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1. Introduction and Preliminaries

Several mathematicians have studied the integrability conditions for trigonometric series
with different types of coefficients. The first results pertaining to the trigonometric series of
the form

a0

2
+
∞
∑

k=1

ak cos kx (1)

∞
∑

k=1

ak sin kx (2)

considered the case of monotone coefficients. Later, some authors investigated the series (1)
with quasi-monotone coefficients (an+1 ≤ an(1+α/n), n≥ n0, α > 0).

Many papers have been written on the series (1) when the sequence {ak} is a null-
sequence and convex or quasi-convex, i.e. 42ak ≥ 0 or

∞
∑

k=1

(k+ 1)|42ak|<∞, (3)

where 42ak =4
�

4ak
�

, 4ak = ak − ak+1.
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Furthermore, when {ak} is a null-sequence of bounded variation, i.e.
∑∞

k=1 |4ak| <∞, is
also considered.

We shall consider the series (1) and (2) whose coefficients tend to zero and satisfy any
condition that provides their convergence on (0,π]. Let us denote their sums with f (x) and
g(x) respectively.

If the coefficients ak are quasi-convex, it is well-known that f is an integrable function on
[0,π] (see [1]), and the estimation

∫ π

0

| f (x)|d x ≤ π
∞
∑

k=1

(k+ 1)|42ak|

is valid.
In a similar direction, among others, S. A. Telyakovskĭı [6] obtained some estimates of the

integrals of the following form

∫ π/`

π/(m+1)
|φ(x)|d x , 1≤ `≤ m, (`, m ∈ N), (4)

expressed in terms of the coefficients ak, where he used null-sequences of bounded variation
of second order (

∑∞
k=1 |4

2ak| < ∞), instead of quasi-convex null-sequences. Here φ(x) is
either f (x) or g(x).

It is obvious that the condition

∞
∑

k=1

|42ak|<∞ (5)

is a weaker condition than the condition (3).
The following definition is introduced in [4]: A sequence {ak} is of bounded variation of

integer order p ≥ 0 if
∞
∑

k=1

|4pak|<∞, (6)

where 4pak =4
�

4p−1ak

�

=4p−1ak −4p−1ak+1, and we agree with 40ak = ak.
In [4] an example is given to show that (6) is an effective generalization of the null

sequences of bounded variation. This fact encouraged the present author to consider the
series (1) with coefficients that satisfy the condition (6). The results are published in [2].
Also similar results the reader can find in [3, 4].

For an integer non-negative number r and a sequence {ak} we write4r ak = ak−ak+r and
42

r ak =4r
�

4r ak
�

= ak − 2ak+r + ak+2r . Note that for r = 1 we obtain ordinary differences
4ak = ak − ak+1 and 42ak =4

�

4ak
�

= ak − 2ak+1+ ak+2.
Let r ∈ N, k = 1,2, . . . , r, n= 0, 1,2, . . . ,

B0
0,r,k(x) =

sin ((2k− r)x/2)
2 sin(r x/2)

, x 6= 2mπ/r, m ∈ Z,
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B0
n+1,r,k(x) = cos(k+ nr)x , BC1

n,r,0(x) =
sin
�

(2n+ 1)r x
2

�

2sin
�

r x
2

�

B1
n,r,k(x) =

n
∑

m=0

B0
m,r,k(x), B2

n,r,k(x) =
n
∑

m=0

B1
m,r,k(x),

BC1
n,r,k(x) =

sin
�

(2k+ (2n+ 1)r) x
2

�

− sin
�

(2k− r) x
2

�

2sin
�

r x
2

�

B
1
n+1,r,k(x) =

n
∑

m=0

sin(k+mr)x =
cos
�

(2k− r) x
2

�

− cos
�

(2k+ (2n+ 1)r) x
2

�

2 sin
�

r x
2

� .

The following definition is introduced in [5]: A sequence {an} keeps its sign if either
an ≥ 0 for all n, or an ≤ 0 for all n.

Also in the same paper are proved some lemmas formulated below.

Lemma 1. Let r ∈ N, k = 1,2, . . . , r, n= 0,1, 2, . . . .

(a) If the sequence {4r ak+nr} keeps its sign separately for each k, then the series (1) and (2)
converge for almost all x. The function g(x +m2π

r
) is almost everywhere representable in

the form

g(x +m
2π

r
) =

r
∑

k=1

cos
�

km
2π

r

� ∞
∑

n=0

4r ak+nr B
1
n+1,r,k(x)

+
r−1
∑

k=1

sin
�

km
2π

r

� ∞
∑

n=0

4r ak+nr BC1
n,r,k(x).

(b) If the sequence {42
r ak+nr} keeps its sign separately for each k, then f (x) is almost everywhere

representable in the form

f (x) =
r
∑

k=1

∞
∑

n=0

42
r ak+(n−1)r B2

n,r,k(x).

Lemma 2. Let r ∈ N, an→ 0 for n→∞ and 42,r an ≥ 0 for all n. Then 4r an ≥ 0 and an ≥ 0
for all n.

The aim of this paper is to achieve some results, similar to those of Telyakovskĭı [6], for
the series (1) and (2) with coefficients that satisfy the conditions: the sequences {4r ak+nr}
and {42

r ak+nr} keep their sign separately for each k.
We write g(u) = Or (h(u)), u→ 0, if there exists a positive constant Ar , that depends only

on r, such that g(u)≤ Arh(u) in a neighborhood of the point u= 0. The constants Ar may be,
in general, different in different estimates.
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2. Main Results

We begin with the following result regarding to the cosine series.

Theorem 1. Let r ∈ N, k = 1, 2, . . . , r. If an → 0 as n→∞ and the sequence {42
r ak+nr} keeps

its sign separately for each k, then the series (1) converges for almost all x, and for 1 ≤ ` ≤ m,
the sum function f (x) satisfies

∫ π/`

π/(m+1)
| f (x)|d x =O

 

m+ 1− `
m

r
∑

k=1

`−1
∑

n=0

n+ 1

`
|4r ak+(n−1)r |

!

+O

 

r
∑

k=1

∞
∑

n=`

min(n+ 1− `, m+ 1− `)|42
r ak+(n−1)r |

!

.

Proof. The convergence for almost all x of the series (1) has been proved in Lemma 1(a).
Moreover, from Lemma 1(b) the sum function f (x) is almost everywhere representable in the
form

f (x) =
r
∑

k=1

∞
∑

n=0

42
r ak+(n−1)r B2

n,r,k(x). (7)

Let i be a positive integer and x ∈
� π

i+1
, π

i

�

. With agreement that B2
−1,r,k(x)≡ 0 and using the

equality

r
∑

k=1

i−1
∑

n=0

42
r ak+(n−1)r B2

n,r,k(x) =

=
r
∑

k=1

i−1
∑

n=0

�

4r ak+(n−1)r −4r ak+nr

�

B2
n,r,k(x)

=
r
∑

k=1

 

i−1
∑

n=0

4r ak+(n−1)r

�

B2
n,r,k(x)− B2

n−1,r,k(x)
�

−4r ak+(i−1)r B2
i−1,r,k(x)

!

=
r
∑

k=1

 

i−1
∑

n=0

4r ak+(n−1)r B1
n,r,k(x)−4r ak+(i−1)r B2

i−1,r,k(x)

!

,

from (7) we have

f (x) =
r
∑

k=1

 

i−1
∑

n=0

4r ak+(n−1)r B1
n,r,k(x) +

∞
∑

n=i

42
r ak+(n−1)r

�

B2
n,r,k(x)− B2

i−1,r,k(x)
�

!

.

It is obvious that |B1
n,r,k(x)| ≤ n+ 1, and since from (see [5, page 65])

B2
n,r,k(x) =

sin2
�

(k+ nr) x
2

�

− sin2
�

(k− r) x
2

�

2sin2
�

r x
2

�
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follows

|B2
n,r,k(x)− B2

i−1,r,k(x)| ≤
2

sin2
�

r x
2

� ,

we have
∫ π/i

π/(i+1)
| f (x)|d x = O

(

r
∑

k=1

 

i−1
∑

n=0

|4r ak+(n−1)r |
k+ 1

i(i+ 1)
+
∞
∑

n=i

|42
r ak+(n−1)r |

!)

.

Now if we take the summation, when i goes from ` to m, to the both sides of the above
equality we get

∫ π/`

π/(m+1)
| f (x)|d x = O

(

r
∑

k=1

 

m
∑

i=`

i−1
∑

n=0

|4r ak+(n−1)r |
n+ 1

i(i+ 1)
+

m
∑

i=`

∞
∑

n=i

|42
r ak+(n−1)r |

!)

. (8)

For the first term in the parentheses of the right-hand side of (8) we have

m
∑

i=`

i−1
∑

n=0

|4r ak+(n−1)r |
n+ 1

i(i+ 1)
=

=
m
∑

i=`

`−1
∑

n=0

|4r ak+(n−1)r |
n+ 1

i(i+ 1)
+

m
∑

i=`+1

i−1
∑

n=`

|4r ak+(n−1)r |
n+ 1

i(i+ 1)

=
`−1
∑

n=0

(n+ 1)|4r ak+(n−1)r |
�

1

`
−

1

m+ 1

�

+
m−1
∑

n=`

(n+ 1)|4r ak+(n−1)r |
�

1

n+ 1
−

1

m+ 1

�

≤
m+ 1− `

m

`−1
∑

n=0

n+ 1

`
|4r ak+(n−1)r |+

m
∑

n=`

∞
∑

j=n

|42
r ak+( j−1)r |. (9)

But the second term in (9) can be written as

m
∑

i=`

∞
∑

n=i

|42
r ak+(n−1)r |=

m
∑

i=`

m
∑

n=i

|42
r ak+(n−1)r |+

m
∑

i=`

∞
∑

n=i

|42
r ak+(n−1)r |

=
m
∑

n=`

(n+ 1− `)|42
r ak+(n−1)r |

+ (m+ 1− `)
∞
∑

n=m+1

|42
r ak+(n−1)r |. (10)

The proof of theorem follows from (8), (9) and (10).

Now we shall prove an estimation of the integral in Theorem 1 only in terms of second
order difference of the sequence {ak+(n−1)r}.
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Corollary 1. If the coefficients of the series (1) satisfy conditions of the Theorem 1, then

∫ π/`

π/(m+1)
| f (x)|d x = O

 

m+ 1− `
m

r
∑

k=1

∞
∑

n=0

min

�

(n+ 1)2

`
, n+ 1, m

�

|42
r ak+(n−1)r |

!

.

Proof. To deduce the required estimation we use the identity

4r ak+(n−1)r =
∞
∑

i=n

�

42
r ak+(i−1)r

�

.

We have

`−1
∑

n=0

n+ 1

`
|4r ak+(n−1)r | ≤

`−1
∑

n=0

n+ 1

`

∞
∑

i=n

|42
r ak+(i−1)r |

=
`−1
∑

i=0

i
∑

n=0

n+ 1

`
|42

r ak+(i−1)r |+
∞
∑

i=`

`−1
∑

n=0

n+ 1

`
|42

r ak+(i−1)r |

≤
`−1
∑

i=0

(i+ 1)2

`
|42

r ak+(i−1)r |+ `
∞
∑

i=`

|42
r ak+(i−1)r |. (11)

If k < m, then we can estimate the second term in the estimation of the Theorem 1 by means
of the fact that

n+ 1− `≤ n+ 1− `
n+ 1

m
=

m− `
m
(n+ 1).

Finally, from the above and (11) along with the estimate of the Theorem 1 we immediately
obtain the required estimation.

In the following we shall deal with trigonometric series of the form (2).

Theorem 2. Let r ∈ N, k = 1, 2, . . . , r. If an → 0 as n→∞ and the sequence {4r ak+nr} keeps
its sign separately for each k, then the series (2) converges for almost all x, and for 1 ≤ ` ≤ m,
the sum function g(x) satisfies

∫ π/`

π/(m+1)
| f (x)|d x =

r
∑

k=1

m
∑

i=`

di,r,k

k
|ak+ir |

+Or







m+ 1− `
m

r
∑

k=1

`−1
∑

n=1

n2

`2 |4r ak+nr |+
r
∑

k=1

m
∑

n=`

∞
∑

j=n

|42
r ak+ jr |






,

where

di,r,k := ln
sin rπ

2i

sin rπ
2(i+1)

+ cos
kπ

2i(i+ 1)
cos

kπ(2i+ 1)
2i(i+ 1)

.
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Proof. Under assumptions of the theorem and Lemma 1(a) the series (2) converges for
almost all x and for m = 0 the sum function g(x) is almost everywhere representable in the
form

g(x) =
r
∑

k=1

∞
∑

n=0

4r ak+nr B
1
n+1,r,k(x).

Let us denote

ϕn,r,k(x) :=−
cos(2k+ (2n+ 1)r) x

2

2sin
�

r x
2

� ,

ψn,r,k(x) :=
n
∑

s=0

ϕs,r,k(x) =
sin(k+ nr)x + sin kx

4sin2
�

r x
2

� .

Let i ∈ N be such that i ≥ r. From definition of B
1
n+1,r,k(x) we can write

g(x) =
r
∑

k=1

i−1
∑

n=0

4r ak+nr B
1
n+1,r,k(x) +

r
∑

k=1

∞
∑

n=i

4r ak+nr B
1
n+1,r,k(x)

=
r
∑

k=1

i−1
∑

n=0

4r ak+nr B
1
n+1,r,k(x) +

r
∑

k=1

∞
∑

n=i

4r ak+nr

cos(2k− r) x
2

2 sin
�

r x
2

�

−
r
∑

k=1

∞
∑

n=i

4r ak+nr

cos(2k+ (2n+ 1)r) x
2

2 sin
�

r x
2

�

=
r
∑

k=1

ak+ir

cos(2k− r) x
2

2 sin
�

r x
2

� +
r
∑

k=1

i−1
∑

n=0

4r ak+nr B
1
n+1,r,k(x)

+
r
∑

k=1

∞
∑

n=i

4r ak+nrϕn,r,k(x) := h0(x) + h1(x) + h2(x). (12)

For x ∈
� π

i+1
, π

i

�

, i = 1,2, . . . , we have

∫ π/`

π/(m+1)
|h1(x)|d x ≤

m
∑

i=`

∫ π/i

π/(i+1)

r
∑

k=1

i−1
∑

n=0

|4r ak+nr ||B
1
n+1,r,k(x)|d x

=
r
∑

k=1

m
∑

i=`

`−1
∑

n=0

|4r ak+nr |
∫ π/i

π/(i+1)
|B1

n+1,r,k(x)|d x

+
r
∑

k=1

m
∑

i=`+1

i−1
∑

n=`

|4r ak+nr |
∫ π/i

π/(i+1)
|B1

n+1,r,k(x)|d x

=
r
∑

k=1

`−1
∑

n=0

|4r ak+nr |
∫ π/`

π/(m+1)
|B1

n+1,r,k(x)|d x
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+
r
∑

k=1

m−1
∑

n=`

|4r ak+nr |
∫ π/(n+1)

π/(m+1)
|B1

n+1,r,k(x)|d x . (13)

Since

|B1
n+1,r,k(x)| ≤

n
∑

m=0

(k+mr)x ≤ 4rn2 x ,

then from (13) it follows that

∫ π/`

π/(m+1)
|h1(x)|d x ≤Cr

r
∑

k=1

`−1
∑

n=1

n2|4r ak+nr |
�

1

`2 −
1

(m+ 1)2

�

+ Cr

r
∑

k=1

m−1
∑

n=`

n2|4r ak+nr |
�

1

(n+ 1)2
−

1

(m+ 1)2

�

≤Cr
m+ 1− `

m

r
∑

k=1

`−1
∑

n=1

n2

`2 |4r ak+nr |+ Cr

r
∑

k=1

m
∑

n=`

∞
∑

j=n

|42
r ak+ jr |. (14)

Now we shall estimate the integral of the function |h2(x)| for x ∈
� π

i+1
, π

i

�

. Indeed, the
summation by parts gives

h2(x) = lim
p→∞

r
∑

k=1

p
∑

n=i

4r ak+nrϕn,r,k(x)

=
r
∑

k=1

lim
p→∞

� p−1
∑

n=i

42
r ak+nr

n
∑

s=0

ϕs,r,k(x)

−4r ak+ir

i−1
∑

s=0

ϕs,r,k(x) +4r ak+pr

p
∑

s=0

ϕs,r,k(x)
�

=
r
∑

k=1

 

∞
∑

n=i

42
r ak+nrψn,r,k(x)−4r ak+irψi−1,r,k(x)

!

=
r
∑

k=1

∞
∑

n=i

42
r ak+nr

�

ψn,r,k(x)−ψi−1,r,k(x)
�

,

where ψn,r,k(x) are defined as above. So, we have

∫ π/`

π/(m+1)
|h2(x)|d x ≤Cr

r
∑

k=1

m
∑

i=`

∫ π/i

π/(i+1)

∞
∑

n=i

|42
r ak+nr |

d x

x2

≤Cr

r
∑

k=1

m
∑

i=`

∞
∑

n=i

|42
r ak+nr |. (15)
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It is clear that for i ≥ r

∫ π/i

π/(i+1)

�

�

�

�

cos(2k− r) x
2

2 sin
�

r x
2

�

�

�

�

�

d x =
1

2

∫ π/i

π/(i+1)

�

�

�

�

cos kx cot
� r x

2

�

+ sin kx

�

�

�

�

d x

≤
1

2

∫ π/i

π/(i+1)
cot
� r x

2

�

d x +
1

2

∫ π/i

π/(i+1)
sin kxd x

≤
1

k

 

ln
sin rπ

2i

sin rπ
2(i+1)

+ cos
kπ

2i(i+ 1)
cos

kπ(2i+ 1)
2i(i+ 1)

!

=
di,r,k

k
. (16)

Therefore from (16) we have

∫ π/`

π/(m+1)
|h0(x)|d x ≤

r
∑

k=1

m
∑

i=`

|ak+ir |
∫ π/i

π/(i+1)

�

�

�

�

cos(2k− r) x
2

2sin
�

r x
2

�

�

�

�

�

d x

≤
r
∑

k=1

m
∑

i=`

di,r,k

k
|ak+ir |. (17)

Finally, the proof of the theorem is an immediate result of relations (12), (14), (15) and (17).
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