Simultaneous Generalizations of Regularity and Normality

A. K. Das
School of Mathematics, Shri Mata Vaishno Devi University, Katra-182320, J&K, India

Abstract. A generalization of regularity called θ-regularity was earlier introduced to decompose normality and also utilised to factorize regularity. Every normal space need not be regular, but every normal space is θ-regular. In this paper three variants of θ-regular spaces is introduced and studied.

2000 Mathematics Subject Classifications: 54D10, 54D15

Key Words and Phrases: θ-open sets, θ-closed sets, almost normal space, (weakly) (functionally) θ-normal space, (weakly) θ-regular, point (weakly) θ-regular.

1. Introduction and Preliminaries

Many generalizations of regularity that exists in the mathematical literature fails to be a generalization of normality. But in order to obtain a decomposition of normality, the notion of θ-regularity was introduced in [6] which is a simultaneous generalization of regularity as well as normality. It is obvious from the definition that every regular space is θ-regular as in a regular space every closed set is θ-closed [14]. In general a normal space need not be regular, but in contrast every normal space is θ-regular [6]. Also it is observed in [5] that the notion of θ-regularity serves as a decomposition of regularity in terms of R_0 and R_1 spaces. In this paper we introduced three more variants of θ-regular spaces and studied their properties.

Let X be a topological space and let $A \subset X$. Throughout the present paper, the closure of a set A will be denoted by \overline{A} or clA and the interior by $intA$. A set $U \subset X$ is said to be regularly open if $U = int\overline{U}$. The complement of a regularly open set is called regularly closed. A point $x \in X$ is called a θ-limit point [14] of A if every closed neighbourhood of x intersects A. Let $cl_\theta A$ denotes the set of all θ-limit point of A. The set A is called θ-closed if $A = cl_\theta A$. The complement of a θ-closed set will be referred to as a θ-open set. The family of θ-open sets forms a topology on X. A space X is said to be almost regular [9] if every regularly closed set and a point not in it are contained in disjoint open sets. A space is called almost normal [10] if every pair of disjoint closed sets, one of which is regularly closed, are contained in disjoint open sets and a space X is said to be mildly normal [12] (or κ-normal [13]) if every pair of disjoint regularly closed sets are contained in disjoint open sets. A space X is said to be

Email addresses: ak.das@smvd. ac.in, akdasdu@yahoo.co.in

http://www.ejpam.com
nearly compact [11] if every open covering of \(X \) admits a finite subcollection the interiors of the closures of whose members cover \(X \).

Definition 1. A topological space \(X \) is said to be

(i) \(\theta \)-normal [6] if every pair of disjoint closed sets one of which is \(\theta \)-closed are contained in disjoint open sets;

(ii) weakly \(\theta \)-normal [6] if every pair of disjoint \(\theta \)-closed sets are contained in disjoint open sets;

(iii) functionally \(\theta \)-normal ([4, 6]) if for every pair of disjoint closed sets \(A \) and \(B \) one of which is \(\theta \)-closed there exists a continuous function \(f : X \to [0,1] \) such that \(f(A) = 0 \) and \(f(B) = 1 \);

(iv) weakly functionally \(\theta \)-normal (wf \(\theta \)-normal) ([4, 6]) if for every pair of disjoint \(\theta \)-closed sets \(A \) and \(B \) there exists a continuous function \(f : X \to [0,1] \) such that \(f(A) = 0 \) and \(f(B) = 1 \); and

(v) \(\Sigma \)-normal [7] if for each closed set \(F \) and each open set \(U \) containing \(F \), there exists a regular \(F_{\sigma} \) set \(V \) such that \(F \subset V \subset U \).

2. Variants of \(\theta \)-regular Spaces

Definition 2. A topological space \(X \) is said to be

(i) \(\theta \)-regular [6] if for each closed set \(F \) and each open set \(U \) containing \(F \), there exists a \(\theta \)-open set \(V \) such that \(F \subset V \subset U \).

(ii) weakly \(\theta \)-regular if for each \(\theta \)-closed set \(F \) and each open set \(U \) containing \(F \), there exists a \(\theta \)-open set \(V \) such that \(F \subset V \subset U \).

(iii) point \(\theta \)-regular if for each closed singleton \(\{x\} \) and each open set \(U \) containing \(x \), there exists a \(\theta \)-open set \(V \) such that \(x \in V \subset U \).

(iv) point weakly \(\theta \)-regular if for each \(\theta \)-closed singleton \(\{x\} \) and each open set \(U \) containing \(x \), there exists a \(\theta \)-open set \(V \) such that \(x \in V \subset U \).

The above notion of \(\theta \)-regularity is exclusively different from the concept of \(\theta \)-regularity introduced by Jankovic [3] which was utilized by Kovar [8] to study covering axioms including compactness and paracompactness. In [8], Kovar proved that Jankovic’s \(\theta \)-regularity coincides with the notion of point paracompactness introduced by Boyte [1]. From here onward the term “\(\theta \)-regularity” will always be meant in the sense of Definition 2.

The following implications are obvious, but none of them are reversible.
Example 1 (A point θ-regular space which is not θ-regular.) Let $X = \{a, b, c, d, e\}$ and $T = \{\{a, b, c\}, \{c, d, e\}, \{c\}, \varnothing, X\}$. Here X is vacuously point θ-regular, but not θ-regular as $\{a, b\} \subset \{a, b, c\}$ but there is no θ-open set containing $\{a, b\}$ and contained in $\{a, b, c\}$.

Example 2 (A point weakly θ-regular space which is not point θ-regular.) Co-finite topology is point weakly θ-regular but not point θ-regular.

Example 3 (A point weakly θ-regular space which is not point θ-regular.) Let $X = \{a, b, c\}$ and $T = \{\{a, b\}, \{b, c\}, \{b\}, \varnothing, X\}$. Here X is vacuously point weakly θ-regular, but not point θ-regular as $\{a\} \subset \{a, b\}$ but there is no θ-open set containing $\{a\}$ and contained in $\{a, b\}$.

Question 1. Does there exists a point weakly θ-regular space which is not weakly θ-regular?

It is obvious from the definitions that, a R_0-space is regular if and only if it is θ-regular and a T_1-space is T_3 if and only if it is point θ-regular. Similarly, a Hausdorff space is T_3 if and only if it is point weakly θ-regular.

Theorem 1. For a point θ-regular space, the following statements are equivalent.

(i) For every pair of distinct points x and y in X, there exist θ-open sets P and Q such that $x \in U, y \in V$ and $P \cap Q = \varnothing$.

(ii) X is θT_2.

(iii) X is Urysohn.

(iv) X is T_2.

(v) X is T_1.

Proof. Let x and y be two disjoint points in X. Since X is T_1, the closed set $\{x\}$ is contained in an open set $X - \{y\}$. Thus by point θ-regularity of X, there exists a θ-open set V such that $x \in V \subset X - \{y\}$. Since V is θ-open there exists a open set U such that $x \in U \subset \overline{U} \subset V \subset X - \{y\}$. i.e., $x \in U$ and $y \in X - \overline{U}$. Again by point θ-regularity, there exist θ-open sets P and Q such that $x \in P$, $y \in Q$ and $P \cap Q = \varnothing$.

Theorem 2. For a T_1 space, the following statements are equivalent.

(i) X is T_3.
(ii) X is regular.
(iii) X is θ-regular.
(iv) X is point θ-regular.

Proof. Let X be a T_1 point θ-regular space. Let $x \notin A$, where A is a closed set in X. Since X is a T_1 space, the singleton $\{x\}$ is closed and contained in $X - A$. By Point θ-regularity of X, there exists a θ-open set V such that $x \in V \subset X - A$. Since V is θ-open there exists an open set U such that $x \in U \subset \overline{U} \subset V \subset X - A$. Therefore X is regular and thus T_3.

Theorem 3. Every T_1 point θ-regular space is Hausdorff.

Proof. Let X be a T_1 point θ-regular space and let x, y be two distinct points in X. Since X is T_1, $\{x\}$ is a closed singleton contained in the open set $X - \{y\}$. By point θ-regularity of X, there exists a θ-open set U such that $x \in U \subset X - \{y\}$. Thus there exists an open set V such that $x \in V \subset \overline{V} \subset U \subset X - \{y\}$. So V and $X - \overline{V}$ are two disjoint open sets containing x and y respectively.

Theorem 4. For a T_2 space, the following statements are equivalent.

(i) X is T_3.
(ii) X is regular.
(iii) X is θ-regular.
(iv) X is weakly θ-regular.
(v) X is point θ-regular.
(vi) X is point weakly θ-regular.

Proof. Obvious.

Theorem 5. Every functionally θ-normal space is weakly θ-regular.

Proof. Let A be a θ-closed set contained in an open set U. Let $B = X - U$. Then A and B are disjoint closed sets in X. By functional θ-normality of X, there exists a continuous function $f : X \to [0, 1]$ such that $f(A) = 0$ and $f(B) = 1$. Let $V = f^{-1}[0, 1/2)$. Then $A \subset V \subset U$. We claim that V is a θ-open set. Let $x \in V$. Then $f(x) \in [0, 1/2)$. So there is a closed neighbourhood N of $f(x)$ contained in $[0, 1/2) \subset [0, 1]$. Let $U_x = int f^{-1}(N)$. Then $x \in U_x \subset \overline{U_x} \subset f^{-1}(N) \subset V$. Hence V is θ-open. Therefore X is θ-regular.
Remark 1. Functionally θ-normal spaces need not be θ-regular. i.e.; Let $X = \{a, b, c\}$, $\tau = \{\{a, b\}, \{b\}, \{b, c\}, \phi, X\}$ is a functionally θ-normal space which is not θ-regular.

Theorem 6. Every nearly compact weakly θ-regular space is θ-normal.

Proof. Let A and B be two disjoint closed sets of X where A is θ-closed. Then $A \subset X - B$. Thus by θ-regularity of X there exist an θ-open set V such that $A \subset V \subset X - B$. Since τ is θ-open, for every $x \in A$ there exist an open set U_x such that $x \in U_x \subset \overline{U_x} \subset V \subset X - B$. Then $\mathcal{U} = \{U_x : x \in A\}$ is an open cover of A. Since A is θ-closed, by [2, Proposition 2.1], A is N-closed relative to X. Hence \mathcal{U} has finite subcollection such that $A \subset \bigcup_{i=1}^{n} \text{int} \overline{U_{x_i}}$. Thus $B \subset \bigcap_{i=1}^{n} (X - \overline{U_{x_i}})$. therefore X is θ-normal.

Corollary 1. Every nearly compact θ-regular space is normal.

Proof. The above result is obvious, since every θ-regular θ-normal space is normal.

Remark 2. The following example shows that the hypothesis of θ-regularity in the above Corollary cannot be weakened to “weak θ-regularity” as nearly compact weakly θ-regular spaces need not be almost normal. e.g.; The set $X = \{a, b, c, d\}$ with topology $\tau = \{\{a, b\}, \{b\}, \{b, c\}, \{c\}, \{b, c, d\}, \{a, b, c\}, X, \emptyset\}$ is compact and weakly θ-regular but not almost normal as the regularly closed set $\{c, d\}$ and closed set $\{a\}$ cannot be separated by disjoint open sets.

It is well known that every compact Hausdorff space is normal. However, in the absence of Hausdorffness or regularity a compact space may fail to be normal. Thus it is useful to know which topological property weaker than Hausdorffness with compactness implies normality. The property of being a T_1-space fails to do the job since the cofinite topology on an infinite set is a compact T_1 space which is not normal. However, it is well known that Every compact R_1-space is normal.

The following result of [6] is an improvement of well known results such as every compact Hausdorff space is normal and every compact (or Lindelöf) regular space is normal.

Theorem 7. Every paracompact θ-regular space is normal.

Theorem 8. Every Lindelöf θ-regular space is normal.

Remark 3. The condition of θ-regularity in the above theorem cannot be weakened as the example cited in Remark 2 is a paracompact weakly θ-regular space which fails to be almost normal.

Although every compact θ-regular space is normal, but it is in the absence of T_1 property, as every T_1 θ-regular space is regular. Thus it is very natural to ask the following Question.

Question 2. Which non-regular, non-Hausdorff, T_1-compact spaces are normal?
Let us recall that a space X is seminormal if for every closed set F contained in an open set U there exists a regularly open set V such that $F \subset V \subset U$. A space is said to be θ-seminormal [15] if for every θ-closed set F contained in an open set U there exists a regularly open set V such that $F \subset V \subset U$.

Example 4. A seminormal space which is not θ-regular. Let X be the set of positive integers. Define a topology on X by taking every odd integer to be open and a set $U \subset X$ is open if for every even integer $p \in U$, the predecessor and the successor of p are also in U. Since every open set is regularly open in this topology, the space is seminormal but the space is not θ-regular.

Theorem 9. Every almost regular seminormal space is θ-regular.

Proof. Let F be a closed set contained in an open set U. Since X is seminormal there exists a regularly open set V such that $F \subset V \subset U$. Since in an almost regular space every regularly open set is θ-open, the space is θ-regular.

Corollary 2. An almost regular space is normal if and only if it is seminormal and weakly θ-normal.

Proof. Proof is obvious, since every θ-regular weakly θ-normal space is normal.

Theorem 10. Every almost regular θ-seminormal space is weakly θ-regular.

3. Subspaces

Lemma 1. If $Y \subset X$ and A is any θ-open set in X then $A \cap Y$ is θ-open in Y.

Theorem 11. If Y is a closed subspace of X and X is θ-regular then Y is θ-regular.

Proof. Let X be a θ-regular space and $Y \subset X$. Let F be a closed set in Y which is contained in an open set U of Y. Since F is closed in Y and Y is a closed subspace of X, F is closed in X. Since U is open in Y, there exists an open set V in X such that $U = V \cap Y$. Thus $F \subset V$. By θ-regularity of X, there exists a θ-open set W in X such that $F \subset W \subset V$, i.e.,

$$F \cap Y \subset W \cap Y \subset V \cap Y \Rightarrow F \subset W \cap Y \subset U.$$

By the previous lemma $W \cap Y$ is θ-open in Y. Hence Y is θ-regular.

Theorem 12. If Y is a closed subspace of X and X is point θ-regular, then Y is point θ-regular.

Lemma 2. If Y is θ-open in X and A is θ-open in Y, then A is θ-open in X.

Lemma 3. If Y is θ-open in X and A is θ-closed in Y then A is θ-closed in X.

Proof. Let Y be a θ-open set in X and let A be θ-closed in Y. Then $(Y - A)$ is θ-open in Y. Thus by previous lemma $(Y - A)$ is θ-open in X. Therefore $X - (Y - A)$ is θ-closed in X. Hence A is θ-closed in X.

Theorem 13. If Y is a θ-open subspace of X and X is weakly θ-regular, then Y is weakly θ-regular.

Proof. Let Y be a θ-open subspace of X and X is weakly θ-regular. Let F be a θ-closed set in Y and contained in an open set U of Y. Since Y is θ-open in X, F is θ-closed in X. Since U is open in Y, there exists an open set V in X such that $U = V \cap Y$. So $F \subseteq V$. By weak θ-regularity of X, there exists a θ-open set W in X such that $F \subseteq W \subseteq V$. Thus $F \subseteq W \cap Y \subseteq V$, where $W \cap Y$ is θ-open in Y. Hence Y is weakly θ-regular.

Theorem 14. If Y is a θ-open subspace of X and X is point weakly θ-regular, then Y is point weakly θ-regular.

References

