EUROPEAN JOURNAL OF PURE AND APPLIED MATHEMATICS

2025, Vol. 18, Issue 2, Article Number 6017 ISSN 1307-5543 – ejpam.com Published by New York Business Global

On Strongly $\theta(\tau_1, \tau_2)$ -continuous Functions

Prapart Pue-on¹, Supunnee Sompong², Chawalit Boonpok^{1,*}

¹ Mathematics and Applied Mathematics Research Unit, Department of Mathematics, Faculty of Science, Mahasarakham University, Maha Sarakham, 44150, Thailand

Abstract. This paper deals with the concept of strongly $\theta(\tau_1, \tau_2)$ -continuous functions. Furthermore, some characterizations and several properties concerning strongly $\theta(\tau_1, \tau_2)$ -continuous functions are considered.

2020 Mathematics Subject Classifications: 54C08; 54E55

Key Words and Phrases: $(\tau_1, \tau_2)\theta$ -open set, strongly $\theta(\tau_1, \tau_2)$ -continuous function

1. Introduction

In 1941, Fomin [1] introduced the concept of θ -continuous functions. Noiri [2] studied some properties of θ -continuous functions. Popa [3] investigated several characterizations of θ -continuous functions. Arya and Bhamini [4] introduced the notion of θ semi-continuous functions. Jafari and Noiri [5] investigated several characterizations of θ -semi-continuous functions. Noiri [6] introduced and investigated the concept of θ precontinuous functions. In 1981, Long and Herrington [7] investigated some characterizations of strongly θ -continuous functions. Jafari and Noiri [8] introduced and investigated the concept of strongly θ -semi-continuous functions. Noiri [9] introduced and studied the notion of strongly θ -precontinuous functions. Noiri and Popa [10] introduced and investigated the concept of strongly θ - β -continuous functions. On the other hand, Di Maio and Noiri [11] introduced the concept of strongly irresolute functions. Pal and Bhattacharyya [12] introduced and investigated the notion of strongly preirresolute functions. Noiri [13] investigated several characterizations of strongly β -irresolute functions. Jafari and Noiri [14] studied some characterizations of strongly sober θ -continuous functions. These classes of functions have characterizations similar to the class of strongly θ -continuous functions. In 2005, Noiri and Popa [15] introduced a new class of functions called strongly θ -M-continuous functions as functions defined between sets satisfying

DOI: https://doi.org/10.29020/nybg.ejpam.v18i2.6017

Email addresses: prapart.p@msu.ac.th (P. Pue-on),

s_sompong@snru.ac.th (S. Sompong), chawalit.b@msu.ac.th (C. Boonpok)

² Department of Mathematics and Statistics, Faculty of Science and Technology, Sakon Nakhon Rajbhat University, Sakon Nakhon, 47000, Thailand

^{*}Corresponding author.

some minimal conditions and obtained several characterizations and some properties of such functions. Furthermore, the present authors [15] defined and studied the notions of strongly θ -M-closed graphs and m-closed spaces. Thongmoon and Boonpok [16] introduced and studied the notion of strongly $\theta(\Lambda, p)$ -continuous functions. Quite recently, the present authors [17] introduced and investigated the notion of almost strongly $\theta(\Lambda, p)$ -continuous functions. Moreover, several characterizations of (τ_1, τ_2) -continuous functions, almost weakly (τ_1, τ_2) -continuous functions, weakly (τ_1, τ_2) -continuous functions, faintly (τ_1, τ_2) -continuous functions, weakly quasi (τ_1, τ_2) -continuous functions, almost quasi (τ_1, τ_2) -continuous functions, $\delta(\tau_1, \tau_2)$ -continuous functions and quasi $\theta(\tau_1, \tau_2)$ -continuous functions were established in [18], [19], [20], [21], [22], [23], [24], [25] and [26], respectively. In this paper, we introduce the concept of strongly $\theta(\tau_1, \tau_2)$ -continuous functions. We also investigate several characterizations of strongly $\theta(\tau_1, \tau_2)$ -continuous functions.

2. Preliminaries

Throughout the present paper, spaces (X, τ_1, τ_2) and (Y, σ_1, σ_2) (or simply X and Y) always mean bitopological spaces on which no separation axioms are assumed unless explicitly stated. Let A be a subset of a bitopological space (X, τ_1, τ_2) . The closure of A and the interior of A with respect to τ_i are denoted by τ_i -Cl(A) and τ_i -Int(A), respectively, for i=1,2. A subset A of a bitopological space (X,τ_1,τ_2) is called $\tau_1\tau_2$ -closed [27] if $A=\tau_1$ -Cl(τ_2 -Cl(A)). The complement of a $\tau_1\tau_2$ -closed set is called $\tau_1\tau_2$ -open. The intersection of all $\tau_1\tau_2$ -closed sets of X containing A is called the $\tau_1\tau_2$ -closure [27] of A and is denoted by $\tau_1\tau_2$ -Interior [27] of A and is denoted by $\tau_1\tau_2$ -Interior [27] of A and is denoted by $\tau_1\tau_2$ -Interior [27] of A and is denoted by $\tau_1\tau_2$ -Int(A).

Lemma 1. [27] Let A and B be subsets of a bitopological space (X, τ_1, τ_2) . For the $\tau_1\tau_2$ -closure, the following properties hold:

- (1) $A \subseteq \tau_1 \tau_2 Cl(A)$ and $\tau_1 \tau_2 Cl(\tau_1 \tau_2 Cl(A)) = \tau_1 \tau_2 Cl(A)$.
- (2) If $A \subseteq B$, then $\tau_1 \tau_2 Cl(A) \subseteq \tau_1 \tau_2 Cl(B)$.
- (3) $\tau_1\tau_2$ -Cl(A) is $\tau_1\tau_2$ -closed.
- (4) A is $\tau_1\tau_2$ -closed if and only if $A = \tau_1\tau_2$ -Cl(A).
- (5) $\tau_1 \tau_2 Cl(X A) = X \tau_1 \tau_2 Int(A)$.

A subset A of a bitopological space (X, τ_1, τ_2) is said to be $(\tau_1, \tau_2)r$ -open [28] (resp. $(\tau_1, \tau_2)s$ -open [29], $(\tau_1, \tau_2)p$ -open [29], $(\tau_1, \tau_2)\beta$ -open [29]) if $A = \tau_1\tau_2$ -Int $(\tau_1\tau_2$ -Cl(A)) (resp. $A \subseteq \tau_1\tau_2$ -Cl $(\tau_1\tau_2$ -Int(A)), $A \subseteq \tau_1\tau_2$ -Int $(\tau_1\tau_2$ -Cl(A)), $A \subseteq \tau_1\tau_2$ -Cl $(\tau_1\tau_2$ -Int $(\tau_1\tau_2$ -Cl(A))). The complement of a $(\tau_1, \tau_2)r$ -open (resp. $(\tau_1, \tau_2)s$ -open, $(\tau_1, \tau_2)p$ -open, $(\tau_1, \tau_2)\beta$ -open) set is called $(\tau_1, \tau_2)r$ -closed (resp. $(\tau_1, \tau_2)s$ -closed, $(\tau_1, \tau_2)p$ -closed, $(\tau_1, \tau_2)\beta$ -closed). A subset A of a bitopological space (X, τ_1, τ_2) is said to be $\alpha(\tau_1, \tau_2)$ -open [30] if $A \subseteq \tau_1\tau_2$ -Int $(\tau_1\tau_2$ -Cl $(\tau_1\tau_2$ -Int(A))). The complement of an $\alpha(\tau_1, \tau_2)$ -open set is said to be

 $\alpha(\tau_1, \tau_2)$ -closed. For a subset A of a bitopological space (X, τ_1, τ_2) , a point $x \in X$ is called a $(\tau_1, \tau_2)\theta$ -cluster point [28] of A if $\tau_1\tau_2$ -Cl $(U) \cap A \neq \emptyset$ for every $\tau_1\tau_2$ -open set U containing x. The set of all $(\tau_1, \tau_2)\theta$ -cluster points of A is called the $(\tau_1, \tau_2)\theta$ -closure [28] of A and is denoted by $(\tau_1, \tau_2)\theta$ -Cl(A). A subset A of a bitopological space (X, τ_1, τ_2) is said to be $(\tau_1, \tau_2)\theta$ -closed [28] if $A = (\tau_1, \tau_2)\theta$ -Cl(A). The complement of a $(\tau_1, \tau_2)\theta$ -closed set is said to be $(\tau_1, \tau_2)\theta$ -open. The union of all $(\tau_1, \tau_2)\theta$ -open sets contained in A is called the $(\tau_1, \tau_2)\theta$ -interior [28] of A and is denoted by $(\tau_1, \tau_2)\theta$ -Int(A).

Lemma 2. [28] For a subset A of a bitopological space (X, τ_1, τ_2) , the following properties hold:

- (1) If A is $\tau_2\tau_2$ -open in X, then $\tau_1\tau_2$ -Cl(A) = $(\tau_1, \tau_2)\theta$ -Cl(A).
- (2) $(\tau_1, \tau_2)\theta$ -Cl(A) is $\tau_1\tau_2$ -closed in X.

3. On strongly $\theta(\tau_1, \tau_2)$ -continuous functions

In this section, we introduce the concept of strongly $\theta(\tau_1, \tau_2)$ -continuous functions. Moreover, some characterizations of strongly $\theta(\tau_1, \tau_2)$ -continuous functions are discussed.

Definition 1. A function $f:(X,\tau_1,\tau_2)\to (Y,\sigma_1,\sigma_2)$ is said to be strongly $\theta(\tau_1,\tau_2)$ continuous at a point $x\in X$ if for each $\sigma_1\sigma_2$ -open set V of Y containing f(x), there
exists a $\tau_1\tau_2$ -open set U of X containing x such that $f(\tau_1\tau_2-Cl(U))\subseteq V$. A function $f:(X,\tau_1,\tau_2)\to (Y,\sigma_1,\sigma_2)$ is said to be strongly $\theta(\tau_1,\tau_2)$ -continuous if f is strongly $\theta(\tau_1,\tau_2)$ -continuous at each point x of X.

Theorem 1. A function $f:(X,\tau_1,\tau_2)\to (Y,\sigma_1,\sigma_2)$ is strongly $\theta(\tau_1,\tau_2)$ -continuous at $x\in X$ if and only if for each $\sigma_1\sigma_2$ -open set V of Y containing f(x),

$$x \in (\tau_1, \tau_2)\theta - Int(f^{-1}(V)).$$

Proof. Suppose that f is strongly $\theta(\tau_1, \tau_2)$ -continuous at $x \in X$. Let V be any $\sigma_1\sigma_2$ -open set of Y containing f(x). Then, there exists a $\tau_1\tau_2$ -open set U of X containing x such that $f(\tau_1\tau_2\text{-Cl}(U)) \subseteq V$. Thus, $\tau_1\tau_2\text{-Cl}(U) \subseteq f^{-1}(V)$ and hence $x \in (\tau_1, \tau_2)\theta\text{-Int}(f^{-1}(V))$.

Conversely, let V be any $\sigma_1\sigma_2$ -open set of Y containing f(x). Then, by the hypothesis we have $x \in (\tau_1, \tau_2)\theta$ -Int $(f^{-1}(V))$. There exists a $\tau_1\tau_2$ -open set U of X such that

$$x \in U \subseteq \tau_1 \tau_2\text{-Cl}(U) \subseteq f^{-1}(V);$$

hence $f(\tau_1\tau_2\text{-Cl}(U)) \subseteq V$. This shows that f is strongly $\theta(\tau_1, \tau_2)$ -continuous at $x \in X$.

Theorem 2. For a function $(X, \tau_1, \tau_2) \to (Y, \sigma_1, \sigma_2)$, the following properties are equivalent:

- (1) f is strongly $\theta(\tau_1, \tau_2)$ -continuous;
- (2) $f^{-1}(V)$ is $(\tau_1, \tau_2)\theta$ -open in X for every $\sigma_1\sigma_2$ -open set V of Y;

- (3) $f^{-1}(F)$ is $(\tau_1, \tau_2)\theta$ -closed in X for every $\sigma_1\sigma_2$ -closed set F of Y;
- (4) $f((\tau_1, \tau_2)\theta Cl(A)) \subseteq \sigma_1 \sigma_2 Cl(f(A))$ for every subset A of X;
- (5) $(\tau_1, \tau_2)\theta$ - $Cl(f^{-1}(B)) \subseteq f^{-1}(\sigma_1\sigma_2 Cl(B))$ for every subset B of Y.
- Proof. (1) \Rightarrow (2): Let V be any $\sigma_1\sigma_2$ -open set of Y and $x \in f^{-1}(V)$. Then, $f(x) \in V$. Since f is strongly $\theta(\tau_1, \tau_2)$ -continuous, by Theorem 1 we have $x \in (\tau_1, \tau_2)\theta$ -Int $(f^{-1}(V))$. Thus, $f^{-1}(V) \subseteq (\tau_1, \tau_2)\theta$ -Int $(f^{-1}(V))$ and hence $f^{-1}(V) = (\tau_1, \tau_2)\theta$ -Int $(f^{-1}(V))$. This shows that $f^{-1}(V)$ is $(\tau_1, \tau_2)\theta$ -open in X.
 - $(2) \Rightarrow (3)$: The proof is obvious.
- (3) \Rightarrow (1): Let $x \in X$ and V be any $\sigma_1 \sigma_2$ -open set of Y containing f(x). By (3), $f^{-1}(Y-V)$ is $(\tau_1,\tau_2)\theta$ -closed and so $f^{-1}(V)$ is $(\tau_1,\tau_2)\theta$ -open. Then, there exists a $\tau_1\tau_2$ -open set U of X such that $x \in U \subseteq \tau_1\tau_2$ -Cl $(U) \subseteq f^{-1}(V)$. Thus, $f(\tau_1\tau_2$ -Cl $(U)) \subseteq V$. This shows that f is strongly $\theta(\tau_1,\tau_2)$ -continuous.
- $(1) \Rightarrow (4)$: Let A be any subset of X. Let $x \in (\tau_1, \tau_2)\theta$ -Cl(A) and V be any $\sigma_1\sigma_2$ -open set of Y containing f(x). Since f is strongly $\theta(\tau_1, \tau_2)$ -continuous, there exists a $\tau_1\tau_2$ -open set U of X such that $f(\tau_1\tau_2\text{-Cl}(U)) \subseteq V$. Since $x \in (\tau_1, \tau_2)\theta$ -Cl(A), we have $\tau_1\tau_2$ -Cl $(U) \cap A \neq \emptyset$. It follows that $\emptyset \neq f(\tau_1\tau_2\text{-Cl}(U)) \cap f(A) \subseteq V \cap f(A)$. Thus, $f(x) \in \sigma_1\sigma_2\text{-Cl}(f(A))$.
 - $(4) \Rightarrow (5)$: Let B be any subset of Y. By (4), we have

$$f((\tau_1, \tau_2)\theta\text{-Cl}(f^{-1}(B))) \subseteq \sigma_1\sigma_2\text{-Cl}(f(f^{-1}(B))) \subseteq \sigma_1\sigma_2\text{-Cl}(B)$$

and hence $(\tau_1, \tau_2)\theta$ -Cl $(f^{-1}(B)) \subseteq f^{-1}(\sigma_1\sigma_2$ -Cl(B)).

(5) \Rightarrow (1): Let $x \in X$ and V be any $\sigma_1\sigma_2$ -open set of Y containing f(x). Since $V \cap (Y - V) = \emptyset$, $f(x) \notin \sigma_1\sigma_2$ -Cl(Y - V) and so $x \notin f^{-1}(\sigma_1\sigma_2$ -Cl(Y - V)). By (5), we have $x \notin (\tau_1, \tau_2)\theta$ -Cl $(f^{-1}(Y - V)) = X - (\tau_1, \tau_2)\theta$ -Int $(f^{-1}(V))$. Thus, $x \in (\tau_1, \tau_2)\theta$ -Int $(f^{-1}(V))$. Then, there exists a $\tau_1\tau_2$ -open set U of X such that $\tau_1\tau_2$ -Cl $(U) \subseteq f^{-1}(V)$; hence

$$f(\tau_1\tau_2\text{-Cl}(U))\subseteq V$$
.

This shows that f is strongly $\theta(\tau_1, \tau_2)$ -continuous.

Definition 2. [18] A function $f:(X,\tau_1,\tau_2) \to (Y,\sigma_1,\sigma_2)$ is called (τ_1,τ_2) -continuous at a point $x \in X$ if for each $\sigma_1\sigma_2$ -open set V of Y containing f(x), there exists a $\tau_1\tau_2$ -open set U of X containing x such that $f(U) \subseteq V$. A function $f:(X,\tau_1,\tau_2) \to (Y,\sigma_1,\sigma_2)$ is called (τ_1,τ_2) -continuous if f has this property at each point of X.

Lemma 3. [18] For a function $(X, \tau_1, \tau_2) \to (Y, \sigma_1, \sigma_2)$, the following properties are equivalent:

- (1) f is (τ_1, τ_2) -continuous;
- (2) $f^{-1}(V)$ is $\tau_1\tau_2$ -open in X for every $\sigma_1\sigma_2$ -open set V of Y;
- (3) $f(\tau_1\tau_2-Cl(A)) \subseteq \sigma_1\sigma_2-Cl(f(A))$ for every subset A of X;

- (4) $\tau_1\tau_2$ - $Cl(f^{-1}(B)) \subseteq f^{-1}(\sigma_1\sigma_2$ -Cl(B)) for every subset B of Y;
- (5) $f^{-1}(\sigma_1\sigma_2\text{-Int}(B)) \subseteq \tau_1\tau_2\text{-Int}(f^{-1}(B))$ for every subset B of Y;
- (6) $f^{-1}(K)$ is $\tau_1\tau_2$ -closed in X for every $\sigma_1\sigma_2$ -closed set K of Y.

Definition 3. [20] A function $f:(X,\tau_1,\tau_2)\to (Y,\sigma_1,\sigma_2)$ is said to be weakly (τ_1,τ_2) -continuous at a point $x\in X$ if for each $\tau_1\tau_2$ -open set V of Y containing f(x), there exists a $\tau_1\tau_2$ -open set U of X containing x such that $f(U)\subseteq \sigma_1\sigma_2$ -Cl(V). A function $f:(X,\tau_1,\tau_2)\to (Y,\sigma_1,\sigma_2)$ is said to be weakly (τ_1,τ_2) -continuous if f has this property at each point of X.

Lemma 4. [20] For a function $(X, \tau_1, \tau_2) \to (Y, \sigma_1, \sigma_2)$, the following properties are equivalent:

- (1) f is weakly (τ_1, τ_2) -continuous;
- (2) $f(\tau_1\tau_2-Cl(A)) \subseteq (\sigma_1,\sigma_2)\theta-Cl(f(A))$ for every subset A of X;
- (3) $\tau_1\tau_2$ - $Cl(f^{-1}(B)) \subseteq f^{-1}((\sigma_1, \sigma_2)\theta$ -Cl(B)) for every subset B of Y.

Definition 4. [31] A function $f:(X,\tau_1,\tau_2) \to (Y,\sigma_1,\sigma_2)$ is called faintly (τ_1,τ_2) -continuous at a point $x \in X$ if for each $(\sigma_1,\sigma_2)\theta$ -open set V of Y containing f(x), there exists a $\tau_1\tau_2$ -open set U of X containing x such that $f(U) \subseteq V$. A function $f:(X,\tau_1,\tau_2) \to (Y,\sigma_1,\sigma_2)$ is called faintly (τ_1,τ_2) -continuous if f has this property at every point of X.

Lemma 5. [31] For a function $f:(X,\tau_1,\tau_2)\to (Y,\sigma_1,\sigma_2)$, the following properties are equivalent:

- (1) f is faintly (τ_1, τ_2) -continuous;
- (2) $f^{-1}(V)$ is $\tau_1\tau_2$ -open in X for each $(\sigma_1, \sigma_2)\theta$ -open set V of Y;
- (3) $f^{-1}(K)$ is $\tau_1\tau_2$ -closed in X for each $(\sigma_1,\sigma_2)\theta$ -closed set K of Y.

Recall that a bitopological space (X, τ_1, τ_2) is said to be (τ_1, τ_2) -regular [32] if for each $\tau_1\tau_2$ -closed set F and each $x \notin F$, there exist disjoint $\tau_1\tau_2$ -open sets U and V such that $x \in U$ and $F \subset V$.

Lemma 6. [33] A bitopological space (X, τ_1, τ_2) is (τ_1, τ_2) -regular if and only if for each $x \in X$ and each $\tau_1\tau_2$ -open set U containing x, there exists a $\tau_1\tau_2$ -open set V such that $x \in V \subset \tau_1\tau_2$ - $Cl(V) \subset U$.

Lemma 7. [33] Let (X, τ_1, τ_2) be a (τ_1, τ_2) -regular space. Then, the following properties hold:

- (1) $\tau_1 \tau_2$ - $Cl(A) = (\tau_1, \tau_2)\theta$ -Cl(A) for every subset A of X.
- (2) Every $\tau_1\tau_2$ -open set is $(\tau_1, \tau_2)\theta$ -open.

Theorem 3. For a function $f:(X,\tau_1,\tau_2)\to (Y,\sigma_1,\sigma_2)$, where (Y,σ_1,σ_2) is (σ_1,σ_2) -regular, the following properties are equivalent:

- (1) f is (τ_1, τ_2) -continuous;
- (2) f is weakly (τ_1, τ_2) -continuous;
- (3) f is faintly (τ_1, τ_2) -continuous;
- (4) f is strongly $\theta(\tau_1, \tau_2)$ -continuous.

Proof. $(1) \Rightarrow (2)$: The proof is obvious.

 $(2) \Rightarrow (3)$: Let K be any $\theta(\sigma_1, \sigma_2)$ -closed set of Y. By Lemma 4, we have

$$\tau_1 \tau_2 - \text{Cl}(f^{-1}(K)) \subseteq f^{-1}((\sigma_1, \sigma_2)\theta - \text{Cl}(K)) = f^{-1}(K)$$

and hence $f^{-1}(K)$ is $\tau_1\tau_2$ -closed in X. Thus by Lemma 5, f is faintly (τ_1, τ_2) -continuous.

- $(3) \Rightarrow (1)$: Let $x \in X$ and V be any $\sigma_1 \sigma_2$ -open set of Y containing f(x). Since (Y, σ_1, σ_2) is (σ_1, σ_2) -regular, by Lemma 7 we have V is a $\theta(\tau_1, \tau_2)$ -open set of Y. Since f is faintly (τ_1, τ_2) -continuous, by Lemma 5 we have $f^{-1}(V)$ is $\tau_1 \tau_2$ -open in X. Then by Lemma 3, f is (τ_1, τ_2) -continuous.
- $(1) \Rightarrow (4)$: Let $x \in X$ and V be any $\sigma_1\sigma_2$ -open set of Y containing f(x). Since (Y, σ_1, σ_2) is (σ_1, σ_2) -regular, by Lemma 6 there exists a $\sigma_1\sigma_2$ -open set W of Y such that $f(x) \in W \subseteq \sigma_1\sigma_2$ -Cl $(W) \subseteq V$. Since f is (τ_1, τ_2) -continuous, there exists a $\tau_1\tau_2$ -open set U of X containing x such that $f(U) \subseteq V$. Now, we shall show that

$$f(\tau_1 \tau_2 - \operatorname{Cl}(U)) \subseteq \sigma_1 \sigma_2 - \operatorname{Cl}(W).$$

Suppose that $y \notin \sigma_1\sigma_2\text{-Cl}(W)$. Then, there exists a $\sigma_1\sigma_2$ -open set G of Y containing y such that $G \cap W = \emptyset$. Since f is (τ_1, τ_2) -continuous, by Lemma 3 we have $f^{-1}(G)$ is $\tau_1\tau_2$ -open in X and $f^{-1}(G) \cap U = \emptyset$, which implies that $f^{-1}(G) \cap \tau_1\tau_2\text{-Cl}(U) = \emptyset$. If

$$f^{-1}(G) \cap \tau_1 \tau_2$$
-Cl $(U) \neq \emptyset$,

then $\tau_1\tau_2$ -Int $(f^{-1}(G)) \cap \tau_1\tau_2$ -Cl $(U) \neq \emptyset$. Let $z \in \tau_1\tau_2$ -Int $(f^{-1}(G)) \cap \tau_1\tau_2$ -Cl(U). Then, $z \in \tau_1\tau_2$ -Int $(f^{-1}(G))$ and $z \in \tau_1\tau_2$ -Cl(U). There exists a $\tau_1\tau_2$ -open set U_0 of X containing x such that $U_0 \subseteq f^{-1}(G)$. Since $z \in \tau_1\tau_2$ -Cl(U), we have $U_0 \cap U \neq \emptyset$ and so $f^{-1}(G) \cap U \neq \emptyset$. This is a contradiction. Therefore, $f^{-1}(G) \cap \tau_1\tau_2$ -Cl $(U) = \emptyset$ which implies that

$$G \cap f(\tau_1 \tau_2 \text{-Cl}(U)) = \emptyset.$$

Thus, $y \notin f(\tau_1\tau_2\text{-Cl}(U))$ and hence $f(\tau_1\tau_2\text{-Cl}(U)) \subseteq \sigma_1\sigma_2\text{-Cl}(W) \subseteq V$. This shows that f is strongly $\theta(\tau_1, \tau_2)$ -continuous.

 $(4) \Rightarrow (1)$: The proof is obvious.

Theorem 4. Let (X, τ_1, τ_2) be (τ_1, τ_2) -regular. Then, a function $f: (X, \tau_1, \tau_2) \to (Y, \sigma_1, \sigma_2)$ is strongly $\theta(\tau_1, \tau_2)$ -continuous if and only if f is (τ_1, τ_2) -continuous.

Proof. We prove only the sufficiency. Suppose that f is (τ_1, τ_2) -continuous. Let $x \in X$ and V be any $\sigma_1 \sigma_2$ -open set of Y containing f(x). Then, there exists a $\tau_1 \tau_2$ -open set G of X containing x such that $f(G) \subseteq V$. Since (X, τ_1, τ_2) is (τ_1, τ_2) -regular, by Lemma 6 there exists a $\tau_1 \tau_2$ -open set U of X such that $x \in U \subseteq \tau_1 \tau_2$ -Cl $(U) \subseteq G$. Thus, $f(\tau_1 \tau_2$ -Cl $(U)) \subseteq V$. This shows that f is strongly $\theta(\tau_1, \tau_2)$ -continuous.

4. Some results on strong $\theta(\tau_1, \tau_2)$ -continuity

Recall that a bitopological space (X, τ_1, τ_2) is said to be (τ_1, τ_2) - T_0 [34] if for any pair of distinct points in X, there exists a $\tau_1\tau_2$ -open set of X containing one of the points but not the other.

Definition 5. [35] A bitopological space (X, τ_1, τ_2) is said to be (τ_1, τ_2) - T_2 if for any pair of distinct points x, y in X, there exist disjoint $\tau_1\tau_2$ -open sets U and V of X containing x and y, respectively.

Theorem 5. If $f:(X,\tau_1,\tau_2)\to (Y,\sigma_1,\sigma_2)$ is a strongly $\theta(\tau_1,\tau_2)$ -continuous injection and (Y,σ_1,σ_2) is (σ_1,σ_2) - T_0 , then (X,τ_1,τ_2) is (τ_1,τ_2) - T_2 .

Proof. Suppose that (Y, σ_1, σ_2) is (σ_1, σ_2) - T_0 . Let x and y be any distinct points of X. Since f is injective, $f(x) \neq f(y)$. Since (Y, σ_1, σ_2) is (σ_1, σ_2) - T_0 , there exists a $\sigma_1\sigma_2$ -open set V of Y which either contains f(x) and not f(y) or contains f(y) and not f(x). If the first case holds, then there exists a $\tau_1\tau_2$ -open set U of X containing x such that $f(\tau_1\tau_2\text{-Cl}(U)) \subseteq V$. Thus, $f(y) \notin f(\tau_1\tau_2\text{-Cl}(U))$ and hence

$$y \in X - \tau_1 \tau_2$$
-Cl $(U) = \tau_1 \tau_2$ -Int $(X - U)$.

Then, there exists a $\tau_1\tau_2$ -open set W of X such that $y \in W \subseteq X - U$. Therefore, $U \cap W = \emptyset$. This shows that (X, τ_1, τ_2) is (τ_1, τ_2) - T_2 .

Definition 6. [36] A bitopological space (X, τ_1, τ_2) is said to be $\tau_1\tau_2$ -Urysohn if for each pair of distinct points x and y in X, there exist $\tau_1\tau_2$ -open sets U and V such that $x \in U$, $y \in V$ and $\tau_1\tau_2$ -Cl $(U) \cap \tau_1\tau_2$ -Cl $(V) = \emptyset$.

Theorem 6. If $f:(X,\tau_1,\tau_2)\to (Y,\sigma_1,\sigma_2)$ is a strongly $\theta(\tau_1,\tau_2)$ -continuous injection and (Y,σ_1,σ_2) is (σ_1,σ_2) - T_2 , then (X,τ_1,τ_2) is $\tau_1\tau_2$ -Urysohn.

Proof. Suppose that (Y, σ_1, σ_2) is (σ_1, σ_2) - T_2 . Let x and y be any distinct points of X. Since f is injective, $f(x) \neq f(y)$. Since (Y, σ_1, σ_2) is (σ_1, σ_2) - T_2 , there exist $\sigma_1\sigma_2$ -open sets V and W of Y containing f(x) and f(y), respectively, such that $V \cap W = \emptyset$. Since f is strongly $\theta(\tau_1, \tau_2)$ -continuous, there exist $\tau_1\tau_2$ -open sets U and G of X containing x and y, respectively, such that $f(\tau_1\tau_2\text{-Cl}(U)) \subseteq V$ and $f(\tau_1\tau_2\text{-Cl}(G)) \subseteq W$. It follows that $\tau_1\tau_2\text{-Cl}(U) \cap \tau_1\tau_2\text{-Cl}(G) = \emptyset$. Thus, (X, τ_1, τ_2) is $\tau_1\tau_2\text{-Urysohn}$.

Definition 7. A function $f:(X, \tau_1, \tau_2) \to (Y, \sigma_1, \sigma_2)$ is said to have a strongly $\theta(\tau_1, \tau_2)$ closed graph with respect to X if for each $(x, y) \in (X \times Y) - G(f)$, there exist a $\tau_1\tau_2$ -open
set U of X containing x and a $\sigma_1\sigma_2$ -open set V of Y containing y such that

$$[\tau_1 \tau_2 - Cl(U) \times V] \cap G(f) = \emptyset.$$

Lemma 8. A function $f:(X,\tau_1,\tau_2)\to (Y,\sigma_1,\sigma_2)$ has a strongly $\theta(\tau_1,\tau_2)$ -closed graph with respect to X if and only if for each $(x,y)\in (X\times Y)-G(f)$, there exist a $\tau_1\tau_2$ -open set U of X containing x and a $\sigma_1\sigma_2$ -open set V of Y containing y such that

$$f(\tau_1\tau_2 - Cl(U)) \cap V = \emptyset.$$

Theorem 7. If $f:(X,\tau_1,\tau_2)\to (Y,\sigma_1,\sigma_2)$ is strongly $\theta(\tau_1,\tau_2)$ -continuous and (Y,σ_1,σ_2) is (σ_1,σ_2) - T_2 , then G(f) is strongly $\theta(\tau_1,\tau_2)$ -closed graph with respect to X.

Proof. Let $(x,y) \in (X \times Y) - G(f)$. Then, $y \neq f(x)$. Since (Y,σ_1,σ_2) is (σ_1,σ_2) - T_2 , there exist $\sigma_1\sigma_2$ -open sets V and W of Y containing f(x) and f(y), respectively, such that $V \cap W = \emptyset$. Since f is strongly $\theta(\tau_1,\tau_2)$ -continuous, there exist a $\tau_1\tau_2$ -open set U of X containing x such that $f(\tau_1\tau_2-\text{Cl}(U)) \subseteq W$. This implies that $f(\tau_1\tau_2-\text{Cl}(U)) \cap V = \emptyset$ and by Lemma 8, G(f) is strongly $\theta(\tau_1,\tau_2)$ -closed graph with respect to X.

Definition 8. [37] Let A be a subset of a bitopological space (X, τ_1, τ_2) . The $(\tau_1, \tau_2)\theta$ -frontier of A, $(\tau_1, \tau_2)\theta$ -fr(A), is defined by

$$(\tau_1, \tau_2)\theta - fr(A) = (\tau_1, \tau_2)\theta - Cl(A) \cap (\tau_1, \tau_2)\theta - Cl(X - A).$$

Theorem 8. The set of all points $x \in X$ at which a function $f: (X, \tau_1, \tau_2) \to (Y, \sigma_1, \sigma_2)$ is not strongly $\theta(\tau_1, \tau_2)$ -continuous is identical with the union of the $(\tau_1, \tau_2)\theta$ -frontier of the inverse images of $\sigma_1\sigma_2$ -open sets containing f(x).

Proof. Suppose that f is not strongly $\theta(\tau_1, \tau_2)$ -continuous. Then, there exists a $\sigma_1\sigma_2$ open set V of Y containing f(x) such that $f(\tau_1\tau_2\text{-Cl}(U))$ is not contained in V for every $\tau_1\tau_2$ -open set U of X containing x. Then, $\tau_1\tau_2\text{-Cl}(U) \cap (X - f^{-1}(V)) \neq \emptyset$ for every $\tau_1\tau_2$ open set U of X containing x. Thus, $x \in (\tau_1, \tau_2)\theta\text{-Cl}(X - f^{-1}(V))$. On the other hand, we have $x \in f^{-1}(V) \subseteq (\tau_1, \tau_2)\theta\text{-Cl}(f^{-1}(V))$ and hence $x \in (\tau_1, \tau_2)\theta\text{-fr}(f^{-1}(V))$.

Conversely, suppose that f is strongly $\theta(\tau_1, \tau_2)$ -continuous at $x \in X$. Let V be any $\sigma_1\sigma_2$ -open set of Y containing f(x). By Theorem 1, $x \in (\tau_1, \tau_2)\theta$ -Int $(f^{-1}(V))$. Thus, $x \notin (\tau_1, \tau_2)\theta$ -fr $(f^{-1}(V))$ for every $\sigma_1\sigma_2$ -open set V of Y containing f(x). This completes the proof.

Recall that a bitopological space (X, τ_1, τ_2) is said to be $quasi\ (\tau_1, \tau_2)$ - \mathscr{H} -closed [38] if every $\tau_1\tau_2$ -open cover $\{U_{\gamma} \mid \gamma \in \Gamma\}$, there exists a finite subset Γ_0 of Γ such that $X = \bigcup \{\tau_1\tau_2\text{-Cl}(U_{\gamma}) \mid \gamma \in \Gamma_0\}$. A subset K of a bitopological space (X, τ_1, τ_2) is said to be $quasi\ (\tau_1, \tau_2)$ - \mathscr{H} -closed relative to (X, τ_1, τ_2) if for any cover $\{V_{\gamma} \mid \gamma \in \Gamma\}$ by $\tau_1\tau_2$ -open sets of X, there exists a finite subset Γ_0 of Γ such that $K \subseteq \bigcup \{\tau_1\tau_2\text{-Cl}(V_{\gamma}) \mid \gamma \in \Gamma_0\}$. A subset K of a bitopological space (X, τ_1, τ_2) is said to be $\tau_1\tau_2$ -compact relative to (X, τ_1, τ_2) if for

any cover $\{V_{\gamma} \mid \gamma \in \Gamma\}$ by $\tau_1\tau_2$ -open sets of X, there exists a finite subset Γ_0 of Γ such that $K \subseteq \bigcup \{V_{\gamma} \mid \gamma \in \Gamma_0\}$. If X is $\tau_1\tau_2$ -compact relative to (X, τ_1, τ_2) , then (X, τ_1, τ_2) is said to be $\tau_1\tau_2$ -compact [27].

Theorem 9. If $f:(X,\tau_1,\tau_2) \to (Y,\sigma_1,\sigma_2)$ is strongly $\theta(\tau_1,\tau_2)$ -continuous and K is quasi (τ_1,τ_2) - \mathscr{H} -closed relative to (X,τ_1,τ_2) , then f(K) is $\sigma_1\sigma_2$ -compact relative to (Y,σ_1,σ_2) .

Proof. Let K be quasi (τ_1, τ_2) - \mathscr{H} -closed relative to (X, τ_1, τ_2) . Let $\{V_\gamma \mid \gamma \in \Gamma\}$ be any cover of f(K) by $\sigma_1\sigma_2$ -open sets of Y. For each $x \in K$, there exists $\gamma(x) \in \Gamma$ such that $f(x) \in V_{\gamma(x)}$. Since f is strongly $\theta(\tau_1, \tau_2)$ -continuous, there exists a $\tau_1\tau_2$ -open set U(x) of X containing x such that $f(\tau_1\tau_2\text{-Cl}(U(x))) \subseteq \sigma_1\sigma_2\text{-Cl}(V_{\gamma(x)})$. The family $\{U(x) \mid x \in K\}$ is a cover of K by $\tau_1\tau_2$ -open sets of X. Since K is quasi (τ_1, τ_2) - \mathscr{H} -closed relative to (X, τ_1, τ_2) , there exists a finite number of points, say, $x_1, x_2, x_3, ..., x_n$ in K such that $K \subseteq \bigcup \{\tau_1\tau_2\text{-Cl}(U(x_k)) \mid x_k \in K; 1 \le k \le n\}$. Thus,

$$f(K) \subseteq \bigcup \{ f(\tau_1 \tau_2 \text{-Cl}(U(x_k))) \mid x_k \in K; 1 \le k \le n \}$$

$$\subseteq \bigcup \{ V_{\gamma(x_k)} \mid x_k \in K; 1 \le k \le n \}.$$

This shows that f(K) is $\sigma_1 \sigma_2$ -compact relative to (Y, σ_1, σ_2) .

Acknowledgements

This research project was financially supported by Mahasarakham University.

References

- [1] S. Fomin. Extensions of topological spaces. *Doklady Akademii Nauk SSSR*, 32:114–116, 1941.
- [2] T. Noiri. Properties of θ-continuous functions. Atti della Accademia Nazionale dei Lincei, Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti, Series (8), 58:887–891, 1975.
- [3] V. Popa. Characterizations of θ -continuous functions. Studii și Cercetări Științifice. Seria Matematică, 32:113–119, 1980.
- [4] S. P. Arya and M. P. Bhamini. Some weaker forms of semi-continuous functions. *Ganita*, 33:124–134, 1982.
- [5] S. Jafari and T. Noiri. Properties of θ -semi-continuous functions. Journal of Institute of Mathematics and Computer Sciences, Mathematics Series, 13:123–128, 2000.
- [6] T. Noiri. On θ-precontinuous functions. International Journal of Mathematics and Mathematical Sciences, 28:285–292, 2001.
- [7] P. E. Long and L. L. Herrington. Strongly θ-continuous functions. Journal of the Korean Mathematical Society, 18:21–28, 1981.
- [8] S. Jafari and T. Noiri. Strongly θ -semi-continuous functions. *Indian Journal of Pure and Applied Mathematics*, 29:1195–1201, 1998.

- [9] T. Noiri. Strongly θ -precontinuous functions. Acta Mathematica Hungarica, 90(4):307–316, 2001.
- [10] T. Noiri and V. Popa. Strongly θ - β -continuous functions. Journal of Pure Mathematics, 19:31–39, 2002.
- [11] G. Di Maio and T. Noiri. Weak and strong forms of irresolute functions. Rendiconti del Circolo Matematico di Palermo (2), Supplemento, 18:255–273, 1988.
- [12] M. C. Pal and P. Bhattacharyya. Feeble and strong forms of preirresolute functions. Bulletin of the Malaysian Mathematical Sciences Society, 19:63–75, 1996.
- [13] T. Noiri. Weak and strong forms of β -irresolute functions. Acta Mathematica Hungarica, 99(4):315–328, 2003.
- [14] S. Jafari and T. Noiri. Strongly sober θ -continuous functions. Journal of Pure Mathematics, 16:9–17, 1999.
- [15] T. Noiri and V. Popa. A unified theory for strongly θ continuity for functions. *Acta Mathematica Hungarica*, 106(3):167–186, 2005.
- [16] M. Thongmoon and C. Boonpok. Strongly $\theta(\Lambda, p)$ -continuous functions. International Journal of Mathematics and Computer Science, 19(2):475–479, 2024.
- [17] J. Khampakdee and C. Boonpok. Almost strong $\theta(\Lambda, p)$ -continuity for functions. European Journal of Pure and Applied Mathematics, 17(1):300–309, 2024.
- [18] C. Boonpok and N. Srisarakham. (τ_1, τ_2) -continuity for functions. Asia Pacific Journal of Mathematics, 11:21, 2024.
- [19] C. Boonpok and P. Pue-on. Characterizations of almost (τ_1, τ_2) -continuous functions. International Journal of Analysis and Applications, 22:33, 2024.
- [20] C. Boonpok and C. Klanarong. On weakly (τ_1, τ_2) -continuous functions. European Journal of Pure and Applied Mathematics, 17(1):416–425, 2024.
- [21] J. Khampakdee, S. Sompong, and C. Boonpok. Almost weakly (τ_1, τ_2) -continuous functions. European Journal of Pure and Applied Mathematics, 18(1):5721, 2025.
- [22] N. Srisarakham, A. Sama-Ae, and C. Boonpok. Characterizations of faintly (τ_1, τ_2) -continuous functions. European Journal of Pure and Applied Mathematics, 17(4):2753-2762, 2024.
- [23] M. Chiangpradit, S. Sompong, and C. Boonpok. Weakly quasi (τ_1, τ_2) -continuous functions. *International Journal of Analysis and Applications*, 22:125, 2024.
- [24] B. Kong-ied, S. Sompong, and C. Boonpok. Almost quasi (τ_1, τ_2) -continuous functions. Asia Pacific Journal of Mathematics, 11:64, 2024.
- [25] C. Prachanpol, C. Boonpok, and C. Viriyapong. $\delta(\tau_1, \tau_2)$ -continuous functions. European Journal of Pure and Applied Mathematics, 17(4):3730–3742, 2024.
- [26] N. Srisarakham, S. Sompong, and C. Boonpok. Quasi $\theta(\tau_1, \tau_2)$ -continuous functions. European Journal of Pure and Applied Mathematics, 18(1):5722, 2025.
- [27] C. Boonpok, C. Viriyapong, and M. Thongmoon. On upper and lower (τ_1, τ_2) -precontinuous multifunctions. *Journal of Mathematics and Computer Science*, 18:282–293, 2018.
- [28] N. Viriyapong and C. Boonpok. $(\tau_1, \tau_2)\alpha$ -continuity for multifunctions. *Journal of Mathematics*, 2020:6285763, 2020.
- [29] C. Boonpok. $(\tau_1, \tau_2)\delta$ -semicontinuous multifunctions. Heliyon, 6:e05367, 2020.

- [30] N. Viriyapong, S. Sompong, and C. Boonpok. (τ_1, τ_2) -extremal disconnectedness in bitopological spaces. *International Journal of Mathematics and Computer Science*, 19(3):855–860, 2024.
- [31] P. Pue-on, S. Sompong, and C. Boonpok. Upper and lower faint (τ_1, τ_2) -continuity. International Journal of Analysis and Applications, 22:169, 2024.
- [32] M. Chiangpradit, S. Sompong, and C. Boonpok. On characterizations of (τ_1, τ_2) regular spaces. International Journal of Mathematics and Computer Science,
 19(4):1229–1334, 2024.
- [33] C. Klanarong, S. Sompong, and C. Boonpok. (τ_1, τ_2) -continuity and $(\tau_1, \tau_2)\theta$ -closed sets. International Journal of Mathematics and Computer Science, 19(4):1299–1304, 2024
- [34] M. Chiangpradit, S. Sompong, and C. Boonpok. $\Lambda_{(\tau_1,\tau_2)}$ -sets and related topological spaces. Asia Pacific Journal of Mathematics, 11:49, 2024.
- [35] N. Chutiman, S. Sompong, and C. Boonpok. On some separation axioms in bitopological spaces. *Asia Pacific Journal of Mathematics*, 11:41, 2024.
- [36] P. Pue-on, A. Sama-Ae, and C. Boonpok. Characterizations of quasi $\theta(\tau_1, \tau_2)$ continuous multifunctions. *International Journal of Analysis and Applications*, 23:59, 2025.
- [37] M. Thongmoon, S. Sompong, and C. Boonpok. $\theta(\tau_1, \tau_2)$ -continuity for functions. (submitted).
- [38] M. Thongmoon, S. Sompong, and C. Boonpok. Upper and lower weak (τ_1, τ_2) continuity. European Journal of Pure and Applied Mathematics, 17(3):1705–1716,
 2024.