EUROPEAN JOURNAL OF PURE AND APPLIED MATHEMATICS

Vol. 6, No. 1, 2013, 11-19

ISSN 1307-5543 - www.ejpam.com

Mapping Properties of Some Classes of Analytic Functions Under New Generalized Integral Operators

Irina Dorca^{1,*}, Daniel V. Breaz ²

Abstract. In this paper we study the mapping properties with respect to new generalised integral operator which was studied recently.

2010 Mathematics Subject Classifications: 30C45

Key Words and Phrases: analytic functions, positive coefficients, negative coefficients, integral operator

1. Introduction

Let $\mathcal{H}(U)$ be the set of functions which are regular in the unit disc U,

$$\mathcal{A} = \{ f \in \mathcal{H}(U) : f(0) = f'(0) - 1 = 0 \}$$

and $S = \{ f \in \mathcal{A} : f \text{ is univalent in } U \}.$

In [10] the subfamily T of S consisting of functions f of the form

$$f(z) = z - \sum_{j=2}^{\infty} a_j z^j, \ a_j \ge 0, j = 2, 3, \dots, \quad z \in U$$
 (1)

was introduced.

Thus we have the subfamily S - T consisting of functions f of the form

$$f(z) = z + \sum_{j=2}^{\infty} a_j z^j, \quad a_j \ge 0, j = 2, 3, \dots, z \in U$$
 (2)

Email addresses: irina.dorca@gmail.com (I. Dorca), dbreaz@uab.ro (D. Breaz)

¹ Department of Mathematics, University of Piteşti, Argeş, România

² Department of Mathematics, University "1st December 1918" of Alba, România

^{*}Corresponding author.

A function $f(z) \in \mathcal{A}$ is said to be spiral-like if there exists a real number λ , $|\lambda| < \pi/2$, such that

Re
$$e^{i\lambda} \frac{zf'(x)}{f(X)}$$
, $(z \in U)$.

The class of all spiral-like functions was introduced by L. Spacek [11] and we denote it by S_{λ}^{\star} . Later, Robertson [9] considered the class C_{λ} of analytic functions in U for which $zf'(z) \in S_{\lambda}^{\star}$.

Let $P_k^{\lambda}(\rho)$ be the class of functions p(z) analytic in U with p(0) = 1 and

$$\int_{0}^{2\pi} \left| \frac{Re \ e^{i\lambda} p(z) - \rho \cos \lambda}{1 - \rho} \right| d\theta \le k\pi \cos \lambda, \quad z = re^{i\theta}$$
 (3)

where $k \ge 2$, $0 \le \rho < 1$, λ is real with $|\lambda| < \frac{\pi}{2}$. In case that k = 2, $\lambda = 0$, $\rho = 0$, the class $P_k^{\lambda}(\rho)$ reduces to the class P of functions p(z) analytic in U with p(0) = 1 and whose real part is positive.

we recall the well-known classes

$$R_k^{\lambda}(\rho) = \left\{ f(z) : f(z) \in \mathscr{A} \text{ and } \frac{zf'(z)}{f(z)} \in P_k^{\lambda}(\rho), \quad 0 \le \rho < 1 \right\},$$

$$V_k^{\lambda}(\rho) = \left\{ f(z) : f(z) \in \mathscr{A} \text{ and } \frac{(zf'(z))'}{f'(z)} \in P_k^{\lambda}(\rho), \quad 0 \le \rho < 1 \right\}.$$

These classes are introduced and studied in [7].

The purpose of this paper is to develop the mapping properties with respect to a new generalized integral operator.

2. Preliminary Results

Prof. Breaz [3] has introduced the following integral operators on univalent function spaces:

$$J(z) = \left\{ \beta \int_{0}^{z} \left[f_1'(t^n) \right]^{\gamma_1} \cdot \ldots \cdot \left[f_p'(t^n) \right]^{\gamma_p} dt \right\}^{\frac{1}{\beta}}, \tag{4}$$

$$H(z) = \left\{ \beta \int_{0}^{z} t^{\beta - 1} \left[f_1'(t) \right]^{\gamma_1} \cdot \ldots \cdot \left[f_p'(t) \right]^{\gamma_p} dt \right\}^{\frac{1}{\beta}}, \tag{5}$$

$$F(z) = \int_{0}^{z} \left(\frac{f_1(t)}{t}\right)^{\gamma_1} \cdot \dots \cdot \left(\frac{f_p(t)}{t}\right)^{\gamma_p} dt, \tag{6}$$

$$G(z) = \left[\beta \int_{0}^{z} \left(\frac{f_{1}(t)}{t} \right)^{\gamma_{1}} \cdot \ldots \cdot \left(\frac{f_{p}(t)}{t} \right)^{\gamma_{p}} dt \right]^{\frac{1}{\beta}}, \tag{7}$$

$$F_{\gamma,\beta}(z) = \left\{ \beta \int_{0}^{z} t^{\beta-1} \left(\frac{f_1(t)}{t} \right)^{\frac{1}{\gamma_1}} \cdot \dots \cdot \left(\frac{f_p(t)}{t} \right)^{\frac{1}{\gamma_p}} dt \right\}^{\frac{1}{\beta}}, \tag{8}$$

and

$$G_{\gamma,p}(z) = \left\{ [p(\gamma - 1) + 1] \int_{0}^{z} g_{1}^{\gamma - 1}(t) \cdot \dots \cdot g_{p}^{\gamma - 1}(t) dt \right\}^{\frac{1}{p(\gamma - 1) + 1}}, \tag{9}$$

where $\gamma_i, \gamma, \beta \in \mathbb{C} \forall i = \overline{1, p}, p \in \mathbb{N} - \{0\}, n \in \mathbb{N} - \{0, 1\}.$

Let D^n be the Sălăgean differential operator [see 12] $D^n : \mathcal{A} \to \mathcal{A}$, $n \in \mathbb{N}$, defined as:

$$D^{0}f(z) = f(z), D^{1}f(z) = Df(z) = zf'(z), D^{n}f(z) = D(D^{n-1}f(z))$$
(10)

and $D^k, D^k : \mathcal{A} \to \mathcal{A}, k \in \mathbb{N} \cup \{0\}$, of form:

$$D^{0}f(z) = f(z), \dots, D^{k}f(z) = D(D^{k-1}f(z)) = z + \sum_{n=2}^{\infty} n^{k} a_{n} z^{n}.$$
 (11)

Definition 1 ([2]). Let β , $\lambda \in \mathbb{R}$, $\beta \geq 0$, $\lambda \geq 0$ and $f(z) = z + \sum_{j=2}^{\infty} a_j z^j$. We denote by D_{λ}^{β} the linear operator defined by

$$D_{\lambda}^{\beta}: A \to A, D_{\lambda}^{\beta} f(z) = z + \sum_{j=n+1}^{\infty} [1 + (j-1)\lambda]^{\beta} a_{j} z^{j}.$$
 (12)

Remark 1. *In* [1] we have introduced the following operator concerning the functions of form (1):

$$D_{\lambda}^{\beta}: A \to A, D_{\lambda}^{\beta} f(z) = z - \sum_{j=n+1}^{\infty} [1 + (j-1)\lambda]^{\beta} a_{j} z^{j}.$$
 (13)

The neighborhoods concerning the class of functions defined using the operator (13) is studied in [5].

Remark 2. Let consider the following operator concerning the functions $f \in S$, $S = \{f \in \mathcal{A} : f \text{ is univalent in } U\}$:

$$D_{\lambda_1,\lambda_2}^{n,\beta}f(z) = (h * \psi_1 * f)(z) = z \pm \sum_{k \ge 2} \frac{[1 - \lambda_1(k-1))]^{\beta-1}}{[1 - \lambda_2(k-1))]^{\beta}} \cdot \frac{1+c}{k+c} \cdot C(n,k) \cdot a_k \cdot z^k, \quad (14)$$

where $C(n,k) = \frac{(n+1)_{k-1}}{(1)_{k-1}}$, (·). is the Pochammer symbol; $k \ge 2$, $c \ge 0$.

The following integral operator is studied in [4], where f_i , i = 1 ... n, $n \in \mathbb{N}$, is considered to be of form (2):

Definition 2. We define the general integral operator $I_{k,n,\lambda,\mu}: \mathcal{A}_n \to \mathcal{A}$ by

$$I_{k,n,\lambda,\mu}(f_1,\ldots,f_n) = F, \qquad (15)$$

$$D^k F(z) = \int_0^z \left(\frac{D_1^{\lambda} f_1(t)}{t}\right)^{\mu_1} \cdot \ldots \cdot \left(\frac{D_n^{\lambda} f_n(t)}{t}\right)^{\mu_n} dt,$$

where $f_i \in \mathcal{A}$, $i \in \mathbb{N} - \{0\}$, $\lambda = (\lambda_1, \dots, \lambda_n) \in \mathbb{N}_0^n$, $\mu = (\mu_1, \dots, \mu_n) \in \mathbb{N}^n$, $n \in \mathbb{N}$ and $k \in \mathbb{N}_0$.

Theorem 1. Let α , γ_1 , γ_2 , $\beta \in \mathbb{C}$, Re $\alpha = a > 0$ and $D_{\lambda_1,\lambda_2}^{n,\kappa} f_j(z) \in \mathcal{A}$, λ_1 , λ_2 , $\kappa \geq 0$, $\sigma \in \mathbb{R}$, $j = \overline{1,p}$, $p \in \mathbb{N}$, $D_{\lambda_1,\lambda_2}^{n,\kappa} f_j(z^n)$ of form (14). If

$$\begin{split} \left| \frac{(D_{\lambda_1,\lambda_2}^{n,\kappa} f_j(z^n))''}{(D_{\lambda_1,\lambda_2}^{n,\kappa} f_j(z^n))'} \right| &\leq \frac{1}{n} \ and \ \left| \frac{(D_{\lambda_1,\lambda_2}^{n,\kappa} f_j(z^n))'}{(D_{\lambda_1,\lambda_2}^{n,\kappa} f_j(z^n))} \right| \leq \frac{1}{n} \quad \forall z \in U, j = \overline{1,p}, \\ & \frac{\sum\limits_{j=1}^p \left[|\delta_j^1| \cdot (|2\gamma_1 - 1| - |\sigma|) + |\delta_j^2| \cdot (|2\gamma_2 - 1| - |\sigma|) \right]}{|\sigma \cdot (2\gamma_1 - 1) \cdot (2\gamma_2 - 1) \cdot (\prod\limits_{i=1}^p \delta_j^1 \cdot \delta_j^2)|} \leq 1, \end{split}$$

and

$$|\sigma \cdot (2\gamma_1 - 1) \cdot (2\gamma_2 - 1) \cdot (\prod_{j=1}^p \delta_j^1 \cdot \delta_j^2)| \le \frac{n+2a}{2} \cdot \left(\frac{n+2a}{n}\right)^{\frac{1}{n+2a}},$$

then $\forall \delta, \ \delta_j^1, \ \delta_j^2 \in \mathbb{C}, \ j = 1 \dots p, \ Re(\beta) \ge a, \ Re(\beta \delta) \ge a, \ the function$

$$I^{1}(z) = \left\{ \beta \int_{0}^{z} t^{\beta \delta - 1} \cdot \prod_{j=1}^{p} \left[\frac{((D_{\lambda_{1}, \lambda_{2}}^{n, \kappa} f_{j}(t^{n})')^{2\gamma_{1} - 1}}{t^{\sigma}} \right]^{\delta_{j}^{1}} \cdot \left[\frac{(D_{\lambda_{1}, \lambda_{2}}^{n, \kappa} f_{j}(t^{n}))^{2\gamma_{2} - 1}}{t^{\sigma}} \right]^{\delta_{j}^{2}} dt \right\}^{\frac{1}{\beta}}$$
(16)

is univalent for all $n \in \mathbb{N} - \{0\}$.

If we consider the operator $D_{\lambda}^{\beta}f(z)$ of form (13) we obtain the following Corollary, whose proof is similar with the prove of Theorem 1.

Corollary 1. Let α , γ_1 , γ_2 , $\chi \in \mathbb{C}$, Re $\alpha = a > 0$ and $D_{\lambda}^{\beta} f_j(z) \in \mathcal{A}$, $\beta \geq 0$, $\lambda \geq 0$, $\sigma \in \mathbb{R}$, $D_{\lambda}^{\beta} f(z^n)$ of form (13). If

$$\left| \frac{\left| (D_{\lambda}^{\beta} f_j(z^n))''}{(D_{\lambda}^{\beta} f_j(z^n))'} \right| \le \frac{1}{n} \text{ and } \left| \frac{\left(D_{\lambda}^{\beta} f_j(z^n) \right)'}{(D_{\lambda}^{\beta} f_j(z^n))} \right| \le \frac{1}{n}, \quad \forall z \in U, j = \overline{1, p},$$

$$\frac{\sum\limits_{j=1}^{p} \left[|\delta_{j}^{1}| \cdot (|2\gamma_{1}-1|-|\sigma|) + |\delta_{j}^{2}| \cdot (|2\gamma_{2}-1|-|\sigma|) \right]}{|\sigma \cdot (2\gamma_{1}-1) \cdot (2\gamma_{2}-1) \cdot (\prod\limits_{j=1}^{p} \delta_{j}^{1} \cdot \delta_{j}^{2})|} \leq 1$$

and

$$|\sigma \cdot (2\gamma_1 - 1) \cdot (2\gamma_2 - 1) \cdot (\prod_{j=1}^p \delta_j^1 \cdot \delta_j^2)| \le \frac{n + 2a}{2} \cdot \left(\frac{n + 2a}{n}\right)^{\frac{1}{n + 2a}},$$

then for all δ , δ_j^1 , $\delta_j^2 \in \mathbb{C}$, $j = 1 \dots p$, $Re(\chi) \ge a$, $Re(\chi \delta) \ge a$, the function

$$I^{2}(z) = \left\{ \chi \int_{0}^{z} t^{\chi \delta - 1} \prod_{j=1}^{p} \left[\frac{((D_{\lambda}^{\beta} f_{j}(t^{n})')^{2\gamma_{1} - 1}}{t^{\sigma}} \right]^{\delta_{j}^{1}} \left[\frac{(D_{\lambda}^{\beta} f_{j}(t^{n}))^{2\gamma_{2} - 1}}{t^{\sigma}} \right]^{\delta_{j}^{2}} dt \right\}^{\frac{1}{\chi}}$$
(17)

is univalent for $\forall n \in \mathbb{N} - \{0\}$.

Lemma 1 ([6]). Let $u = u_1 + iu_2$, $v = v_1 + iv_2$ and $\Psi(u, v)$ be a complex valued function satisfying the conditions:

- (i) $\Psi(u, v)$ is continuous in a domain $D \in \mathbb{C}^2$, Re
- (ii) $(1,0) \in D$ and $Re \ \Psi(1,0) > 0$,
- (iii) Re $\Psi(iu_2, v_1) \le 0$, whenever $(iu_2, v_1) \in D$ and $v_1 \le -\frac{1}{2}(1 + u_2^2)$.

If $h(z) = 1 + \sum_{i \ge 1} c_i z^i$ is an analytic function in U such that $(h(z), zh'(z)) \in D$ and $Re \ \Psi(h(z), zh'(z)) > 0$ for $z \in U$, then $Re \ h(z) > 0$ in U.

Lemma 2 ([8]). Let $f(z) \in V_k^{\lambda}(\rho)$, $0 \le \rho < 1$ and λ is real with $|\lambda| < \frac{\pi}{2}$. Then $f(z) \in R_k^{\lambda}(\beta)$, where β is one of the root of

$$2\beta^{3} + (1 - 2\rho)\beta^{2} + (3\sec^{2}\lambda - 4)\beta - (1 + 2\rho)\tan^{2}\lambda = 0.$$
 (18)

Following we present the mapping properties of the general integral operator of form (16), giving also several examples which prove its relevance.

3. Main Results

Theorem 2. Let $D_{\lambda_1,\lambda_2}^{n,\kappa}f_j(z^n) \in R_k^{\lambda}$, $D_{\lambda_1,\lambda_2}^{n,\kappa}f_j(z^n)$ of form (14), $n \in \mathbb{N}$, λ_1 , λ_2 , $\kappa \geq 0$, $\sigma \in \mathbb{R}$, $j = \overline{1,p}$ $p \in \mathbb{N}$, for $0 \leq \rho < 1$. Also let λ be real, $|\lambda| < \frac{\phi}{2}$. If

$$0 \le [\rho - 1] \sum_{j=1}^{p} \delta_j^a + \beta \delta < 1,$$

then $I^1(z) \in V_k^{\lambda}(\eta)$, $I^1(z)$ of form (16), with

$$\eta = [\rho - 1] \sum_{j=1}^{p} \delta_j^a + \beta \delta, \tag{19}$$

 β , δ , $\delta_j^a \in \mathbb{C}$, $a \in \{1, 2\}$, $j = \overline{1, p}$, $Re(\beta \delta) > 0$.

Proof. Let consider the notations

$$h(z) = \int_{0}^{z} t^{\beta \delta - 1} \prod_{j=1}^{p} \left[\frac{((D_{\lambda_{1}, \lambda_{2}}^{n, \kappa} f_{j}(t^{n})')^{2\gamma_{1} - 1}}{t^{\sigma}} \right]^{\delta_{j}^{1}} \cdot \left[\frac{(D_{\lambda_{1}, \lambda_{2}}^{n, \kappa} f_{j}(t^{n}))^{2\gamma_{2} - 1}}{t^{\sigma}} \right]^{\delta_{j}^{2}} dt$$

$$= \int_{0}^{z} t^{\beta \delta - 1} \prod_{j=1}^{p} \left[h_{j}^{1}(t^{n}) \right]^{\delta_{j}^{1}} \cdot \left[h_{j}^{2}(t^{n}) \right]^{\delta_{j}^{2}} dt$$

in (16), with α , γ_1 , γ_2 , β , $\delta \in \mathbb{C}$, $Re \ \alpha = a > 0$ and $D_{\lambda_1,\lambda_2}^{n,\kappa}f_j(z) \in \mathcal{A}$, $n \in \mathbb{N}$, λ_1 , λ_2 , $\kappa \geq 0$, $\sigma \in \mathbb{R}$, $j = \overline{1,p}$, $p \in \mathbb{N}$.

From Theorem 1, we obtain

$$\frac{[I^{1}(z)]''}{[I^{1}(z)]'} = \left(\frac{1}{\beta} - 1\right) \cdot \frac{h'(z)}{h(z)} + \beta \delta \cdot \frac{1}{z} + \left(\sum_{j=1, a \in \{1, 2\}}^{p} \delta_{j}^{a} \cdot \frac{[h_{j}^{a}(z)]'}{h_{j}^{a}(z)} - \frac{1}{z}\right)$$

which is equivalently to

$$e^{i\lambda}\left(1+\frac{z[I^{1}(z)]''}{[I^{1}(z)]'}\right)=e^{i\lambda}\cdot\left[\left(\frac{1}{\beta}-1\right)\cdot\frac{zh'(z)}{h(z)}+\beta\delta\right]+e^{i\lambda}\cdot\left(\sum_{j=1,a\in\{1,2\}}^{p}\delta_{j}^{a}\cdot\frac{z[h_{j}^{a}(z)]'}{h_{j}^{a}(z)}-1\right)+e^{i\lambda}$$
(20)

Furthermore, we have

$$Re\left[e^{i\lambda}\left(1+\frac{z[I^1(z)]''}{[I^1(z)]'}\right)\right] \leq (\beta\delta-1)+Re\left[e^{i\lambda}\cdot\left(\sum_{j=1,a\in\{1,2\}}^p \delta^a_j\cdot\frac{z[h^a_j(z)]'}{h^a_j(z)}-1\right)+e^{i\lambda}\right],$$

which can be written as following

$$Re\left[e^{i\lambda}\left(1+\frac{z[I^1(z)]''}{[I^1(z)]'}\right)\right] \leq Re\left[e^{i\lambda}\cdot\left(\sum_{j=1,a\in\{1,2\}}^p \delta^a_j\cdot\frac{z[h^a_j(z)]'}{h^a_j(z)}-1\right)+\beta\delta e^{i\lambda}\right].$$

Subtracting and adding $\rho \cos \lambda \sum_{j=1,a\in\{1,2\}}^p \delta^a_j$ on the left hand side of (20) and then taking the real part, we have

$$Re\left[e^{i\lambda}\left(1+\frac{z[I^{1}(z)]''}{[I^{1}(z)]'}\right)-\eta\cos\lambda\right] \leq \sum_{j=1,a\in\{1,2\}}^{p} \delta_{j}^{a}Re\left[e^{i\lambda}\cdot\frac{[h_{j}^{a}(z)]'}{h_{j}^{a}(z)}-\rho\cos\lambda\right], \quad (21)$$

where η is given by (19).

Integrating (21) and then using (19), we have

$$\int_{0}^{2\pi} \left| \operatorname{Re} \left[e^{i\lambda} \left(1 + \frac{z[I^{1}(z)]''}{[I^{1}(z)]'} \right) - \eta \cos \lambda \right] \right| d\theta$$

$$\leq \frac{1 - \eta}{1 - \rho} \int_{0}^{2\pi} \left| \operatorname{Re} \left[e^{i\lambda} \cdot \frac{[h_{j}^{a}(z)]'}{h_{j}^{a}(z)} - \rho \cos \lambda \right] \right| d\theta. \tag{22}$$

Since $f_j(z^n) \in R_k^{\lambda}(\rho)$, $j = \overline{1, p}$, $p, n \in \mathbb{N} - \{0\}$, we obtain

$$\int_{0}^{2\pi} \left| Re \left[e^{i\lambda} \cdot \frac{[h_{j}^{a}(z)]'}{h_{j}^{a}(z)} - \rho \cos \lambda \right] \right| d\theta \le (1 - \rho) k\pi \cos \lambda. \tag{23}$$

Using (22) and (23), we have

$$\int_0^{2\pi} \left| \operatorname{Re} \left[e^{i\lambda} \left(1 + \frac{z[I^1(z)]''}{[I^1(z)]'} \right) - \eta \cos \lambda \right] \right| d\theta \le (1 - \eta) k\pi \cos \lambda.$$

Hence $I^1(z) \in V_k^{\lambda}(\eta)$ with η given by (19).

Remark 3. If we consider the operator $D_{\lambda}^{\beta}f(z) \in R_{k}^{\lambda}(\rho)$ of form (13) we obtain similar result as in Theorem 2.

Remark 4. If we apply the operator (10) to the integral operator F(z) of form (6), we obtain the result from [8].

Next we give few examples of particular cases which can be found in literature.

Let $\beta=0$ in $D_{\lambda}^{\beta}f(z)$ of form (12) or (13). So we have that $D_{\lambda}^{0}f(z)=f(z), \forall \lambda \geq 0$. We will use this form of the integral operator, where the function f is of form (2) with respect to the operator (17). For further simplification, we consider that $\gamma_{1}=\gamma_{2}=1$, and $\delta=1$ (except of Example 4).

For the first four examples we consider $\delta_i^1 = 0$, $j = \overline{1, p}$, $p \in \mathbb{N} - \{0\}$, n = 1.

Example 1. If $\sigma=1$, $\chi=1$ and we use the notation $\delta_j^2=\gamma_j$, $j=\overline{1,p}$, $p\in\mathbb{N}-\{0\}$, we obtain the operator F(z) of form (6). $F(z)\in V_k^\lambda(\eta)$ if $0\leq (\rho-1)\sum_{j=1}^p\gamma_j+1<1$ with $\eta=(\rho-1)\sum_{j=1}^p\gamma_j+1$.

Example 2. If $\sigma = 1$ we obtain the operator G(z) of form (7) for $\delta_j^2 = \gamma_j$, $j = \overline{1,p}$, $p \in \mathbb{N} - \{0\}$. $G(z) \in V_k^{\lambda}(\eta)$ if $0 \le (\rho - 1) \sum_{j=1}^p \gamma_j + 1 < 1$ with $\eta = (\rho - 1) \sum_{j=1}^p \gamma_j + 1$.

REFERENCES 18

Example 3. If $\sigma = 1$ and we use the notation $\delta_j^2 = 1/\gamma_j$, $j = \overline{1,p}$, $p \in \mathbb{N} - \{0\}$, we obtain the operator $F_{\gamma,\beta}(z)$ of form (8). $F_{\gamma,\beta}(z) \in V_k^{\lambda}(\eta)$ if $0 \le (\rho - 1) \sum_{j=1}^p \frac{1}{\gamma_j} + \beta < 1$ with $\eta = (\rho - 1) \sum_{j=1}^p \gamma_j + \beta$.

Example 4. If $\sigma = 0$ we obtain the operator $G_{\gamma,p}(z)$ of form (9) for $\chi = [p(\gamma - 1) + 1]$, $\delta = \frac{1}{\chi}$ and $\delta_j^2 = \gamma - 1$, $G_{\gamma,p}(z) \in V_k^{\lambda}(\eta)$ if $0 \le (1 - \rho) \sum_{j=1}^p \gamma_j + 1 < 1$ with $\eta = (\rho - 1) \sum_{j=1}^p \gamma_j + 1$.

For the next two examples we consider $\delta_i^2 = 0$, $j = \overline{1,p}$, $p \in \mathbb{N} - \{0\}$, and $\sigma = 0$.

Example 5. a) If $\chi = 1$, $\delta = 1$, we obtain a particular case of the function J(z) of form (4), in which $\beta = 1$, $\forall n \in \mathbb{N} - \{0\}$. $J(z) \in V_k^{\lambda}(\eta)$ if $0 \le (1 - \rho) \sum_{j=1}^p \gamma_j + 1 < 1$ with $\eta = (\rho - 1) \sum_{j=1}^p \gamma_j + 1$.

b) If
$$\delta = \frac{1}{\chi}$$
, $\delta_j^1 = \gamma_j$, $j = \overline{1,p}$, $p \in \mathbb{N} - \{0\}$, we obtain the operator $J(z)$ of form (4), in which $\beta = 1, \forall n \in \mathbb{N} - \{0\}$. $J(z) \in V_k^{\lambda}(\eta)$ if $0 \le (1-\rho) \sum_{j=1}^p \gamma_j + 1 < 1$ with $\eta = (\rho - 1) \sum_{j=1}^p \gamma_j + 1$.

Example 6. If n = 1, $\delta = \frac{1}{\chi}$, we obtain the operator H(z) of form (5) for $\delta_{j}^{1} = \gamma_{j}$, $j = \overline{1, p}$, $p \in \mathbb{N} - \{0\}$. $F(z) \in V_{k}^{\lambda}(\eta)$ if $0 \le (1 - \rho) \sum_{j=1}^{p} \gamma_{j} + \beta < 1$ with $\eta = (\rho - 1) \sum_{j=1}^{p} \gamma_{j} + \beta$.

ACKNOWLEDGEMENTS This work was partially supported by the strategic project POSDRU 107/1.5/S/77265, inside POSDRU Romania 2007-2013 co-financed by the European Social Fund-Investing in People. The authors thank the readers of European Journal of Pure and Applied Mathematics, for making our journal successful.

References

- [1] M. Acu, I. Dorca, and S. Owa. On some starlike functions with negative coefficients. In Daniel v. Breaz, editor, *Proceedings of the Interational Coference on Theory and Applications of Mathematics and Informatics.*, pages 101–112, Alba Iulia, 2011. ICTAMI.
- [2] M. Acu and S. Owa. Note on a class of starlike functions. In *Proceeding Of the International Short Joint Work on Study on Calculus Operators in Univalent Function Theory.*, pages 1–10, Kyoto, 2006.
- [3] D. Breaz. *Integral operators on univalent function spaces*. Editura Academiei Române., București, 2004.

REFERENCES 19

[4] D. Breaz, H. O. Güney, and G. Ş. Sălăgean. A new general integral operator. *Tamsui Oxford Journal of Mathematical Sciences.*, 25(4):407–414, 2004.

- [5] I. Dorca, M. Acu, and D. Breaz. Note on Neighborhoods of Some Classes of Analytic Functions with Negative Coefficients. *ISRN Mathematical Analysis*, 2011:7, 2011.
- [6] S. S. Miller and P. T. Mocanu. *Differential subordinations. Theory and Applications*. Marcel Dekker Inc., New York, Basel, 2000.
- [7] E. J. Moulis. Generalizations of the Robertson functions. *Pacific Journal of Mathematics.*, 81(1):167–174, 1979.
- [8] K. I. Noor, M. Arif, and A. Muhammad. Mapping properties of some classes of analytic functions under an integral operator. *Journal of Matlematical Inequalities.*, 4(4):593–600, 2010.
- [9] M. S. Robertson. Univalent functions f(z) for which zf'(z) is spiral-like. *Michigan Mathematical Journal.*, 16:97–101, 1969.
- [10] H. Silverman. Univalent functions with negative coefficients. *Proceedings of the American Mathematical Society.*, 51(1):109–116, 1975.
- [11] L. Spacek. Prispěvek k teorii funkci prostych. *Casopis pro pestovani matematiky a fysiky.*, 62:12–19, 1933.
- [12] G. S. Sălăgean. *Geometria Planului Complex*. Editura Promedia Plus., Cluj Napoca, 1999.