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On New Subclasses of Analytic Functions Involving
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Abstract. We define a generalized differential and integral operators on the class ./ of analytic func-
tions f(z) =z + Zzozz a,z" in the unit disk U := {z € C : |z| < 1} involving k—th Hadamard product
(convolution) as follows

Dﬁ’xf(z) =z —l—i[(n - DA—-a)+ n]kanz”, (z€l).
n=2

These operators are generalized for some of well known operators for example Salagean operator.
New classes containing these operators are investigated. Characterization and other properties of

these classes are studied.
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1. Introduction and Preliminaries

Let 2# be the class of functions analytic in U := {z € C : |z| < 1} and 5#[a,n] be the
subclass of 7 consisting of functions of the form f(z) = a + a,2" +a,; 12" +.... Let .o/ be
the subclass of s# consisting of functions of the form

fx)=2+ Zanz”, (z eU). ¢))
n=2

Given two functions f,g € ., f(z) =2+ Z;’ozz a,z"and g(z) =z+ Z;’ozz b,z" their convolu-
tion or Hadamard product f(z) * g(2) is defined by

f@)xglz)=z+ Z a,b,z", (z €U).

n=2
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And for several functions f;(2),..., fn(2) € &

@) *...xf(z2) =2+ Z(aln...amn)z”, (z € U).
n=2

Our aim is to use the Hadamard product of k—th order to define generalized differential and
integral operators.

For a function f in .of of the form (1) first, we define the following generalized differential
operator:

D°f(2) = f(2)

j— n
=z+ E a,z ,

n=2
D}, f(@)=(a—A)f @)+ (A —a+1)zf'(2)

=z+ Z[(n —1)(A—a)+nla,z",
n=2

Dk, f(z)=D}, (DEf())
o0 (2)
=z+ Z[(n —1)(A —a)+n]ka,z"
n=2
fora > 0,A > 0 and k € Ny = NU {0} with D'{;lf(O) = 0. Note that when a = A we get
Salagean’s differential operator [see 11].
Let . (u) be the subclass of the class .« consisting of functions f(z) which satisfy the
inequality
zf'(2)
f(2)
for some u(u > 1). And let A'(u) be the subclass of the class .«/ consisting of functions f (z)
which satisfy the inequality

| f<uw, (z€U)

zf"(2)
f'(=)
for some u(u > 1). Then f € A (u) if and only if zf’ € .#(u). In this paper we define and

study the following subclasses involving the generalized differential operator (2). Let .# 5 5 (u)
be the subclass of the class ./ consisting of functions f (z) which satisfy the inequality

2[D, F@)]’
g‘ - e
Dk ,f(2)

| f<w, (z€U)

f<uw, (z€U)
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for some u(u > 1). And let A kl(,u) be the subclass of the class .«/ consisting of functions f (z)
which satisfy the inequality

2[DX, £ ()]
IDE,f @7
for some u(u > 1). Then f € JVak;L(H) ifand only if zf’ € //lé‘l(,u)(,u).
Remark 1. When k = 0, then the classes

My (W)= (W) and A, (1) = A (1)

f<w, (z€U)

were introduced by
(i) Forl<u=< %, k =0, Uralegaddi et al. [13, 12].
(ii) For u > 1,k =0, Owa and Srivastava [9] and Owa and Nishiwaki [10].
(iii) For u>1, a =1 Bulut [2].

2. Coefficient estimates.

In this section we derive sufficient conditions for f(z) to belongs to the classes .# O’f 5 (u)
and </Vak ,(u), which are obtained by using coefficient inequalities.

Theorem 1. If f(z) € .o/ satisfies the inequality
Il = DA = o)+ nl H{(n = k) + |+ x = 20 Ha,| < 2(u - 1) 3)
n=2

forsome 0 <k <1and u > 1, then f € /ﬂil(“)'

Proof. Assume that the inequality (3) holds. It suffices to show that

2[Dk, ()]’
DEfG)
- Z <1, (zel).
AN o
DF f@) H
We observe
2D, F@)
DE,f(2) K ’ B ’ 1—x+ Ziozz(n — ) [(n—1D(A—a)+n]ka,z""
k / - 00 k _
Z[]’jg,x)):((;)] (- x) 1+k—2u+, " ,(n+x—2u)[(n—1)(A—a)+nlka,z""!
a,A

< 1—x+ 30, (n=®)|[(n = 1)(A — a) +n]|la,|lz]""

T 2p—1-x =20 (n+x = 2wl[(n = 1)(A — a) +n]¥|ay||z]" !

- 1—x+ 20, (n=)|[(n =D~ a)+nl"la,|
2u—1—x—32 [(n+x = 2w)l[(n - 1)(A — @) +nlk|la,|’
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The last expression is bounded above by 1 if

62

1—x+ > (=)l [(n=D)A—a)+n]¥la,| < 2u—1—-x—  [(n+x—2)l| [(n=1)(A—)+n]"a,

n=2 n=2
which is equivalent to assertion (3), hence the proof.

When k = 0, the next result can found in [10].
Corollary 1. If f(2) € . satisfies the inequality
o0
Y=+ In+x —2ulfla,l < 2(u-1)
n=2
forsome 0 <k <1landu>1,then f € J/ZSA(M) =M ().
When x = 1, we obtain the next result

Corollary 2. If f(z) € .« satisfies the inequality
(o)
D = wlltn- 1A= a)+nl¥lla,| <p-1
n=2

forl<u< %, then f € //l;‘,l(u).
When k = 0,k = 1 the next result can found in [10].

Corollary 3. If f(z) € .« satisfies the inequality
o0
D n—wla,l <p-1
n=2

forl<u< %, then f € .4 (u).
Theorem 2. If f(2) € .« satisfies the inequality

> nll(n - 1)(7L—a)+n]k|{n—K+1+|n+K—2u|}|an| <2(u—1)

n=2
forsome 0 <k <1and u > 1, then f € ‘/Va]fx(“)'
When k = 0, the next result can be found in [10].
Corollary 4. If f(z) € .« satisfies the inequality
00
Zn{n—x+1+ |n+1<—2u|}|an| <2(u—1)
n=2

forsome 0 <k <1landu>1,then f € JVOSA(‘U,) =N (u).

(4)

(5)

(6)

(7)

8)
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3. Integral operator.

Analogous to the generalized differential operator (2), we define and study a new integral
operator [ S 5 ¢ @ — o as follows. Let

. (A—a)z_(?t—a)z Z
@) = T 1o Ta—ae

and

F(z2)=¢(2)*...% ()
—_—

k—times

=z +Z[(n —1)(A—a)+n]kz"
n=2

Now we define the integral operator I 5 , such that

1%, =[F@] ' *f(z), (z€U)
where f € . and

Fz)# [F(z)] ! = 12: =2+ 2" (zel).
n=2

Implies
s 1
-1 _ n
[F(2)] —z+n222 s 1)(7L—a)+n]kz , (z€el)
thus we have -
k _ an n
faaf ()2 +an2 -DA-wrar > U ®

Remark 2. Note that when a = A, the integral operator (9) reduces to the integral operator
v a
lhof @) =2+ 12", (z€),
n=2

which defined and studied by Sdldgean [see 11].
Lemma 1. Let f € .«¢. Then

@ Iy, f(2)=f(2),

(i) I} f(z)= [ Wadr.

Proof.
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®
o0
19 ,f@) =2+ a,5" = f(2),
n=2
(ii)
z z 00
t
jydt = f [1+ Zantn_l]dt
0 n=2

0
o0
an
=z+ ) —3"
2
n=2
= I;’af(z).

Define the subclasses involving the generalized integral operator (9). Let yakﬁ ,(u) be the
subclass of the class .o/ consisting of functions f (z) which satisfy the inequality

ﬂ%ﬁ@ﬂ}< -
W f&V,
RO

for some u(u > 1). It is clear that
S (W) = A ().

And let & (f P , (1) be the subclass of the class .o/ consisting of functions f (z) which satisfy the
inequality

U@L
ROl
for some u(u > 1). Then f € J{éfl(u) ifand only if zf’ € 9{1’}(“)(“). Also we have

H gy (W) = N ().

In the same manner of Theorem 1 and Theorem 2, we have the following results.

<u, (z€U)

Theorem 3. If f(2) € .« satisfies the inequality

00 {(n—K)+|n+K—2,u|}
[(n—1)(A - a)+n]k|

| lapl <2(u—1) (10)
n=2

forsome 0 <k <1and u>1,then f € S”a’fl(u).
Theorem 4. If f(2) € .« satisfies the inequality

00 n{n—K+1+|n+K—2,u|}
[[(n = 1A - a) +n]¥|

la,l <2(u—1) (11D
n=2

forsome 0 <x <land u>1,then f € %(f,x(“)'
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4. Conclusion.

This work is a generalization for well known differential and integral operators of univa-
lent functions. Moreover, the classes which are studied here also generalized the ones studied
by different authors

MY (W)= S (W)= (W)
and
N (W) = AL, () = A (W)

In fact, many other operators can be seen in [1,3-8,14] for different problems.
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