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Argument Estimates of Certain Meromorphically p-Valent
Functions Defined by a Linear Operator
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Abstract. Making use of the linear operator D’"p, we obtain some argument properties of meromor-
phically p—valent functions. Also, we derive the integral preserving properties in a sector.
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1. Introduction
For any integer n > —p, let &, , denote the class of all meromorphic functions of the form:

fF@=z7+Y aqz* (peN={12,..}), (1)

k=n
which are analytic and p—valent in the punctured unit disk
U'={z:2€C,0<|z| <1} =U\{0}.

Let f, g be analytic functions in U. Then we say that f is subordinate to g, written f < g if
there exists an analytic function w(z) in U such that |w(z)| <1 (z € U) and f(z) = g(w(z)).
For this subordination, the symbol f(z) < g(z) is used. In the case g(z) is univalent in U,
the subordination f(z) < g(z) is equivalent to g(0) = f(0) and f(U) < g(U). For functions
f(z) €%, , given by (1) and g(z) € %, , given by

HOELREDIIE )
k=n
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we define the Hadamard product (or convolution) of f and g as
(f x)@) =277+ ) axbz* = (g + £ )(z), (3)
k=n

Following the recent works of Aouf and Hossen [4], Liu and Srivastava [7] and Srivastava
and Patel [11], for a function f(z) € &, ,, given by (1), we now define a linear operator D:{lp
(A>0,peN,meN,=NU{0}) by

DY f()=f(2)
1 A +1 /
D} pf @) =Dj,pf(z) = (1= D)f (2) (=" f (=)

o0
=z P4 Z[l + Ak +p)]akzk,
k=n

D2 f(z)=D; ,(D;,f (2)) =2"P + Y [1+ Alk + p))2a;z*
k=n

and (in general)

DI f(z)=D;,(DR f (@) =277+ Y [1+A(k+p)]"az", A=0. 4
k=n

Also, we can write D;”p f () as follows

DI f(2) = (Z—P + > [1+ Ak +p)]mzk) (2)

k=n
=(f * $3)(=), )
where
o
¢ () =27+ > [1+ Ak + p)]™z".
k=n
It is easily verified from (4) that

Az(D}, f(2)) = D3 f(2) — (14 Ap)DY.f (), A>0. (6)

The operator D}' , Was introduced by Aouf [3].

For a function f(z) € X, , and v > 0, the integral operator F, ,(f)(z) : &, , = &, , is
defined by

b4
v

Fup(E) == f (L (0)dt

0
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d v
—g P S k
4 +;(U+p+k)ak2
= (z‘p—l-z (ﬁ) zk) xf(z) v>0;z€U". (7)

k=n

It follows from (7) that

2(DJF, p(F)@) =D} f (2) = (v + Ap)D, Fy o (F)(@). ®

The operator F,, ,(f )(z) was investigated by many authors (see for example [1, 12, 13]).
Let Z; 2[4, m, A, B] be the class of functions f(z) € %, ,, defined by

z2(DF f(2)) 144z

<p ,

D)’{I’pf(z) 1+ Bz
—1<B<A<1; A>0;peN;n>-p;meNyzeU*}.

Z};’n[k, m,A,B] = {f(z) €Y, — ©

We note that

(i) For m = 0, we have Z: 24,01, 1] = Z; .» the well-known class of meromorphically
p—valent starlike functions;

(i) Form=0,A=1- ZPTQ’ 0 <a < pand B = -1, we have ZZ,H[A, 0;1,-1]= Z;,n[a], the
well-known class of meromorphically p—valent starlike functions of order a (see [2]);

(iii) For A =1 and n = 0, the class Z; .L1,m;A, B] reduces to the class
dDNfE)) 144z
= )
D;”f(z) p1+Bz
—1<B<A<1l;peN;n>-p;meNyze€U}.

Z;n[m,A,B] = {f(z) SDIE

where the operator D? was introduced by Aouf and Hossen [4].

From (9) and by using the result of Silverman and Silvia [10], we observe that a function
f(2) is in the class ZZ,H[A, m,A,B] (-1 <B<A<1;A>0;peN;meN,) if and only if

(D} f(=))  p(1—AB)
Dy f(2) 1— B2

p(A—B)
1—-B2

eU* (10)

The object of the present paper is to give some argument properties of meromorphically
functions belonging to %, , and the integral preserving properties in connection with the
operator D?p defined by (4).
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2. Main Results

Unless otherwise mentioned, we shall assume in the reminder of this paper that A > 0,
n>—p,p € Nand m € N,.
In order to prove our main results, we need the following lemmas.

Lemma 1. [5] Let h(z) be convex (univalent) in U with h(0) = 1 and R{Bh(z) + v} > 0
(B,y € C). If q(2) is analytic in U with q(0) = 1, then

2q'(2)

9@+ Bq(z)+vy A

h(z),

implies q(z) < h(2).

Lemma 2. [8] Let h(z) be convex (univalent) in U and (z) be analytic in in U with
R{Y(2)} = 0. If q(2) is analytic in U and q(0) = h(0), then

q(z) +(2)2q'(z) < h(z),
implies q(z) < h(2).

Lemma 3. [9] Let q(2) be analytic in U, with q(0) = 1 and q(2) # 0, (z € U). Suppose that
there exists a point zy € U, such that

T
largq(z)] < Zafor 2] < |20 11
and .
largq(zg)| < 7% O<ac<l. (12)
Then, we have
209 (2
204 (%) _ ika, (13)
q(2o)
where
1 1 T
k >—(a+ —) when argq(zy) = - a, 14
2 a 2
1 1 T
k>—- —(a+ —)whenargq(zy) =— —a, (15)
2 a 2
and X
q(zg)e = xia, a>0. (16)

At first, with the help of Lemma 1, we obtain the following result:
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Theorem 1. Let h be convex univalent in U with h(0) = 1 and R{h} be bounded in U. If
f(z) € &, , satisfies the condition:

Z(Dme (2))
m+1f( ) %h(z)
then
Z(D Lf (@) <)
or fE)
for max Rh(z) < (H)Lp) (provided Dm f(z) #£0,z€U").
Proof. Let
)= — z(D} f(2))
N N

By using (6), we have

17
Ap kaTpf (2) 17)

14+ Ap Dm+1f(z)
q(z) — ( ) =

Using logarithmic differentiation in both sides of (17) with respect to z and multiplying
by 2, we get

L + (Z) [ m+1f( ) h(Z)
—pq(z) + =22 1+’1p 1 x,pf( z)

From Lemma 1, it follows that q(z) < h(z) for & {—h(z) + %} > 0, z € U*, which means

WO
Dy f ()

< h(2)

1+7Lp
for max Rh(z) < g O

Using Lemmas 1 and 2 and Theorem 1, we now derive:

Theorem 2. Let f(z) €%, ,, A > p(ﬁBB), where —1 <B <A<1.If
(Dm+1f(2))/ 7
arg | — —22 ~ 7 <I5 o0<y<pio<s<i
g VD E @) -7 <3 y<p

for some g(z) € Z;n[k, m+ 1;A, B] then

(DS
YT e T

TT
<E(X, O<a<l
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is the solution of the equation

5 N 2t ) asin 7[1 — t(A, B)] a8)
=a+ —tan
T CDEAED) 1 gcos Z[1 - t(A, B)]
when ) p(A—B)
I | p\Aa—
s = s (o 2= i) )
Proof. Let
@) 1 2(D} f(2))
z)= — -7 .
k p—vy pD} g(2) '
Using the identity (6), we have
(p —1)2q'(2)D7 ,8(2) + (p — 1)a(2)2(DF , f (2)) +v2(DF ,8(2))
1+ A 1
= 23D}, £ (2)) — 33Dy F ()’ (20)
Simplifying (20), we obtain
2q'(2) 1 Z(DKI;lf(Z))/
() + =— : +7 |, 21
1 —r@)+ 2 poy ( Dy g(z) '
where 0 @)
z(DT g(z))
r(e) = - —pt—
D3 ,8(2)

Since g(z) € Z};‘;’n[k, m,A, B], from Theorem 1, we have

@ 1+Az
=<
TP By
using (10), we have
1+A 7
—r(z)+ d =pe2?
A
where
(1+B)—Ap(A—B) P (1-B)+ Ap(A—B)
2(1+B) p A(1+B)

and —t(A,B) < ¢ < t(A, B), where t(A, B) is given by (19).
Let h be a function which maps U onto the angular domain {w : |argw| < §5 } with

h(0) = 1. Applying Lemma 2 for this h with y(z) = ++7&p we see that R{q(z)} > 0 in
—rE)+——

U and hence q(z) # 0 in U. If there exists a point z, € U such that the conditions (11) and
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(12) are satisfied, then by using Lemma 3, we have (13) under the restrictions (14), (15) and
(16).
1
At first, suppose that q(z,) = ia(a > 0). Then we obtain

1 (A0 e
ar -
ol By Dy g(z) ’

_ 209’ (20)
=arg (q(zo) + ——r(zo) N ﬂ)

A
T . iZe) !
25a+arg 1+ika (pe 2 )
o ) aksin%[l —¢]
=—a+tan" .
2 p +akcosZ[1—¢]
T ) asing[l — t(A,B)]
Z—a+tan”
=9 (1-B)+Ap(A—B) Trq
B + acos 3 [1-1t(A,B)]
T
- =5,
2

where 6 and t(A, B) are given by (18) and (19), respectively. This is a contradiction to the

assumption of our theorem.
1

Next, suppose that q(zy)a = —ia(a > 0). Applying the same method as the above, we
have
1 ZO(DT’;lf(Zo))/
arg | - e +v
P—r \ D7, &)
e asing[l—t(A,B)]
=T e tan”! (=B)+p(A=B) | (1 - (A.B)]
p) Tacosy ,
i
=——5,
2

where 6 and t(A; B) are given by (18) and (19), respectively, which contradicts the assump-
tion. Therefore we complete the proof of our theorem. O

TakingA=1, B=0and 6 =1 in Theorem 2, we have the following corollary.
Corollary 1. Let f(z) € Xy . If
m+1 /
i {z(% @)

D" e(z)

}>Y 0<y<p
P
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for some g(z) e % o satisfying the condition

2(D)Hg(2))
Dm+1g(2) p <p
then
L [FORIE Y
—Dﬁpg(z) Y =y <p.

Taking A= 1, B=0 and g(z) = = in Theorem 2, we have the following corollary.

Corollary 2. Let f(z) € Xy, If

arg (— 21 (D] (=) - )‘<g5, 0<y<p;0<5<1

then

arg (— ZPH(DY f(z)) —y)’ —a, 0<a<l.
Taking m = 0 and & =1 in Corollary 2, we have the following corollary.

Corollary 3. Let f(z) € Zp ,, If
—% {22 [Azf"(2)+ (1 + A+ Ap)f ()]} >7, O0<y<p,

then

R {zp+1f'(z)} > 7.

Remark 1. Taking A = p = 1 in Corollary 3, we obtain the result obtained by Lashin [6,
Corollary 2.5 withp = 1]

By the same technique as in the proof of Theorem 2, we obtain
Theorem 3. Let f(z) € &, ,. Choose A such that L > 248 pere —1<B <A <1I

2= 1+B
{Z(Dm“f(Z)) }
argy —————+7

<
Dm+1g( )

N A

6, y>p;0<d<l1

for some g(2) € Zz’n [A,m+ 1;A,B], then

{z(D;“,pf(z))’ }
arg m—+Y

<
D7 ,&(2)

a, O0<a<l

N

is the solution of the equation (18).
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Theorem 4. Let h be convex univalent in U with h(0) = 1 and Rh be bounded in U. Let
F, ,(f)(2) be the integral operator defined by (7). If f(z) € &, ,, satisfies the condition

_HOLI@Y
Py fG)
fher (DT F, ()Y
2(D3 ,Fyp Z
- h
D] Ry
for max Rh(z) < U’# (provided D;ﬁpFU’p(f)(z) #0in U").
Proof. Let
()= 2(D} Fy p(f)(2))
T T oDy Fy(G)
Then, by using (8), we have
@t p) = vt B @2
P T T D (D)

Taking logarithmic derivatives in both sides of (22) with respect to z and multiplying by
z, we get

2q'(2) Z(D?fpf(z))/
=— : h(z).
Bt @+ e
Therefore, by using Lemma 1, we have
A0y Fup (DY
pD} F, ,()(z)

for max Rh(z) < UP# (provided D} F, ,(f)(z) # 0 in U*). This completes the proof of
ze 2
Theorem 4. O

Theorem 5. Let f(z) € &
—1<B<AZ1.If

2(D}, f ()’
i BT

»n and choose a positive number v such that v = p%, where

<

N3

6, 0Zy<p;0<d6<1,

for some g(z) € 7 [A,m;A,B] then

p,
(D], Fup ()
YT DG, (NGE)

TT
<§a, O<a<l
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where F,, ,(f )(2) is the integral operator given by (7),

Z

U p—
Gup(HE) = =5 J P lg(n)de v > 0; (23)
0
is the solution of the equation
5 2 . asin 7[1 —t(A, B, v)]
=a+ —tan” , 24)
n PIABIPAD) 4 s cos 21— t(A, B, v)]
when ) (A—B)
- plA—
t(A,B,v)= —sin 1 . 25
=i (i ) @)
Proof. Let

1 (2D} Fy ,(f)(z))
q(z)=— . .

+r
p—r \ pD},G,,(g)(z)

Since g(z) € Z;n[k, m,A, B], from Theorem 4, G,, ,(g)(2) € ZZ’H[A, m,A,B]. Using the iden-
tity (8), we have

(p - Y)q(Z)DT,pGU,p(g)(Z) - (U +p)DT,va,p(f)(z) = —’UD?&pf(Z) - YD)GCGv,p(g)(z)-

Then, by a simple calculation, we have

(b — e ) + 9@ + -+ P13+ y1r(E) 4 v+ p] =~ O
—r)izq'(z 2)[—-r(z)+v —r(z)+v =—Vv—
p—r)hzq q p Y p D?ﬁva,p(g)(z)
where ,
2(D} F, p(F)(2)
r(z)=—
D} G.p(2)(z)
Hence, we have
2q'(2) 1 Z(DTpf(Z))/
(z)+ =- - +v|. (26)
T S +v+p - oy \ DRk

The remaining part of the proof is similar to that of Theorem 2 and so, we omit it. O

Taking m = 0 in Theorem 5, we obtain the result obtained by Lashin [6, Corollary 2.3].
Takingm=0,A=1,B=0and 6 =1 in Theorem 5, we obtain the following result.
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Corollary 4. Let v>0and f(z) €Xp . If
z2f'(z
Ly [@
14€9)

for some g(z) € &, , satisfying the condition

}>Y 0<y<p

28'(2)
g(z) TP ' =P

then

Gy p(8)(z)

where F,, ,(f)(2) and G, ,(g)(z) are given by (7) and (23), respectively.

{zF;,p(f)(Z) }
>y 0<y<p.

Takingm=0B — Aand g(z) = le in Theorem 5, we have the following corollary.

Corollary 5. Let v>0and f(z) €Xp . If
i
|arg(—zP*1f'(z) — y)| < 20, 0Sy<p0<5<l,

then .
Iarg(—zp“F{,,p(f)(Z) -l< 7%

where F,, ,(f)(z) is given by (7) and 0 < a < 1 is the solution of the equation

co (5)
6 =a+ —tan .
T v+p

By using the same argument used in proving Theorem 5, we have

> 1+A

Theorem 6. Let f(z) € %, , and choose a positive number v such that v > 5B

—-1<B<AZ1lIf
=07, FE)
I e

— p, where

<

N3

6, y>p;0<o6<1,

for some g(2) € Z;)n [A,m;A,B] then

2DF Fuop (DG
TEUTDL G

i
<—-a,
2

O0<a<l

where F,, ,(f)(z) and G,, ,(g)(z) are given (7) and (23), respectively, and a(0 < a < 1) is the
solution of the equation (24).
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Finally, we derive
Theorem 7. Let f(z) € %, , and choose A such that 1>PAB) e —1<B<A<1. If

= 1+B’
2D} f(2)Y
e e R

T
<55, 0<y<p;0<o6<1,

for some g(z) € Zz,n[l, m;A, B] then

2D F, (=) .
DG, (0@

2 >

where F,, ,(f)(z) and G, ,(g)(2) are given (7) and (23), respectively with v = %

Proof. From (6) and (8), with v = =, we have D;’fp flz)= DT;lFU’p( f)(2). Therefore

1
l’
(DY) H(DHF ,(F)(E))
DY 8  DIIG,,(g)(z)

and the theorem follows. O

Remark 2. Putting A =1 and n = 0 in the above results, we obtain the results corresponding to
the class Z; [m;A, B] defined in the introduction.
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