cap Q, \\
& \frac{z^{2}\left(H_{l, m}\left(a_{1} ; b_{1}\right) f(z)\right)^{\prime}}{\left[H_{l, m}\left(a_{1} ; b_{1}\right) f(z)\right]^{2}}-\gamma z^{2}\left(\frac{z}{\left(H_{l, m}\left(a_{1} ; b_{1}\right) f(z)\right)}\right)^{\prime \prime}
\end{aligned}
$$

is univalent in U, and the following superordination condition

$$
q(z)+\gamma z q^{\prime}(z) \prec \frac{z^{2}\left(H_{l, m}\left(a_{1} ; b_{1}\right) f(z)\right)^{\prime}}{\left[H_{l, m}\left(a_{1} ; b_{1}\right) f(z)\right]^{2}}-\gamma z^{2}\left(\frac{z}{\left(H_{l, m}\left(a_{1} ; b_{1}\right) f(z)\right)}\right)^{\prime \prime}
$$

holds, then

$$
q(z) \prec \frac{z^{2}\left(H_{l, m}\left(a_{1} ; b_{1}\right) f(z)\right)^{\prime}}{\left[H_{l, m}\left(a_{1} ; b_{1}\right) f(z)\right]^{2}}
$$

and $q(z)$ is the best subordinant.
Taking $g(z)$ of the form (9) in Theorem 2, we obtain the following superordination result for the operator $D_{\lambda}^{n}\left(a_{1} ; b_{1}\right)$.
Corollary 7. Let $q(z)$ be convex univalent in U with $q(0)=1$. Let $\gamma \in \mathbb{C}$ with $\Re(\gamma)>0$. If $f, g \in \mathscr{A}, \frac{z D_{\lambda}^{n+1}\left(a_{1} ; b_{1}\right) f(z)}{\left[D_{\lambda}^{n}\left(a_{1} ; b_{1}\right) f(z)\right]^{2}} \in H[1,1] \cap Q$,

$$
\left(1+\frac{\gamma}{\lambda}\right) \frac{z D_{\lambda}^{n+1}\left(a_{1} ; b_{1}\right) f(z)}{\left[D_{\lambda}^{n}\left(a_{1} ; b_{1}\right) f(z)\right]^{2}}+\frac{\gamma}{\lambda}\left\{\frac{z D_{\lambda}^{n+2}\left(a_{1} ; b_{1}\right) f(z)}{\left[D_{\lambda}^{n}\left(a_{1} ; b_{1}\right) f(z)\right]^{2}}-2 \frac{z\left[D_{\lambda}^{n+1}\left(a_{1} ; b_{1}\right) f(z)\right]^{2}}{\left[D_{\lambda}^{n}\left(a_{1} ; b_{1}\right) f(z)\right]^{3}}\right\}
$$

is univalent in U, and the following superordination condition

$$
q(z)+\gamma z q^{\prime}(z) \prec\left(1+\frac{\gamma}{\lambda}\right) \frac{z D_{\lambda}^{n+1}\left(a_{1} ; b_{1}\right) f(z)}{\left[D_{\lambda}^{n}\left(a_{1} ; b_{1}\right) f(z)\right]^{2}}+\frac{\gamma}{\lambda}\left\{\frac{z D_{\lambda}^{n+2}\left(a_{1} ; b_{1}\right) f(z)}{\left[D_{\lambda}^{n}\left(a_{1} ; b_{1}\right) f(z)\right]^{2}}-2 \frac{z\left[D_{\lambda}^{n+1}\left(a_{1} ; b_{1}\right) f(z)\right]^{2}}{\left[D_{\lambda}^{n}\left(a_{1} ; b_{1}\right) f(z)\right]^{3}}\right\}
$$

holds, then

$$
q(z) \prec \frac{z D_{\lambda}^{n+1}\left(a_{1} ; b_{1}\right) f(z)}{\left[D_{\lambda}^{n}\left(a_{1} ; b_{1}\right) f(z)\right]^{2}}
$$

and $q(z)$ is the best subordinant.
Taking $n=0, \lambda=1$ and $g(z)$ of the form (18) in Theorem 2, we obtain the following supordination result for the multiplier transformations $I(s, l)$.
Corollary 8. Let $q(z)$ be convex univalent in U with $q(0)=1$. Let $\gamma \in \mathbb{C}$ with $\Re(\gamma)>0$. If $f \in \mathscr{A}, \frac{z^{2}(I(s, l) f(z))^{\prime}}{[I(s, l) f(z)]^{2}} \in H[1,1] \cap Q$,

$$
\frac{z^{2}(I(s, l) f(z))^{\prime}}{[I(s, l) f(z)]^{2}}-\gamma z^{2}\left(\frac{z}{I(s, l) f(z)}\right)^{\prime \prime}
$$

is univalent in U, and the following superordination condition

$$
q(z)+\gamma z q^{\prime}(z) \prec \frac{z^{2}(I(s, l) f(z))^{\prime}}{[I(s, l) f(z)]^{2}}-\gamma z^{2}\left(\frac{z}{I(s, l) f(z)}\right)^{\prime \prime}
$$

holds, then

$$
q(z) \prec \frac{z^{2}(I(s, l) f(z))^{\prime}}{[I(s, l) f(z)]^{2}}
$$

and $q(z)$ is the best subordinant.
Remark 6. Taking $n=0, \lambda=1$ and $g(z)=\frac{z}{1-z}$ in Theorem 2, we obtain the superordination result of Shanmugam et al. [24, Theorem 3.5].

Combining Theorem 1 and Theorem 2, we get the following sandwich theorem for the linear operator $D_{\lambda}^{n}(f * g)$.
Theorem 3. Let $q_{1}(z)$ be convex univalent in U with $q_{1}(0)=1, \gamma \in \mathbb{C}$ with $\Re(\gamma)>0, q_{2}(z)$ be univalent in U with $q_{2}(0)=1$, and satisfies (15). If $f, g \in \mathscr{A}, \frac{z D_{\lambda}^{n+1}(f * g)(z)}{\left[D_{\lambda}^{n}(f * g)(z)\right]^{2}} \in H[1,1] \cap Q$,

$$
\left(1+\frac{\gamma}{\lambda}\right) \frac{z D_{\lambda}^{n+1}(f * g)(z)}{\left[D_{\lambda}^{n}(f * g)(z)\right]^{2}}+\frac{\gamma}{\lambda}\left\{\frac{z D_{\lambda}^{n+2}(f * g)(z)}{\left[D_{\lambda}^{n}(f * g)(z)\right]^{2}}-2 \frac{z\left[D_{\lambda}^{n+1}(f * g)(z)\right]^{2}}{\left[D_{\lambda}^{n}(f * g)(z)\right]^{3}}\right\}
$$

is univalent in U, and

$$
\begin{aligned}
& q_{1}(z)+\gamma z q_{1}^{\prime}(z) \\
\prec & \left(1+\frac{\gamma}{\lambda}\right) \frac{z D_{\lambda}^{n+1}(f * g)(z)}{\left[D_{\lambda}^{n}(f * g)(z)\right]^{2}}+\frac{\gamma}{\lambda}\left\{\frac{z D_{\lambda}^{n+2}(f * g)(z)}{\left[D_{\lambda}^{n}(f * g)(z)\right]^{2}}-2 \frac{z\left[D_{\lambda}^{n+1}(f * g)(z)\right]^{2}}{\left[D_{\lambda}^{n}(f * g)(z)\right]^{3}}\right\} \\
\prec & q_{2}(z)+\gamma z q_{2}^{\prime}(z)
\end{aligned}
$$

holds, then

$$
q_{1}(z) \prec \frac{z D_{\lambda}^{n+1}(f * g)(z)}{\left[D_{\lambda}^{n}(f * g)(z)\right]^{2}} \prec q_{2}(z)
$$

and $q_{1}(z)$ and $q_{2}(z)$ are, respectively, the best subordinant and the best dominant.
Taking $q_{i}(z)=\frac{1+A_{i} z}{1+B_{i} z}\left(i=1,2 ;-1 \leq B_{2} \leq B_{1}<A_{1} \leq A_{2} \leq 1\right)$ in Theorem 3, we have the following corollary.
Corollary 9. Let $\gamma \in \mathbb{C}$ with $\Re(\gamma)>0$. If $f, g \in \mathscr{A}, \frac{z D_{\lambda}^{n+1}(f * g)(z)}{\left[D_{\lambda}^{n}(f * g)(z)\right]^{2}} \in H[1,1] \cap Q$,

$$
\left(1+\frac{\gamma}{\lambda}\right) \frac{z D_{\lambda}^{n+1}(f * g)(z)}{\left[D_{\lambda}^{n}(f * g)(z)\right]^{2}}+\frac{\gamma}{\lambda}\left\{\frac{z D_{\lambda}^{n+2}(f * g)(z)}{\left[D_{\lambda}^{n}(f * g)(z)\right]^{2}}-2 \frac{z\left[D_{\lambda}^{n+1}(f * g)(z)\right]^{2}}{\left[D_{\lambda}^{n}(f * g)(z)\right]^{3}}\right\}
$$

is univalent in U, and

$$
\begin{aligned}
& \frac{1+A_{1} z}{1+B_{1} z}+\gamma \frac{\left(A_{1}-B_{1}\right) z}{\left(1+B_{1} z\right)^{2}} \\
\prec & \left(1+\frac{\gamma}{\lambda}\right) \frac{z D_{\lambda}^{n+1}(f * g)(z)}{\left[D_{\lambda}^{n}(f * g)(z)\right]^{2}}+\frac{\gamma}{\lambda}\left\{\frac{z D_{\lambda}^{n+2}(f * g)(z)}{\left[D_{\lambda}^{n}(f * g)(z)\right]^{2}}-2 \frac{z\left[D_{\lambda}^{n+1}(f * g)(z)\right]^{2}}{\left[D_{\lambda}^{n}(f * g)(z)\right]^{3}}\right\} \\
\prec & \frac{1+A_{2} z}{1+B_{2} z}+\gamma \frac{\left(A_{2}-B_{2}\right) z}{\left(1+B_{2} z\right)^{2}}
\end{aligned}
$$

holds, then

$$
\frac{1+A_{1} z}{1+B_{1} z} \prec \frac{z D_{\lambda}^{n+1}(f * g)(z)}{\left[D_{\lambda}^{n}(f * g)(z)\right]^{2}} \prec \frac{1+A_{2} z}{1+B_{2} z}
$$

and $\frac{1+A_{1} z}{1+B_{1} z}$ and $\frac{1+A_{2} z}{1+B_{2} z}$ are, respectively, the best subordinant and the best dominant.

Remark 7. Taking $g(z)=\frac{z}{1-z}$ in Theorem 3, we obtain sandwich result of Nechita [18, Theorem 19].
Remark 8. Taking $\lambda=1$ and $g(z)=\frac{z}{1-z}$ in Theorem 3, we obtain sandwich result of Shanmugam et al. [24, Theorem 5.6].

Remark 9. Combining (i) Corollary 2 and Corollary 6; (ii) Corollary 3 and Corollary 7; (iii) Corollary 4 and Corollary 8, we obtain similar sandwich theorems for the corresponding linear operators.
Remark 10. Taking $n=0, \lambda=1$ and $g(z)=\frac{z}{1-z}$ in Theorem 3, we obtain the sandwich result of Shanmugam et al. [24, Corollary 3.6].

References

[1] R. M. Ali, V. Ravichandran, and K. G. Subramanian. Differential sandwich theorems for certain analytic functions. Far East J. Math. Sci., 15(1):87-94, 2004.
[2] F. M. AlOboudi. On univalent functions defined by a generalized Salagean operator. Internat. J. Math. Math. Sci., 27:1429-1436, 2004.
[3] M. K. Aouf and T. M. Seoudy. On differential sandwich theorems of analytic functions defined by certain linear operator. Ann. Univ. Mariae Curie-Sklodowska Sect. A, (To appear).
[4] S. D. Bernardi. Convex and starlike univalent functions. Trans. Amer. Math. Soc., 135:429-446, 1969.
[5] T. Bulboaca. Classes of first order differential superordinations. Demonstratio Math., 35(2):287-297, 2002.
[6] T. Bulboaca. Differential Subordinations and Superordinations, Recent Results. House of Scientific Book Publ., Cluj-Napoca, 2005.
[7] B. C. Carlson and D. B. Shaffer. Starlike and prestarlike hypergeometric functions. SIAM J. Math. Anal., 15:737-745, 1984.
[8] A. Catas, G. I. Oros, and G. Oros. Differential subordinations associated with multiplier transformations. Abstract Appl. Anal., 2008,ID 845724:1-11, 2008.
[9] N. E. Cho and T. G. Kim. Multiplier transformations and strongly close-to-convex functions. Bull. Korean Math. Soc., 40(3):399-410, 2003.
[10] J. Dziok and H. M. Srivastava. Classes of analytic functions associated with thegeneralized hypergeometric function. Appl. Math. Comput., 103:1-13, 1999.
[11] J. Dziok and H. M. Srivastava. Some subclasses of analytic functions with fixed argument of coefficients associated with the generalized hypergeometric function. Adv. Stud. Contemp. Math., 5:115-125, 2002.
[12] J. Dziok and H. M. Srivastava. Certain subclasses of analytic functions associated with the generalized hypergeometric function. Integral Transform. Spec. Funct., 14:7-18, 2003.
[13] Yu. E. Hohlov. Operators and operations in the univalent functions. Izv. Vysŝh. Učebn. Zaved. Mat. (in Russian), 10:83-89, 1978.
[14] R. J. Libera. Some classes of regular univalent functions. Proc. Amer. Math. Soc., 16:755658, 1965.
[15] A. E. Livingston. On the radius of univalence of certain analytic functions. Proc. Amer. Math. Soc., 17:352-357, 1966.
[16] S. S. Miller and P. T. Mocanu. Differential Subordination: Theory and Applications, Series on Monographs and Textbooks in Pure and Applied Mathematics, Vol. 225. Marcel Dekker Inc., New York and Basel, 2000.
[17] S. S. Miller and P. T. Mocanu. Subordinates of differential superordinations. Complex Variables, 48(10):815-826, 2003.
[18] V. O. Nechita. Differential subordinations and superordinations for analytic functions defined by the generalized Sălăgean derivative. Acta Univ. Apulensis, 16:143-156, 2008.
[19] S. Owa and H. M. Srivastava. Univalent and starlike generalized hypergeometric functions. Canad. J. Math., 39:1057-1077, 1987.
[20] St. Ruscheweyh. New criteria for univalent functions. Proc. Amer. Math. Sco., 49:109115, 1975.
[21] H. Saitoh. A linear operator ana its applications of fiest order differential subordinations. Math. Japon., 44:31-38, 1996.
[22] G. S. Salagean. Subclasses of univalent functions. Lecture Notes in Math. (SpringerVerlag), 1013:362-372, 1983.
[23] C. Selvaraj and K. R. Karthikeyan. Differential subordination and superordination for certain subclasses of analytic functions. Far East J. Math. Sci., 29(2):419-430, 2008.
[24] T. N. Shanmugam, V. Ravichandran, and S. Sivasubramanian. Differantial sandwich theorems for some subclasses of analytic functions. J. Austr. Math. Anal. Appl., 3(1, Art. 8):1-11, 2006.
[25] N. Tuneski. On certain sufficient conditions for starlikeness. Internat. J. Math. Math. Sci., 23(8):521-527, 2000.

