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Abstract. In this paper, we aim to establish a new upper bound approximation for the second
Hankel determinant utilizing a certain subclass of the class of normalized analytic and bi-univalent
functions in the open unit disk U. These functions have inverses with a bi-univalent analytic con-
tinuation to U and are associated with orthogonal polynomials; namely, Gegenbauer polynomials
that satisfy subordination conditions on U. Finally, we introduce new essential results derived by
specializing the parameter 7 employed in our foundational finding.
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1. Introduction

The n'" - degree Gegenbauer (or ultraspherical) polynomials (GPS), denoted here by
U,E’B )(t), with parameter [ at the point ¢ are recursively defined by

Ul =1, uP ) =28t

1 (1)
U (1) =+ [275 (k+B8-D)UD ()~ (k+28 -2 Uy 1)|, k>2.
These polynomials are orthogonal on the interval T = [—1,1] with respect to the weight

_1
function (1 — t2)ﬂ ?, where 8 > —1. That is, for any two GPS, Z/I,EB)(t) and Z/ll(ﬁ)(t),
with k # [, we have

1

g—1
/ Ul u e (1-#) Fa=o,
-1
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and with the condition that [ = k, we have

1 2 _1 T _
/1 (“*55)“)> (1-2) = 2[3@?22;?5 +ﬁl)— 5%

For >0, a generating function of GPS, G, (t,(), is defined by the form

ga(tjf):m kZ:OU (2)

where t € I, ¢ is in the open unit disk U= {¢:{ € C and || < 1}, and C is, as usual,
the set of complex numbers. For a fixed t € I, G,(¢,() is analytic in U that has a Taylor
series expansion given by (2). Evidently, we see that G,(t,() produces no values when
B = 0. Therefore, the generating function of GPS is set to be of the form

Go(t,0) =1 —log (1 —2t¢+¢%) =Y u ) ¢-. (3)
k=0

Note that U,gﬁ ) (t) are particular solutions of the Gegenbauer differential equation given
by
dy

= —@2s+1)tY

(1—1%) == pr

k(k+2p8)y=0, (4)
and when setting

(i) B =1/2, equation (4) reduces to the Legendre differential equations, and
the GPS reduce to the Legendre polynomials.

(ii) B =1, equation (4) reduces to the Chebyshev differential equations, and
the GPS reduce to the Chebyshev polynomials of the second kind.

Let 20 denote the class of all functions of the form
oo
=(+ > an¢", (CeU, (5)
n=2

which are analytic in U and normalized by these two conditions £(0) = 0 and f (0) =
Moreover, let & be the subclass of 21 consisting of all normalized univalent functions
of the form (5) which are also univalent in U. Two functions, f and g, are said to be
subordinate (f < g) if there is an analytic function h(¢) (namely; a Schwarz function)
in U, such that f(¢) = g(h(¢)) with h(0) = 0 and |h(¢) | < 1. Especially, if the function
g is univalent in U, then the following equivalence is valid [1]

f(¢) < g(¢) < 1(0) =g(0)

and

f(U) c g(U).
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The Koebe One-Quarter Theorem [2] states that the image of U under every function

f € & contains a disk of radius 7 and center at the origin; i.e., U 1 (0) € f(U). Therefore,

every univalent function f € & has an inverse f = : f(U) — U which satisfies the following
conditions: )

(f of)g=¢ (C€U)

and

(fo f_l )(17)277 (W<fo(f); ro(f)2i>7

where f ' has the series expansion of the form

—1
£ (n) =n—a,n*+ (2a2 — a,)n’

—(5a§—5a2a3+a4)n4+--- . (6)
A function f € 2 is said to be bi-univalent in U if both f and f = are univalent in U. Let
= be denoting the class of bi-univalent functions in U given by (5). Herein, we recall the
following examples of functions in the bi-univalent function class = that have apparently
revived the study of bi-univalent functions in recent years:

¢ 1 14+¢
()= -2 £(¢)=—log(1— (), f :71<—7)
Q) 1-¢ »(€) og( ¢) and  £,(C) 9 0g 1-¢
where their inverses are respectively given by
-1, -, el —1 -1 76277—1
£, (n) = Tty f, =—7— and £ (n)= poranEy
However, the familiar Koebe function, K(¢) = ﬁ, is not a member of the bi-univalent
function class = since it maps the open unit disk U C C onto the set K(U) = C\(—o0, —1],

which does not contain U (i.e., {n:n € Cand |g| < 3} € K(U)) (see [3-11]). Other
common univalent functions in & that are not members of = are
¢ ¢?

= 1—¢2 and 192(()24‘_5-

9,(¢)

Historically speaking, certain subclasses of = were introduced by Brannan and Taha
(see [12]) similar to the familiar subclasses &*(¢) and K(e) of star-like and convex func-
tions of order € € [0,1) in the open unit disk U, which are respectively defined by

R Y ¢f()
6(8){f.f€6 and ?R{f(o}>6, CGU},

and

’

K(a):{f:fe(‘S and %{1+Cfié§)}>s, CE[U}.
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Analogously, the bi-star-like and bi-convex function classes &*(g) and K_(¢) of order
£ €[0,1) in the open unit disk U, corresponding to &*(¢) and K(e), were introduced and
studied, and non-sharp upper bound estimations of the initial Taylor-Maclaurin coefficients
were obtained as well. In 1976, Noonan and Thomas defined the q'" Hankel determinant
of the function f € 2 of the form (5) for integers n, g € N={1,2,3,...} by [13]

an ant+l 0 Andg-1
an41 anty2 v Antq
Hf(n7q) = . . . : , a, = 1.
Antq—1 n4q " In42q-2

In particular, it is observed that, for n = 1,2 and q = 2, the Hankel determinants are
given by

a; 3, a, a4 2
H,(1, 2) = =a,a, —aj,

=a,—a: and H,(2,2)=

2 3 3 4

which are respectively referred to as the well-known Fekete-Szegd functional and second
Hankel determinant functional. Several other authors have considered the determinant
H,(n,q) in their studies. In [14], for instance, Noor found that the rate of growth of
H,(n,q) as n — oo occurs when functions f € 2 of the form (5) with bounded boundary.
The authors in [14] and [15], in particular, achieved sharp upper bounds on H,(2, 2)
for several types of function classes. For f € & in the open unit disk U, the authors
in [16] obtained the sharp upper inequality for the functional H,(1, 2) that is given by
|H,(1, 2) | = |a, —aZ| < 1. Several authors have recently investigated the upper bounds of
H,(1, 2) and Taylor-Maclaurin coefficients for various subclasses of bi-univalent functions
(see, for examples, [17-30]). Furthermore, the subclass of & consisting of all functions
whose derivatives have positive real part, introduced in [31], was considered by the authors
of [32] in order to derive the sharp bounds for the functional H,(2, 2) that is given by
|H,(2, 2)| = |a,a, —a?| < § for each function belongs to that subclass. In addition, they
discovered the sharp second Hankel determinant, H,(2, 2), in (see [32]) for star-like and
convex function subclasses, &* and K, of & with bounds of |H,(2, 2)| = |a,a, —a?| < §
and |H (2, 2)| = |a,a, —a?| < 1, respectively. In recent times, several researchers have
explored upper bounds for the coefficients and Hankel determinant of functions within
different subclasses of univalent functions (see, for examples, [33-36]).

Definition 1. Let 7 € [0,1] and t € (%, 1]. A function f € = of the form (5) is said to
be in the class Qg(t, T) with a nonzero real constant (3 if the following subordinations are

satisfied
Q) [ ©

T (1 L g”(n)) L) <n g’(n)) <G, (), 8)

g'(n) g(n)

and
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where the function g = £ s defined by (6) and G, is the GPS - generating function

given by (2).

Remark 1. [37] By setting 7 = 0 in (1), we obtain the class Qé(t,O) = Eg(t) that

consists of functions f € = satisfying the conditions

< G,(t,¢)

and )
n g (n)

g(n)
where the function g = £ s defined by (6).

< G,(t,n),

Remark 2. [87] By setting 7 = 1 in (1), we obtain the class Qg(t, 1) = @g(t) that

consists of functions f € Z satisfying the conditions

¢ Q)

O

< G,(t,€)

and B
ng (n)

g'(n)
where the function g = £ s defined by (6).

1+ =< G,(t,mn),

(11)

(12)

Let Q:U — C be the class of functions s(¢) with positive real part consisting of all
analytic functions satisfying the conditions that s(0) = 1 and ¥ (s(¢)) > 0. To derive our

desirable upper bounds estimation for the second Hankel determinant H,(2, 2) = a,a, —a>

associated with the class Qg (t,7) in (1), we state the necessary lemmas:

Lemma 1. /[38] If the function s € Q s defined by
s(Q) =1+ 5,¢",
k=1
then
s, | <2, k=12, ..
Lemma 2. [39] If the function s € Q is of the form (13), then
25, =5+ (4—5°)¢

and
453 = 5:1)) + 2(4 _5?)51 § _51(4 _5?) 52 +2(4 _5?)(1 B |£|2)<

for some & and ¢ with |£]| <1 and |{| < 1.

3

(13)

(14)

(15)
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Also by considering the class A that consists of all analytic functions w € U satisfying
the conditions that w(0) =0 and |w(¢)| < 1 for all { € U, we state the following lemma:

Lemma 3. [2] Let w € A with w(¢) =330, wr ¥, ¢ € U. Then

lwi| <1 and \wk]§1—|w1]2 for k>2.

2. Second Hankel Determinant

Theorem 1. Let the function f € E of the form (5) be in the class Qé(t,T) in (1). Then

7-(27,75) E1>0 and &9 > 0;

max{%, T(Q_,t)} E1 >0 and & <O0;
a,a, — az ‘ < .

(?62;)2 81 S 0 and 52 S 0;

\maX{T(co,t), 7'(2*,t)} £1<0 and & >0,

where ,
(8)
T2, t) = (ul (t)) i &1+ &
’ (1+27)2 31 +37)(1+7)3(1+27)2
2
- L0) & SR AT
€ b) = (1+27)2 125 1+37)(1+7)3(1+27)% Co = g

3

& =16(1+27)% U1 <u§ﬂ>(t> + U () + i u{@(t)) (1+72 = (U )

+ (uf? (t))2 {3 (14+37)(1+7)% = 12(1+7)%(1 +2 7)2}

—2(1+ 7)1 +27) UiP(1) [3(1 +37) (u§5>(t))2 +8(1+7)(1+27) uéﬁ)(t)},

£ =12(1+27)%(1 + 7)2(2/11(5)@))2 +6(1+7)(1+27)(1+37) (ul(ﬁ)(t))?’

+16(1+ 721+ 20 U () u” () - 6 (1 +37) (1 +7)* (U (t))2,

and L{l(ﬁ)(t), UQ(B)(t), and Z/I?Eﬁ)(t) are defined by (1).

(19)

(20)
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Proof. Suppose f € Qg(t,’i') for some 7 € [0,1]. Then from (7) and (8) we have

¢ (¢ ¢ Q)
and
ng (n) _ (ngm

where g =f ' and u, b € A are given by

u(¢) = Z (" and v(n) = Zan n".
n=1 n=1

Then by using G, (¢, ¢) given in (2), we can write the right hand sides of (21) and (22)
as follows:

G,(t, w(Q) =1+ UP () e ¢ +

UP () ea + U (1) ] ¢

(23)
+ U () e+ 2 (8 e o + U (1) | Pt
and
G, (t, u(m) = 1+ UL @) o+ U () 00 + UV (2) a%] 0
(24)
+ U () 03+ 207 (1) 01 00 + U (1) 0F | P+ -
Therefore, (21) and (22) become
T[1+2a2<+ (6az —4a3)¢*+2(4al —9a2a3+6a4)C3+-~-}
+(1—T)[1+a2C—|—(2a3 —ad)® + (a3 —3a2a3+3a4)g3+--']
(25)

=14UP @) e ¢+ (U () o + U (1) 2| 2

+ U @) es +2UP () oo + U () S+
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and

T|:1—2a2?7+(833—6&3)7724-(—32&%4-42&2&3—12&4)773+-~-:|

+(1-=7) [1—&277—1—(38@—2a3)172+(—10a§+12a2a3—3a4)773+---]

2 (26)

= 1+UP Do+ |UP )0y + P ()02 |y

U (1) 05 + 20UV (1) 01 00 + UL (8) 03 [P + - -

At this point, the corresponding coefficients in (25) and (26) can be equated to obtain
(1+7)az =U" () e, (27)
2(1+27)ag — (1+3r)a3 = U () e + U (1) 3, (28)

(1+7ﬂa§4ﬂ1+5ﬂaﬁm+3u+3rym—wﬁm@y3+mﬁm@nlg+uﬁkwé,@m
—(1+7)ag = U (t) 01, (30)
(B+57)al—2(1+27) a3 =UP )0y + UV (1) 02, (31)
and

—2(54117)ad +6(2+57)azas —3(1+37)ag = U (t) 05 + 20U (1) 01 00 + U (1) 25

From (27) and (30), we obtain that o
a1 =-—10 (33)
and 9 "
ag = 11+T c1- (34)
Upon subtracting (31) from (28), we have that
2
%:£+%Www—wx_@@@)z U (1) (e 2) 35)

10+2m) (1+n2 YT T aa+2n
Furthermore, if we subtract (32) from (29), together with (27), (33) and (35), we have

B )
5 (Ul (t)) (ca —02) ¢y ul(ﬁ) (t) (c5 — 03)
SA+m (1127 | 6(1+37)

ul® ) 2(1+47)@ému03]?

aqg =
(36)
#) t) (C2 + 02) c1

(
LY R P

3(1+37)  3(1+77(1+37)
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Thus, when applying (27), (35), and (36

_w
agay —ag =

), we can simply establish that
3 2
1) (=2)d  (U®) (-2
8(1+7)2(1+27) 6(14+7)(14+37)
2
¢ (U0) @-w?

UP () UP) (@) (c2 +02)

3(14+7)(14+37)

Ul (1) (1 + )2 - (U <t>)3] ct

3(14+37)(1+7)3

16(1+27)2

u? (1)

_l’_

Next, according to Lemma (2), we now have that

4 — ¢2

2

g — 0o = (r—m),

2
C
(r+v),

9  4-
€+ 09 =¢] +
2
and
3 —0 —ﬁ—i-
3 3_2
4 —

2

(4—¢c?)c (4—¢c)c
S ) = )

[(1—\x!2><— (1—\»12)77]7

for some ¢, v, ¢, and n with |r| <1, |p| <1,
(38), (39), and (40) into (37), we obtain that

(r+v

i

_l’_

U0 | o+’ + 1P w) a0t - (W) |

9 of 17

|¢| <1, and |n| < 1. Then, by substituting

(U2 0) (- e

6(1+7)(1+37)

|20s =} | < 3(L+37)(1+7)° i+
3 2
(W) u-dd  (@o) b-dd wlnuoa-aq
A A en TR0 +87) 6(1+7)(1+37)
(WP 0) a-dd (U0) @-da
a0 0+3n) 20+ (1+37) ](M H‘")
( (5) > (4- ) )
rEss: ](\mw).

(Iel +In)

(41)

Lemma (1) allows us to assume, without any loss of generality, that ¢ € [0,2] where

¢ = |¢,|. Thus, for 6; =

lt] <1 and 62 = || < 1, we can rewrite (41) to be in the
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following form:
.2 2 2 2 _
’ ag a4 — ajg ’ <Y1+ Yo (61 +62) + Y3 (67 +63) + Yo (61 4 62)” = (61, b2), (42)
where

U ) ( (u?@ &) + Ul (1) + Lu® (t)) (1+7)%— (ufm (t))?” n (ufm (t)>2 (4— )

3(1+37) (L+7) 6(1+T)(1J(r4§)¢)
. (Ul(ﬁ) (t))3 (4- C2) ¢2 (Ul(ﬂ) (t))2 (4— c2) ¢2 ul(ﬁ) t) UQ(B) (t) (4 — c2) 2 N
2= 6+ 2142 2040 (1430 6(1+7) (1+37) 0
2 (44)
(UP®) (4= (-2
= s a+30 ] =0, (45)
and
flereer ’
T 64 (1+27)2 = (46)

Now, we have to maximize the function ¢(d1, d2) in (42) on the closed square S = [0, 1] x
[0, 1] by investigating the maximum values of (41, d2) in accordance with 0 < ¢ < 2,
¢ =0, and ¢ = 2. For the case that 0 < ¢ < 2, since T3 <0 and Y3+ 27,4 > 0 for all
t € (3,1), we deduce that

P15, Poysy — go?léz <0, forall 41,90 €S.

Therefore, as a result of this, the function ¢ cannot have a local maximum in the interior
of the square S. Now, we will explore the maximum value of ¢ on the boundary of S.
(1) for 01 =0 and 0 < dy <1 (similarly, for do =0 and 0 < d; <1), ¢(d1, d2) takes
the form

1, (82) == (0, 82) = T1 + Yo 65 + (T3 + T4) 5.

Next, we will separately discuss the following two cases.

Case (i): When Y3+ T4 >0, for 0 < 3 < 1, for any fixed ¢ € (0,2), and
for all ¢ € (1,1), it is obvious that ¢/ (62) = Yo +2 (L5 + Y4) 62 > 0.

Case (ii): When Y3+ T4 < 0 and since Yy + 2 (Y3 + Y4) > 0, for
0 < 8 < 1, for any fixed ¢ € (0,2), and for all t € (%,1), it is obvi-
ous that Yo +2(T3+ T4) < To+2(Ys+ Y4)d2 < T2 and thus ¢ (52) =
T2+2(T3—|—T4)52 >0.
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In both cases, v, (d2) is an increasing function and; therefore, for any fixed
¢ €(0,2) and ¢ € (3,1), the maximum value of ¢, (d2) occurs at d» = 1 and

r%z;x{zﬂl@g)} =4, (1) = T1 +To+ T3+ Ty (47)

For ¢ =0 and ¢ = 2, we respectively obtain that

@w)
©(01, 62) = Ty o 4112702 (614 62)
and
16 Y P u(ﬁ) 1748 142 L{(ﬁ) 3
oo ) =T = 0”0+t 0 + U 0) 1+ 0 W7 0) |

= 3(1+37)(1+7)3
(48)

By taking equation (48) and the two mentioned cases in account, for 0 < Jo < 1, for any
fixed ¢ € [0,2], and for all ¢ € (3,1), the maximum value of 1, (d2) is

H%Z;X{'(ﬂl ((52)} = ¢1(1) =T+ Yo+ T3+ T4

(2) for 01 =1 and 0 < Jy <1 (similarly, for do =1 and 0 <d; <1), ¢(d1, 62) takes
the form

¥,(82) :== (1, 02) = (Y3 + Ta) 3 + (Lo +2Tq) 2 + T1 + Yo+ L3+ Ty
Analogous to the previously mentioned cases of T3+ T4, we conclude that
r%ax{wz(dg)} =4, (1) =T1 +2To+ 275+ 47y (49)
2
Since ¢, (1) < 1p,(1) for ¢ € (0,2) and ¢ € (3,1), we see that
max {p(31, 02) } = (1, 1) (50)
1772

on the boundary of S. Therefore, the maximum value of ¢(d1, d2) occurs at 6; =1 and
d2 = 1 in the closed square S. Now, for a fixed value of ¢, let 7 : [0,2] — R be the
function defined by

T(e t) = maX(‘P((Sl, 52)) =p(1, 1) ="T1+2T2+2 3 +4 7y (51)

172

Upon substituting the expressions of Y1, To, T3, and Y4 into (51), we obtain that

CIPNE
<Z/{1 (t)> N Erct 448 ¢?
(1+27)2 48(1+37)(1+7)3(1+27)%

T(e, t) = (52)



A. Zeyani, A. Hussen / Eur. J. Pure Appl. Math, 18 (2) (2025), 5968 12 of 17

where

& =16(1+27)2 U ) (uéﬁ) () +ul? (1) + iul(ﬁ’ (t)) (1+7)% - (ulw) (t))3

+ (Ul(ﬁ)(t)>2 B3(L+37)(L+7)°—12(1+7)%(1+27)>

—2(14+7m) 1 +27) UV t) [3(1+37) (uf@(lt))2 +8(1+7)(1L+2n) U ()

(53)
and
S =12(1+27)2(1 +7)2 (ul(ﬁ)(t))2 F6(1+7)(1+27) (1+37) (L{{"’(t))3
+16(1+1)2(1+272 U@ UP () -6 (1+37) (1 +7)3 (u{ﬁ) (t))Q.

(54)

By assuming that the function 7 (¢, t) has a maximum value at an interior point 0 < ¢ < 2,

we obtain
dT &l 3 +2 Erc

de 1200430 (A+73A+20)2

(55)

With some calculations, we can examine the sign of % taking into account the following
four cases.

(i) Suppose that & > 0 and & > 0, then ‘il—;r > 0; indicating that 7T (c, t) is an
increasing function. Therefore, we get that

2
(uPw) N &1 +& (56)
(1+27)2 3(1+37)(1+7)3(1+27)%

max {T(c, t)} = T2, ) =

0<c<2

which means:

0<e<?2

max {mgax{go(él,ég)}} =T(2,1).

(ii) Suppose that & > 0 and & < 0, then ¢, = —% is a critical value of the

function T (¢, t). By assuming ¢, € (0,2), we get that Cg—g

> 0, thatis, ¢ =¢,
C:CO
is a local minimum value of 7 (¢, t). Thus, the function 7 (¢, ¢) can not possess a

local maximum.
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(iii) Suppose that & < 0 and & < 0, then % < 0; indicating that T (c, t) is a
decreasing function. Thus,

B ()
Jmax, {T(c, t)} =TT, t) =47y = ((21{:_2(7232

(57)
(iv) Suppose that £ < 0 and & > 0, then ¢q is a critical value of the function 7 (c, t).
2T :

< 0, which means that the

de2 | _
c=¢,

function 7 (c, t) has a local maximum occurring at ¢ = ¢,. Thus,

By assuming ¢, € (0,2), we obtain that

max {T(c, t)} = T(c,, ), (58)
where
(Ul(ﬁ ) (t))2 £3

Tle, t) = (1+271)2 124 (14+37)(1+7)3(1+27)%

Therefore, the proof of the above Theorem is evidently completed.

Ultimately, we introduce two essential corollaries that obtained from the classes Zg (t)
and AZ(t).

Corollary 1. Let f € Z of the form (5) be in the class Qg(t, 0) = Ag(t). Then
(T(27,1) E1 >0 and E*9>0;
mtax{élﬂz £, 7'(2‘,15)} £9>0 and £ <0

a,a, — a? | < (59)
4 5% 2 E1 <0 and &% <O0;

mtax{T(co,t), T(2_,t)} £ <0 and E% >0,

where
EX1+E
3 )

8*2 28*
T(coat):462t2_127€2*15 G = \/ — 5*12’ (61)

o)+ @)+ ;U0 - (UP0)

T2, t) =482+

e =16 U (1)

—o (U ) —2u”() [3 (UP0)” + s s (t)] ,
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2
£ =2uU () [3 u ) +3 (U w) +suf’ (t)] , (63)
and Z/{l(ﬁ) (1), L{Q(’g) (t), and Z/{éﬁ) (t) are defined by (1).

Corollary 2. Let f € 2 of the form (5) be in the class Qg(t, 1) = Eg(t). Then

(T(27,1) D*1 >0 and D*3>0;
mfx{4ﬁs tza T(Q*,t)} D*1 >0 and D*y <0
a2a4—a§‘§ 22 (64)
MTt D*1 <0 and Dy <0
max{T(Co,t), T(Q*,t)} D*1 <0 and D*3 >0,

t

where 22 >
o, 457t *1+ D"
T =100 Pht D (65)
_4p%? D*3 [ 2D
Tl ) = =5~ ~3mep "\ "Dy (66)
Dy =14 U ) 4 (U + U 0+ U 1) - (U )
(67)
2 2
336 (u{ﬁ) (t)) — 144 uP (1) {(ul(ﬁ) (t)) +4u (t)] :
2
Dy = 48 U (1) [5 U ) +3 (ufﬂ) (t)) +12 U (t)] : (68)

and Ul(ﬁ) (1), UQ(B) (t), and Z/{:)EB) (t) are defined by (1).

3. Conclusion

In our present study, we have derived the new upper bound estimates and inequal-
ities for the second Hankel determinant, H,(2, 2), of a certain subclass of normalized
bi-univalent functions in the open unit disk U. The upper bound estimates are deter-
mined by using orthogonal ultraspherical polynomials, which provide information about
the properties and characteristics of these functions in the context of H (2, 2). Further-
more, we provide new findings acquired by specializing the parameter 7 utilized in our
analysis.
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