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Abstract. We review geometric singular perturbation theory (GSPT) which has been used to
explain the behaviour of the singular slow-fast system near the singular limit. In particular, we
follow the analysis of Guckenheimer et al. [10] for the periodically forced symmetric van der Pol
oscillator (β = 0), then we constructed the Poincaré return map for studying the bifurcation
phenomena of this model. We generalise to a asymmetric forced van der Pol oscillator for β ̸= 0.
We show that the forced asymmetric van der Pol oscillator can become frequency locked due to
the forcing. Then, we extend this analysis to show how the symmetry breaking parameter β in
a periodically forced van der Pol oscillator influences the width of Arnold tongues (also known
as frequency locking regions), and we find these frequency locking regions in the parameter space
(a, ω).
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Slow-fast nonlinear oscillator models can have periodic orbits with alternating slow
and fast motion that are called relaxation oscillations [11]. These oscillations occur at
different times in slow-fast dynamical systems. Relaxation oscillators have been used to
understand a wide range of biological problems such as heartbeat (van der Mark and van
der Pol model [29]), neuronal activity (the Fitz-Hugh-Nagumo model and the Morris-Lecar
model [13]), and population cycles of predator-prey type [23].

Since 1920, the van der Pol oscillator was introduced to illustrate the behaviour ob-
served in electrical circuits by Balthazar van der Pol and van der Mark [27]. The van
der Pol oscillator is a type of a relaxation oscillator. Van der Pol and Mark investigated
that the relaxation oscillation of the van der Pol oscillator is influenced by external peri-
odic forcing. They found that the period of the relaxation oscillation was a proportion of
the forcing period over wide parameter regimes, called “Frequency demultiplication” [28].
This phenomenon is now known as frequency locking, phase locking, entrainment or mode
locking [16]. There has been a lot of significant research done on the forced van der Pol
oscillator (see e.g.[5, 10, 18]). The van der Pol oscillator is applied in several fields, such
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as oscillatory processes in physics, electronics, neurobiology, and the dynamics of glacial
cycles [3, 6–8, 12, 14, 20].

Forced nonlinear oscillator models can reproduce the oscillations in the climate record.
Examples of two-dimensional Pleistocene ice age models are the forced van der Pol and
the forced van der Pol Duffing oscillators [2]. Crucifix used in [6] a forced van der Pol
oscillator (VDP) to consider astronomical forcing and asymmetry between the phases
of ice forming and melting during the late Pleistocene. Additionally, the van der Pol
oscillator has been modified to explain the different levels of ice volume that indicate a
glacial or interglacial case by the signal of oscillates[7]. De Saedeleer et al. [7] used the van
der Pol oscillator as a possible low-order model for the first time identification generalised
synchronisation (see more [1, 20, 24]) between ice age cycles and astronomical forcing. The
forced VDP oscillator is used by Ditlevsen and Ashwin as a conceptual model to describe
the dynamics of glacial cycles and possible dynamical causes of the middle Pleistocene
transition (MPT)[8].

In this paper, we use geometric singular perturbation theory (GSPT) to explain the
behaviour of the singular slow-fast oscillator near the singular limit (see more [19]). In
particular, we followed the analysis of Guckenheimer et al. [10] for the periodically forced
symmetric van der Pol oscillator (β = 0). Section 3 constructs the Poincaré return map
for studying the bifurcation phenomena of this model. In Section 4, we show how the
symmetry breaking parameter β in a periodically forced van der Pol oscillator influences
the width of Arnold tongues (also known as frequency locking regions).

1. The asymmetric van der Pol Oscillator

We consider the modified van der Pol oscillator [2] which was proposed as a low-order
model of the ice-age cycles in [6, 7]. The generalised van der Pol model has the following
form [2]:

τ2κ2d
2y

dt2
− ατκ(1− y2)

dy

dt
+ y − γF (t) + β = 0 (1)

oscillations occur even in the unforced case γ = 0. The term −ατκ(1− y2) increases the
oscillations when y2 < 1 and damps the oscillations when y2 > 1. For large enough α, the
van der Pol (1) has relaxation oscillations as can be seen in the system of equations. By

using the Liénard transformation x = y − y3

3 − ẏ/τκα, we transform (1) into the system

ẋ =
1

τκ
(γk sin(2πωt)− β − y)

ẏ =
α

τκ
(y − y3

3
+ x)

(2)

which is a slow-fast system if α ≫ 1 . The dynamics of (2) involves that the slow
variable x represents the deviation of ice volume and the fast variable represents some
feedback mechanism with hysteresis. In Table 1, the default parameters used for the
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Figure 1: Phase portrait (a) and time series (b) showing periodically forced van der Pol
oscillator (3) which has relaxation oscillations with slow variable x and fast variable y.
The parameters values are given in Table 1. The green line is the y−nullcline, and the blue
line is the x−nullcline. In (a), there is an unstable equilibrium point which is surrounded
by stable limit cycle. The arrows show the direction of the vector field of (3).

forced van der Pol oscillator (2) are taken from [2], ω is the frequency (obliquity forcing
is ω ≈ 1

41) and k represents the amplitude of the forcing.

2. Applications to the symmetric forced van der Pol equation

2.1. The periodically forced van der Pol oscillator

Note that the van der Pol oscillator for small ε has a periodic orbit with attracting
and slow and fast motions. Geometric singular perturbation theory was used in [10] to
understand the full system. The following discussion is based on [10, 11, 30, 31]. Here, we
consider the symmetric van der Pol oscillator (2) where (β = 0) with periodic forcing [2]:

ẋ =
1

τκ
(γk sin(2πωt)− β − y)

ẏ =
α

τκ
(y − y3

3
+ x)

(3)

is a non-autonomous system as shown in Figure 1. We set τκ = 1 through a suitable
rescaling of time. We define a new parameter ε = 1

� , a = γ, k1 = 1 and θ = ωt of the form

ẋ = a sin(2πθ)− y − β

εẏ = y − y3

3
+ x

θ̇ = ω

(4)

where ẋ ≡ dx
dt , ẏ ≡ dy

dt and θ̇ ≡ d�
dt . When 0 < ε ≪ 1, the system has a relaxation oscillation

as shown in Figure 1. The slow variable is x and the fast variable is y. We transform the
slow time scale t to fast time scale T by rescaling the time t = εT
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dx

dT
= ε(a sin(2πθ)− y − β)

dy

dT
= y − y3

3
+ x

dθ

dT
= εω.

(5)

We now study the two systems in the singular limit ε = 0 as follows - namely the slow
subsystem:

ẋ = a sin(2πθ)− y − β

0 = y − y3

3
+ x

θ̇ = ω

(6)

and the fast subsystem:

dx

dT
= 0

dy

dT
= (y − y3

3
+ x− β)

dθ

dT
= 0

(7)

2.2. The slow system

The flow of (6) is called the slow flow on the critical/slow manifold. The critical
manifold is in this case given by

S := {(x, y, θ) ∈ R3| y − y3

3
+ x = 0} (8)

It is apparent that x = y3

3 − y defines the critical manifold which is the set of equilibrium
points for the fast subsystem (7). Note that (4) has a repelling sheet Sr = S∩{−1 < y < 1}
and two attracting sheets Sa = S ∩ {y < −1}, Sa = S ∩ {y > 1}, and trajectories of the
DAEs on the critical manifold are the slow trajectories that are wholly defined up to the
time when a trajectory hits a fold on the critical manifold. There are fold points on the
two lines:

L� = {
�
− 1, 2/3, θ) : θ ∈ (0, 2πn)} and L+ = {

�
1,−2/3, θ) : θ ∈ (0, 2πn)},

where n is positive integer Z+.

2.3. The layer problem

The family of differential equations (7) is called the layer problem. The solutions of
differential equations dx

dT = 0 and d�
dT = 0 can solved analytically to give:

x(T ) = C1, θ(T ) = C2 ∀C1;2 ∈ R (9)
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Figure 2: Three-dimensional view of the periodically forced van der Pol equation for β = 0.
The surface represents a two-dimensional critical manifold S. A typical trajectory (blue)
of (4) remains close to the stable branch (y ≤ −1) of S before jumping to other stable
branch (y ≥ 1) at the lines of fold points L�.

The trajectories of the fast subsystem (layer) problem (7) are computed to

dy

dT
= g(y), where g(y) = y − y3

3
+ x (10)

with x acting as a parameter (see Figure 3). It is simple to find the equilibrium points
of g(y) since it is dependent on the variable y. The equilibria of the equation is given by

the solutions of the equation g(y) = 0 ⇐⇒ x = y3

3 − y. At the bifurcation points, the

derivative of g(y) with respect to y is @
@y
g(y) = 0 ⇐⇒ (1− y2) = 0. Hence, the bifurcation

points (called singular points) are (x, y) = (±2
3 ,∓1).

2.4. The desingularised reduced system

For ε = 0, the system (6) can be reduced to the system of ODEs on normally hyperbolic
critical manifolds. The trajectories of the reduced system are good approximations to the
solutions of the full system (4) near these manifolds. The projection of the system can be
defined as x = φ(y, θ) on the critical manifold and the slow flow represented in the terms

(y, θ). Since the critical manifold S is a curve with the function x = φ(y, θ) = y3

3 − y one
can see that this curve has fold points when y = ±1. By differentiating the critical manifold
to obtain ẋ = (y2 − 1)ẏ, the Implicit Function Theorem means that g(φ(y, θ), y, θ) = 0.
This implies that a chain rule gives the relationship
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Figure 3: Phase Portrait showing the solutions of the fast system (7) (sold line and dashed
line) and the fast flow subsystem indicated by the arrows. The blue line and dashed red
line are the critical manifold S of VDP. For −1 < y < 1, there is an unstable submanifold
(f 0(y) > 0) of S while the stable submanifolds (f 0(y) < 0) of S are two disjoint branches
where y < 1 and y > 1. If |x| < 2

3 , then a system (7) has a single stable equilibrium point
at the origin point (0, 0). In this figure, there are two stable equilibrium points (black
circle) (±2

3 ,∓1) and one unstable equilibrium point (blue circle) (0, 0) for |x| > 2
3 . Note

this phase portrait is independent of the slow evolution of θ.

∂g

∂y
ẏ +

∂g

∂x
ẋ+

∂g

∂θ
θ̇ = 0

Since gy is non zero, this equation can be solved for ẏ.

gyẏ = −(gxf(x, y, θ) + g�ω),

where gy = 1− y2, gx = 1, g� = 0 and f(x, y, θ) = a sin(2πθ)− y − β. Then,

(1− y2)ẏ = −(a sin(2πθ)− y − β) (11)

We rescale the time by t = (y2 − 1)s and substitute into the RHS of (4) to obtain the
reduced system as follows:

dθ

ds
= −ωgy,

dy

ds
= gxf(x, y, θ) + g�ω.

we rewrite the system as

dθ

ds
= ω(y2 − 1),

dy

ds
= a sin(2πθ)− y − β.

(12)

which is called the desingularised reduced system of forced van der Pol equation (4). The
desingularised reduced system is a time-reparameterised slow flow. The time t and the
time s both move in the same direction on the stable branch of the critical manifold, but
they move in opposite directions on the unstable branch of the critical manifold. In this
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section we focus on the symmetric VDP (4) when β = 0, following the analysis in [10].
The equilibria of (12) are folded singularities which lie on the fold lines L�. Trajectories of
(12) are located on the slow flow along stable sheets of the critical manifold until it reaches
the boundary of this stable sheet on (θ,±1). These points (y = ±1) are the boundaries
of two stable sheets. Then, the trajectories jump from the fold line to another stable
sheet and they are crossing with y > 1 or y < −1. The equilibrium points (called folded

singularities) of (12) are θ� =
sin−1(±1

a
)

2� and y� = ±1.
There is no solution for a < 1 as shown in Figure 5(a). We get two folded singularities

on the line L�1 at (y, θ) = (±1, 1/4) for a = 1, and we have four folded singularities for
a > 1 on the line L�1 as shown below

p1;2(θ
�
1;2, y

�) =

 
sin�1( 1

a)

2π
, 1

!
and

 
sin�1(�1

a )

2π
,−1

!
,where θ�1;2 < 1/4

p3;4(θ
�
3;4, y

�) =

 
sin�1( 1

a)

2π
, 1

!
and

 
sin�1(�1

a )

2π
,−1

!
,where θ�3;4 > 1/4

To analyse the stability of the equilibrium points, we calculate the Jacobian matrix of (12)
at (θ�, y�):

J(θ�, y�) =

�
0 2ωy

2πa cos(2πθ) −1

�
and the eigenvalues of (J − λI) at (θ, y) where I is the identity matrix:

λ1;2 =
−1±

p
1 + 16ωπa cos(2πθ)

2

The classification of equilibria according to λ1;2 : a = 1 and θ = 1/4, J has λ1 = 0
and λ2 = −1 of which the equilibrium points are folded saddle-nodes on the line L1 or
L�1. For a > 1, two equilibrium points p1;4 are folded saddles (see Figure 4). When

1 < a <
q
1 + ( 1

16�! )
2, two other equilibrium points p2;3 are stable node (see Figure

5(b)). For a =
q

1 + ( 1
16�! )

2, these equilibrium points p2;3 are folded nodes, and for

a >
q
1 + ( 1

16�! )
2 p2;3 are folded foci. Also, we compute stable and unstable manifolds

Ws and Wu of the folded saddle (θs,±1) in the desingularised slow flow system (12) for
β = 1.2 as shown in Figure 6. A trajectory Wu denotes the first intersection with y = ±1.
In the backward time on the stable manifold branch, a trajectory Ws denotes the first
intersection with y = ±2. In this following analysis, we compute a Poincaré map for (4)
that has a return mechanism via a folded critical manifold.
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(a) (b)

Figure 4: Trajectories of the desingularised slow flow (12) for β = 0. (a) The parameter
values are a = 2.3 and ω = 1, (b) a = 20 and ω = 5. There are four folded singularities
obtained in both cases. The two folded saddles equilibria (θs,±1) are indicated by the
cross and the two folded foci equilibria (θn,±1) are indicated by the circle. The stable
Ws (green) and unstable Wu (blue) manifolds of the folded saddles are on the fold lines
y = ±1.

(a) (b)

Figure 5: Trajectories of the desingularised slow flow (12) for β = 0 and ω = 0.54559.
(a) shows no folded equilibria for a = 0.9. (b) Four folded singularities obtained for
a = 1.00041. The two folded saddles equilibria (θs,±1) indicated by the cross and the
two folded nodes equilibria (θn,±1) indicated by the circle. The stable Ws (green) and
unstable Wu (blue) manifolds of the folded saddles are on the fold lines y = ±1. This case
shows the connection between the folded saddle and the folded node.




