EUROPEAN JOURNAL OF PURE AND APPLIED MATHEMATICS

Vol. 5, No. 2, 2012, 108-115 ISSN 1307-5543 – www.ejpam.com

A Generalization of ⊕-Supplemented Modules

Tayyebeh Amouzegar¹, Yahya Talebi ^{2,*}

¹ Department of Mathematics, Quchan Institute of Engineering and Technology, Quchan, Iran
² Department of Mathematics, Faculty of Mathematical Sciences, University of Mazandaran, Babolsar, Iran

Abstract. Let *M* and *X* be *R*-modules. We define the *X*- \oplus -supplemented modules via the class $\mathscr{B}(M, X)$ as a generalization of \oplus -supplemented modules. We show that any finite direct sum of *X*- \oplus -supplemented modules is *X*- \oplus -supplemented. It is given a number of necessary and sufficient conditions for every direct summand of an *X*- \oplus -supplemented module to be *X*- \oplus -supplemented.

2010 Mathematics Subject Classifications: 16D90, 16D99

Key Words and Phrases: X- \oplus -supplemented module, Completely X- \oplus -supplemented module, Hollow module

1. Introduction

Throughout this paper *R* will denote an arbitrary associative ring with identity and *M* a unitary *R*-module. A submodule *N* of *M* is called *small* in *M* (notation $N \ll M$) if $\forall L \leq M, L + N \neq M$. A non-zero module *M* is called *hollow* if every proper submodule is small in *M*. Let *K* and *N* be submodules of *M*. *K* is called a *supplement* of *N* in *M* if M = K + N and *K* is minimal with respect to this property, or equivalently, M = K + N and $K \cap N \ll K$. A submodule *K* of *M* is called a *supplement* in *M* provided there exists a submodule *N* of *M* such that *K* is a supplement of *N* in *M*. Following [9], a module *M* is called *supplemented* if every submodule of *M* has a supplement in *M*. According to [6], a module *M* is called \oplus -supplemented if every submodule of *M* has a supplement that is a direct summand of *M*. A module *M* is called *completely* \oplus -supplemented if every direct summand of *M* is \oplus -supplemented [see 4].

Let *M* and *X* be *R*-modules. In [5], Keskin Tütüncü and Harmancı defined the family $\mathscr{B}(M,X) = \{A \leq M \mid \exists Y \leq X, \exists f \in Hom(M,X/Y), \text{Ker } f/A \ll M/A\}$ and used this class to define $\mathscr{B}(M,X)$ -projective modules as a generalization of projective modules. In this paper we define *X*- \oplus -supplemented modules and completely *X*- \oplus -supplemented modules via the class

Email addresses: t.amoozegar@yahoo.com (T. Amouzegar), talebi@umz.ac.ir (Y. Talebi)

http://www.ejpam.com

© 2012 EJPAM All rights reserved.

^{*}Corresponding author.

 $\mathscr{B}(M,X)$ as generalizations of \oplus -supplemented modules and completely \oplus -supplemented modules respectively.

Let *A* and *P* be submodules of *M* with $P \in \mathscr{B}(M,X)$. Following [7], *P* is called an *X*-supplement of *A* in *M* if it is minimal with the property M = A + P. Equivalently, if M = A + P and $A \cap P \ll P$. A module *M* is called *X*-supplemented if every submodule *N* of *M* with $N \in \mathscr{B}(M,X)$ has an *X*-supplement in *M*. We say that a module *M* is *X*- \oplus -supplemented if every submodule *N* of *M* with $N \in \mathscr{B}(M,X)$, has an *X*-supplement that is a direct summand of *M*.

We prove some results on these classes of modules. In Section 2, we recall some notions and results that they are used in this paper. In Section 3, we give a characterization of X- \oplus supplemented modules. It is shown that any finite direct sum of X- \oplus -supplemented modules is X- \oplus -supplemented. We give a number of necessary and sufficient conditions for every direct summand of an X- \oplus -supplemented module to be X- \oplus -supplemented. We show that the direct sum of any finite family M_i of relatively \mathscr{B} -projective modules is X- \oplus -supplemented if and only if every M_i is X- \oplus -supplemented. In Section 4, we prove the equivalence of two conditions for a module with finite Goldie dimension: One saying that every direct summand N of M with $N \in \mathscr{B}(M, X)$ is a finite direct sum of X-hollow modules, and the other stating that M is a completely X- \oplus -supplemented module.

2. Preliminaries

Let *M* be a module and $N \leq M$. *N* is called a *coclosed submodule* in *M* if whenever $N/K \ll M/K$ then N = K. Let *M* be a module and $B \leq A \leq M$. If *B* is coclosed in *M* and $A/B \ll M/B$, then *B* is called an *co-closure* of *A* in *M*. A non-zero module *M* is called *local* if the sum of all proper submodules of *M* is also a proper submodule of *M*. Every local module is hollow and hollow modules are \oplus -supplemented. A submodule *K* of *M* is called *essential* in *M* (notation $K \leq_e M$) if $K \cap A \neq 0$ for any nonzero submodule *A* of *M*. Recall that a module *M* is said to have the *summand sum property* (SSP) if the sum of two direct summands is again a direct summand. A module *M* is said to have the *(finite) internal exchange property* if for every (finite) index set *I*, whenever $M = \bigoplus_{i \in I} A_i$ for modules A_i , then for every direct summand *K* of *M* there exist submodules B_i of A_i such that $M = K \oplus (\bigoplus_{i \in I} B_i)$. The notation $N \leq^{\oplus} M$ denotes that *N* is a direct summand of *M*. N < M means that *N* is a fully invariant submodule of *M*.

Lemma 1. Let M, N and X be R-modules. Then the following hold:

- (1) If $A \in \mathscr{B}(M, X)$ and $B \leq A$ with $A/B \ll M/B$, then $B \in \mathscr{B}(M, X)$.
- (2) Let $h: M \to N$ be an epimorphism and $A \in \mathscr{B}(M,X)$ with Ker $h \leq A$. Then $h(A) \in \mathscr{B}(N,X)$. Conversely, if $h(A) \in \mathscr{B}(N,X)$ and Ker $h \leq A$, then $A \in \mathscr{B}(M,X)$.
- (3) Let $B \leq A \leq M$. Then $A \in \mathscr{B}(M, X)$ if and only if $A/B \in \mathscr{B}(M/B, X)$.
- (4) Let $h: N \to M$ be an epimorphism and $A \in \mathscr{B}(M, X)$. Then $h^{-1}(A) \in \mathscr{B}(N, X)$.

Proof. See [5, Lemma 2.2].

Lemma 2. Let M and X be R-modules. Then the following hold:

(1) Let M = A + B. If $B \in \mathscr{B}(M, X)$, then $A \cap B \in \mathscr{B}(M, X)$.

- (2) Let $M = \bigoplus_{i \in I} M_i$. If $N_i \in \mathscr{B}(M_i, X)$, for every $i \in I$. Then $\bigoplus_{i \in I} N_i \in \mathscr{B}(M, X)$.
- (3) Let $M = M_1 \oplus M_2$. If $A \in \mathscr{B}(M, X)$, then $A + M_i \in \mathscr{B}(M, X)$ for i = 1, 2.

Proof.

- (1) Let M = A + B and $B \in \mathscr{B}(M, X)$. There exist $Y \leq X$ and $f : M \to X/Y$ such that Ker $f/B \ll M/B$. Consider the isomorphism $\alpha : M/B \to A/(A \cap B)$. Then $\alpha(\text{Ker } f/B) = \text{Ker } f/(A \cap B)$. Hence Ker $f/(A \cap B) \ll M/(A \cap B)$. Therefore $A \cap B \in \mathscr{B}(M, X)$.
- (2) Since $N_i \in \mathscr{B}(M_i, X)$, there exist a submodule *Y* of *X* and a homomorphism $f_i : M_i \to X/Y$ such that Ker $f_i/N_i \ll M_i/N_i$. Put $f = \bigoplus_{i \in I} f_i$. Then $f : M \to X/Y$ such that Ker $f / \bigoplus_{i \in I} N_i \ll M / \bigoplus_{i \in I} N_i$. Thus $\bigoplus_{i \in I} N_i \in \mathscr{B}(M, X)$.
- (3) By Lemma 1 and [5, Lemma 3.5].

3. *X*-⊕-Supplemented Modules

Let X and M be R-modules. We recall that a module M is X- \oplus -supplemented if every submodule N of M with $N \in \mathcal{B}(M,X)$, has an X-supplement that is a direct summand of M. Clearly X-hollow modules are X- \oplus -supplemented. It is obvious that X- \oplus -supplemented modules are X-supplemented.

Proposition 1. Let *M* be a module such that every submodule *A* of *M* with $A \in \mathscr{B}(M,X)$ has a co-closure in *M*. Then the following statements are equivalent:

- (1) *M* is X- \oplus -supplemented.
- (2) Any coclosed submodule H of M with $H \in \mathscr{B}(M, X)$, has an X-supplement that is a direct summand of M.
- (3) For any submodule N of M with $N \in \mathcal{B}(M, X)$, there exists a direct summand K of M with $K \in \mathcal{B}(M, X)$ such that M = N + K and $N \cap K \ll M$.
- (4) For any coclosed submodule H of M with $H \in \mathcal{B}(M,X)$, there exists a direct summand K of M with $K \in \mathcal{B}(M,X)$ such that M = H + K and $H \cap K \ll M$.

Proof. (1) \Leftrightarrow (3), (2) \Leftrightarrow (4), (1) \Rightarrow (2) and (3) \Rightarrow (4) are clear.

 $(4) \Rightarrow (1)$ Let $A \in \mathscr{B}(M, X)$. By assumption, there exists a coclosed submodule *B* of *M* such that $B \leq A$ and $A/B \ll M/B$. By Lemma 1, $B \in \mathscr{B}(M, X)$. Therefore there exists a direct summand *K* of *M* with $K \in \mathscr{B}(M, X)$ such that M = B + K and $B \cap K \ll M$. Hence *K* is an *X*-supplement of *B* in *M*. Note that M = A + K. Assume that K' < K and M = A + K'. Then $M \neq B + K'$ and so $M \neq A + K'$ since $A/B \ll M/B$. Thus *K* is an *X*-supplement of *A* in *M*.

Theorem 1. Any finite direct sum of $X \oplus$ -supplemented modules is $X \oplus$ -supplemented.

Proof. Let $M = M_1 \oplus M_2$ where M_1 and M_2 are X- \oplus -supplemented modules. Let N be any submodule of M with $N \in \mathscr{B}(M, X)$. We have $N + M_2 = M_2 \oplus [(N + M_2) \cap M_1]$. Since $N \in \mathscr{B}(M, X)$, $N + M_2 \in \mathscr{B}(M, X)$ by Lemma 2. From [7, Lemma 3.1], $(N + M_2) \cap M_1 \in \mathscr{B}(M_1, X)$. Since M_1 is X- \oplus -supplemented, there exists a direct summand K_1 of M_1 with $K_1 \in \mathscr{B}(M_1, X)$ such that $[(N + M_2) \cap M_1] + K_1 = M_1$ and $(N + M_2) \cap K_1 \ll K_1$. By

Lemma 2 and [7, Lemma 3.1], $(N+K_1) \cap M_2 \in \mathscr{B}(M_2,X)$. Thus there exists a direct summand K_2 of M_2 with $K_2 \in \mathscr{B}(M_2,X)$ such that $[(N+K_1) \cap M_2] + K_2 = M_2$ and $(N+K_1) \cap K_2 \ll K_2$. Let $K = K_1 \oplus K_2$, then K is a direct summand of M and $K \in \mathscr{B}(M,X)$ (Lemma 2). Moreover, $M_1 \leq N + M_2 + K_1$ and $M_2 \leq N + K_1 + K_2$. Hence $M = N + K_1 + K_2 = N + K$. Since $N \cap (K_1 + K_2) \leq (N + K_1) \cap K_2 + (N + K_2) \cap K_1, N \cap (K_1 + K_2) \leq (N + K_1) \cap K_2 + (N + M_2) \cap K_1$. As $(N + M_2) \cap K_1 \ll K_1$ and $(N + K_1) \cap K_2 \ll K_2, (N \cap K) \ll K$. Thus M is X- \oplus -supplemented.

Corollary 1. Any finite direct sum of X-hollow modules is X- \oplus -supplemented.

Lemma 3. Let $M = N \oplus N'$ be a module. Assume that A is a submodule of N and K a submodule of M. If $K \cap (A \oplus N') \ll K$, then $A \cap (K + N') \ll N \cap (K + N')$.

Proof. Let π be the projection $N \oplus N' \to N$. Since $K \cap \pi^{-1}(A) = K \cap (A \oplus N') \ll K$, $\pi(K \cap \pi^{-1}(A)) = \pi(K) \cap A \ll \pi(K)$. But $\pi(K) = N \cap (K+N')$. Hence $A \cap (K+N') \ll N \cap (K+N')$.

Following [5], an *R*-module *N* is called $\mathscr{B}(M,X)$ -projective if for any submodule *A* of *M* with $A \in \mathscr{B}(M,X)$, any homomorphism $\phi : N \to M/A$ can be lifted to a homomorphism $\psi : N \to M$. Two *R*-modules M_1 and M_2 are called *relatively* \mathscr{B} -projective if M_1 is $\mathscr{B}(M_2,X)$ -projective and M_2 is $\mathscr{B}(M_1,X)$ -projective.

Theorem 2. Let $M = \bigoplus_{i=1}^{n} M_i$ be a finite direct sum of relatively \mathscr{B} -projective modules M_i and let M have the summand sum property. Then the module M is X- \oplus -supplemented if and only if M_i is X- \oplus -supplemented for all $1 \le i \le n$.

Proof. The sufficiency is proved in Theorem 1. Conversely, we only prove M_1 is $X \oplus$ supplemented. Let $A \in \mathscr{B}(M_1, X)$. By Lemma 1, $A \oplus M_2 \in \mathscr{B}(M, X)$. Since M is $X \oplus$ supplemented, there exists $B \in \mathscr{B}(M, X)$ such that $M = (A \oplus M_2) + B$, $(A \oplus M_2) \cap B \ll B$ and B is a direct summand of M. By Lemma 2, $M_2 + B \in \mathscr{B}(M, X)$. Clearly $M = M_1 + M_2 + B$. By [5, Proposition 2.5], there exists $T \leq M_2 + B$ such that $M = M_1 \oplus T$. Thus

 $B + M_2 = (M_1 \cap (B + M_2)) \oplus T$. Now $M_1 = A + ((B + M_2) \cap M_1)$ and since $(A \oplus M_2) \cap B \ll B$, by Lemma 3, $A \cap (M_1 \cap (B + M_2)) \ll M_1 \cap (B + M_2)$. As *M* has the summand sum property, $B + M_2$ is a direct summand of *M*. Thus $(B + M_2) \cap M_1 \leq^{\oplus} M$ and so $(B + M_2) \cap M_1$ is a direct summand of M_1 . By [7, Lemma 3.1 (1)], $(B + M_2) \cap M_1 \in \mathscr{B}(M_1, X)$. Hence M_1 is X- \oplus -supplemented.

Proposition 2. Let *M* and *N* be *R*-modules and $h : M \to N$ be an epimorphism such that Ker $h \triangleleft M$. If *M* is *X*- \oplus -supplemented, then *N* is *X*- \oplus -supplemented.

Proof. Let $A \in \mathscr{B}(N, X)$. By Lemma 1, $h^{-1}(A) \in \mathscr{B}(M, X)$. Since M is X- \oplus -supplemented, there exist submodules H and H' of M such that $M = H \oplus H'$, $M = h^{-1}(A) + H$ and $h^{-1}(A) \cap H \ll H$. Now N = A + h(H) and since $h^{-1}(A) \cap H \ll H$, $h(h^{-1}(A) \cap H) = A \cap h(H) \ll h(H)$. Moreover, since Ker $h \triangleleft M$, $N = h(H) \oplus h(H')$. Therefore h(H) is an X-supplement of A in N and it is a direct summand of N. Hence N is X- \oplus -supplemented.

Corollary 2. Let *M* be an *R*-module and *N* be a fully invariant submodule of *M*. If *M* is X- \oplus -supplemented, then M/N is X- \oplus -supplemented.

Proof. By Proposition 2.

Recall that a module M is a *duo module*, if every submodule of M is a fully invariant submodule of M.

Corollary 3. Let M be an X- \oplus -supplemented duo module, then every direct summand of M is X- \oplus -supplemented.

Proof. By Corollary 2.

Definition 1. A module M is said to have the (finite) strong internal exchange property if for every (finite) index set I, whenever $M = K + (\bigoplus_{i \in I} A_i)$ for a direct summand K of M and modules A_i , then $M = K \oplus (\bigoplus_{i \in I} B_i)$ for submodules B_i of A_i .

It is clear that if a module *M* has the (finite) strong internal exchange property, then *M* has the (finite) internal exchange property.

Theorem 3. Let M be an X- \oplus -supplemented module with the finite strong internal exchange property. Then any direct summand of M is X- \oplus -supplemented.

Proof. Let *N* be a direct summand of *M*. Thus $M = N \oplus N'$ for some submodule *N*' of *M*. Let $A \in \mathscr{B}(N,X)$. By Lemma 1, $A \oplus N' \in \mathscr{B}(M,X)$. Since *M* is *X*- \oplus -supplemented, there exists a direct summand *K* of *M* with $K \in \mathscr{B}(M,X)$ such that $M = K + (A \oplus N')$ and $(A \oplus N') \cap K \ll K$. Since *M* has the finite strong internal exchange property, $M = K \oplus N_1 \oplus N'_1$ such that $N_1 \subseteq A$ and $N'_1 \subseteq N'$. By modularity, $N = N_1 \oplus (N \cap (K \oplus N'_1))$. By Lemma 2 and [7, Lemma 3.1], $N \cap (K \oplus N'_1) \in \mathscr{B}(N,X)$. As $M = A + (K \oplus N'_1)$, $N = A + (N \cap (K' \oplus N'_1))$. Since $(A \oplus N') \cap K \ll K$, by Lemma 3, $A \cap (K \oplus N') \ll N \cap (K \oplus N'_1)$. Thus $A \cap (K \oplus N'_1) \ll N \cap (K \oplus N'_1)$. Since $N \cap (K \oplus N'_1) \leq \oplus M$, $A \cap (K \oplus N'_1) \ll N \cap (K \oplus N'_1)$. Hence *N* is *X*- \oplus -supplemented.

If in set $\mathscr{B}(M,X)$, we take X = M, then $\mathscr{B}(M,X)$ coincides with the set of all submodules of *M*. Therefore we obtain the following corollary:

Corollary 4. Let M be a \oplus -supplemented module with the finite strong internal exchange property. Then any direct summand of M is \oplus -supplemented.

4. Completely *X*-⊕-Supplemented Modules

Let *X* and *M* be *R*-modules. We call a module *M* completely *X*- \oplus -supplemented if every direct summand *N* of *M* with $N \in \mathcal{B}(M, X)$ is *X*- \oplus -supplemented.

Recall that a module *M* has $\mathscr{B}(M,X)$ - (D_3) condition if for all $A \in \mathscr{B}(M,X)$ and direct summand *B* of *M*, if *A* is a direct summand of *M* and M = A + B then $A \cap B$ is a direct summand of *M* [5].

Proposition 3. Let M be an X- \oplus -supplemented module with $\mathscr{B}(M,X)$ -(D3). Then M is completely X- \oplus -supplemented.

Proof. Let *N* be a direct summand of *M* and *A* a submodule of *N* such that *N* ∈ $\mathscr{B}(M,X)$ and *A* ∈ $\mathscr{B}(N,X)$. We show that *A* has an *X*-supplement in *N* that is a direct summand of *N*. We have $M = N \oplus N'$ for some submodule *N'* of *M*. Let $\pi : M \to N$ be the projection along *N'*. Since $A \in \mathscr{B}(N,X)$, by Lemma 1(4), $A \oplus N' = \pi^{-1}(A) \in \mathscr{B}(M,X)$. Since M = A + N + N', $A = (A \oplus N') \cap N \in \mathscr{B}(M,X)$ (Lemma 2). Since *M* is *X*-⊕-supplemented, there exists a direct summand *B* of *M* with $B \in \mathscr{B}(M,X)$ such that M = A + B and $A \cap B \ll B$. Then $N = A + (N \cap B)$. Again by Lemma 2, $N \cap B \in \mathscr{B}(M,X)$. Furthermore $N \cap B$ is a direct summand of *M* because *M* has $\mathscr{B}(M,X)$ -(*D*₃). Then $A \cap (N \cap B) = A \cap B$ is small in $N \cap B$ and by [7, Lemma 3.1], $N \cap B \in \mathscr{B}(N,X)$.

Let X and M be R-modules. We say $N \in \mathscr{B}(M,X)$ is semisimple relative to the class $\mathscr{B}(M,X)$ if, for every submodule K of N with $K \in \mathscr{B}(N,X)$, there exists a submodule K' of N with $K' \in \mathscr{B}(N,X)$ such that $N = K \oplus K'$. It is clear that every semisimple module relative to the class $\mathscr{B}(M,X)$ is X- \oplus -supplemented.

Lemma 4. Let M be an X-supplemented module and let N be a submodule of M such that $N \cap Rad(M) = 0$ and $N \in \mathscr{B}(M, X)$. Then N is semisimple relative to the class $\mathscr{B}(M, X)$.

Proof. We have to prove that M/Rad(M) contains no non-zero small submodule K/Rad(M) with $K/Rad(M) \in \mathscr{B}(M/Rad(M), X)$. Let $K/Rad(M) \ll M/Rad(M)$ and $K/Rad(M) \in \mathscr{B}(M/Rad(M), X)$. From Lemma 1, $K \in \mathscr{B}(M, X)$. By hypothesis, there exists a submodule *B* of *M* with $B \in \mathscr{B}(M, X)$ such that M = K + B and $K \cap B \ll B$. As $K/Rad(M) \ll M/Rad(M)$, Rad(M) = K. Thus every submodule K/Rad(M) of M/Rad(M) with $K/Rad(M) \in \mathscr{B}(M/Rad(M), X)$ is a direct summand of M/Rad(M). Hence M/Rad(M) is semisimple relative to the class $\mathscr{B}(M/Rad(M), X)$. Hence *N* is semisimple relative to the class $\mathscr{B}(M/Rad(M), X)$.

Proposition 4. Let M be an X-supplemented module and suppose that for every submodule N of M such that $N \cap Rad(M) = 0$ we have $N \in \mathscr{B}(M,X)$. Then $M = M_1 \oplus M_2$, where M_1 is a semisimple module relative to the class $\mathscr{B}(M,X)$ and $Rad(M_2)$ essential in M_2 .

Proof. Let M_1 be a complement of Rad(M) in M, hence $Rad(M) \oplus M_1$ is essential in M. Since M is X-supplemented, there exists a submodule M_2 of M such that $M = M_1 + M_2, M_1 \cap M_2 \ll M_2$ and $M_2 \in \mathcal{B}(M, X)$. Then $M_1 \cap M_2$ is a submodule of both

Rad(M) and M_1 . It follows that $M = M_1 \oplus M_2$, $Rad(M) = Rad(M_2)$ is essential in M_2 , and by Lemma 4, M_1 is semisimple relative to the class $\mathscr{B}(M, X)$.

A module *M* is said to be *finite Goldie-dimensional* provided *M* contains no infinite independent families of nonzero submodules.

Theorem 4. Consider the following conditions for a projective module M:

- (i) M is a direct sum of X- \oplus -supplemented modules and Rad(M) has finite Goldie dimension.
- (ii) $M = M_1 \oplus M_2$ such that M_1 is semisimple relative to the class $\mathscr{B}(M,X)$ and M_2 has finite Goldie dimension and M_2 is a (finite) direct sum of local modules.

If for every submodule N of a direct summand M_i of M such that $N \cap \text{Rad}(M_i) = 0$ we have $N \in \mathscr{B}(M_i, X)$, then $(i) \Rightarrow (ii)$ holds and if for every small submodule N of M_1 we have $N \in \mathscr{B}(M_1, X)$, then $(ii) \Rightarrow (i)$ holds.

Proof. (*i*) \Rightarrow (*ii*) Let $M = \bigoplus_{i \in I} M_i$ and M_i is X- \oplus -supplemented for every $i \in I$. Since $Rad(M) = \bigoplus_{i \in I} Rad(M_i)$, then there is a finite subset J of I such that $Rad(M_i) = 0$ for all $i \in I \setminus J$. Therefore M_i is semisimple relative to $\mathscr{B}(M,X)$ for all $i \in I \setminus J$. Hence there is a submodule M_1 semisimple relative to $\mathscr{B}(M,X)$ such that $M = M_1 \oplus (\bigoplus_{i \in J} M_i)$. By Proposition 4, without loss of generality, we may assume $Rad(M_i)$ is essential in $M_i (j \in J)$. Then M_i ($j \in J$) has finite Goldie dimension by [3, Proposition 3.20]. Next we prove that each M_i , for $j \in J$, is local or a finite direct sum of local modules. Set $H = M_i$ for any $j \in J$. First, note that $Rad(H) \neq H$ because H is projective [1, Proposition 17.14]. Assume that H has Goldie dimension 1, and take some $x \in H \setminus Rad(H)$. Since H is X- \oplus -supplemented, there is a submodule *K* of *H* with $K \in \mathcal{B}(H, X)$ such that $H = xR + K, xR \cap K \ll K$ and $H = K \oplus K_1$ for some submodule K_1 of M. Then K = 0 or $K_1 = 0$. If $K_1 = 0$, then $xR \subseteq Rad(H)$ which is a contradiction. Hence K = 0 and H = xR. It follows that H is local. Let n > 1 be a positive integer and assume that each M_i having Goldie dimension k ($1 \le k < n$) is local or a finite direct sum of local submodules. Let $j \in J$ and $H = M_j$ and assume H has Goldie dimension n. Suppose that H is not local. Let $x \in H \setminus Rad(H)$ such that $H \neq xR$. Since H is X- \oplus -supplemented, there exist submodules K, K_1 of H with $K \in \mathcal{B}(H,X)$ such that $H = xR + K = K \oplus K_1$ and $xR \cap K \ll K$. It is clear that $K_1 \neq 0$. Also $K \neq 0$. Since projective modules satisfy (D_3) , and so they satisfy $\mathscr{B}(M,X)$ - (D_3) . By Proposition 3, we obtain that any direct summand of M is X- \oplus -supplemented. Thus K and K_1 are X- \oplus -supplemented. By induction, K and K_1 are local or finite direct sum of local submodules. This completes the proof of $(i) \Rightarrow (ii)$.

 $(ii) \Rightarrow (i)$ It is clear.

Lemma 5. Let *M* be an indecomposable module. Then *M* is *X*-hollow if and only if *M* is completely $X \cdot \oplus$ -supplemented.

Proof. Let *M* be completely X- \oplus -supplemented. If $N \in \mathscr{B}(M, X)$ is a proper submodule of *M*, then there exists an *X*-supplement *A* of *M* such that *A* is direct summand of *M*. By hypothesis we have A = M. Thus $N = N \cap M = N \cap A \ll M$. Therefore *M* is *X*-hollow. Conversely, if *M* is *X*-hollow and $N \in \mathscr{B}(M, X)$ then $N \ll M$. Since $M \in \mathscr{B}(M, X)$, *M* is an *X*-supplement of *N* in *M*.

REFERENCES

Proposition 5. Let $M = U \oplus V$ such that U and V have local endomorphism rings. Then M is completely $X \oplus$ -supplemented if and only if U and V are X-hollow modules.

Proof. The necessity is clear from Lemma 5. Conversely, let $K \in \mathcal{B}(M,X)$ be a direct summand of M. If K = M then by Corollary 1, K is X- \oplus -supplemented. Assume $K \neq M$. Then either $K \cong U$ or $K \cong V$ [1, Corollary 12.7]. In either case K is X- \oplus -supplemented. Thus M is completely X- \oplus -supplemented.

Theorem 5. Let *M* be a non-zero module with finite Goldie dimension. Then the following statements are equivalent:

- (i) Every direct summand N of M with $N \in \mathscr{B}(M,X)$ is a finite direct sum of X-hollow modules.
- (ii) *M* is a completely X- \oplus -supplemented module.

Proof. $(i) \Rightarrow (ii)$ It is clear by Corollary 1.

 $(ii) \Rightarrow (i)$ Let *N* be a direct summand of *M* with $N \in \mathscr{B}(M, X)$. Since *N* has finite Goldie dimension, *N* has a decomposition $N = L_1 \oplus \ldots \oplus L_n$, where each L_i is indecomposable for $1 \le i \le n$. Thus each L_i $(1 \le i \le n)$ is *X*-hollow from Lemma 5.

References

- [1] F Anderson and K Fuller. *Rings and Categories of Modules*. Springer-Verlog, New York, 1992.
- [2] C Chang. X-Lifting Modules over Right Perfect Rings. Bull. Korean Math. Soc, 45(1):59-66, 2008.
- [3] K Goodearl. *Ring Theory, Nonsingular Rings and Modules*. Marcel Dekker, Inc., New York and Basel, 1976.
- [4] A Harmancı, D Tütüncü and P Smith. On ⊕-Supplemented Modules. *Acta Math. Hungar*, 83:161-169, 1999.
- [5] D Tütüncü and A Harmancı. A Relative Version of the Lifting Property of Modules. Algebra Colloq, 11(3):361-370, 2004.
- [6] S Mohamed and B Müller. *Continuous and Discrete Modules*. London Math. Soc. Lecture Notes Series 147, Cambridge, University Press, 1990.
- [7] N Orhan and D Tütüncü. Characterizations of Lifting Modules in Terms of Cojective Modules And The Class of $\mathscr{B}(M,X)$, *International J. Mathematics* 6:647-660, 2005.
- [8] P Smith. Modules for which every submodules has a unique closure. *Ring Theory, World Sci.*, pages 302-313, Singapore, 1993.
- [9] R Wisbauer. Foundations of module and ring theory. Gordon and Breach, Reading, 1991.