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1. Introduction

Let ∆= {z : |z|< 1} be the open unit disk in the complex plane C. Recall that the

well known Bloch space (cf. [2]) is defined as follows:

B = { f : f analytic in ∆ and sup
z∈∆
(1− |z|2)| f ′(z)|<∞};

the little Bloch spaceB0 (cf. [2]) is a subspace ofB consisting of all f ∈B such that

lim
|z|→1−

(1− |z|2)| f ′(z)|= 0.

The Dirichlet space is defined by

D = { f : f analytic in ∆ and

∫

∆

�

� f ′(z)
�

�

2
dσz <∞},

where dσz is the Euclidean area element d xd y. Let 0 < q <∞. Then the Besov-type

spaces

Bq =

�

f : f analytic in ∆ and sup
a∈∆

∫

∆

�

� f ′(z)
�

�

q�
1− |z|2
�q−2
(1− |ϕa(z)|

2)2dσz <∞
�

are introduced and studied intensively by Stroethoff (cf. [11]). Here, ϕa(z) stands for

the Möbius transformation of ∆ given by

ϕa(z) =
a− z

1− āz
, where a ∈∆.

In 1994, Aulaskari and Lappan [2] introduced a class of holomorphic functions, the

so called Qp-spaces as follows:

Qp =

�

f : f analytic in ∆ and sup
a∈∆

∫

∆

�

� f ′(z)
�

�

2
g p(z, a)dσz <∞

�

,

where 0< p <∞ and the weight function

g(z, a) = log

�

�

�

�

1− āz

a− z

�

�

�

�
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is defined as the composition of the Möbius transformation ϕa and the fundamental

solution of the two-dimensional real Laplacian. The weight function g(z, a) is actually

Green’s function in ∆ with pole at a ∈∆.

For 0 < p < ∞,−2 < q < ∞, we say that a function f analytic in ∆ belongs to the

space QK(p, q) (cf. [14]), if

‖ f ‖K,p,q = sup
a∈∆

∫

∆

�

� f ′(z)
�

�

p�
1− |z|2
�q

K(g(z, a))dσz <∞.

Recall that the analytic function

f (z) =

∞
∑

k

akznk (with nk ∈ N ; for all k ∈ N= {1, 2, 3, . . . } )

is said to belong to the Hadamard gap class (also known as lacunary series) if there

exists a constant c > 1 such that
nk+1

nk
≥ c for all k ∈ N (see e.g. [17]).

Two quantities A f and B f , both depending on an analytic function f on ∆, are said

to be equivalent, written as A f ≈ B f , if there exists a finite positive constant C not

depending on f such that for every analytic function f on ∆ we have:

1

C
B f ≤ A f ≤ CB f .

If the quantities A f and B f , are equivalent, then in particular we have A f <∞ if and

only if B f <∞.

Now, given a reasonable function ω : (0, 1]→ [0,∞), the weighted Bloch space Bω

(see [4]) is defined as the set of all analytic functions f on ∆ satisfying

(1− |z|)| f ′(z)| ≤ Cω(1− |z|), z ∈∆,

for some fixed C = C f > 0. In the special case where ω ≡ 1,Bω reduces to the

classical Bloch space B . Here, the word "reasonable" is a non-mathematical term; it

was just intended to mean that the "not too bad" and the function satisfy some natural

conditions.

Now, we introduce the following definitions:
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Definition 1.1. For a given reasonable functionω : (0, 1]→ [0,∞) and for 0< α<∞.

An analytic function f on ∆ is said to belong to the α−weighted Bloch space Bα
ω

if

‖ f ‖Bαω = sup
z∈∆

(1− |z|)α

ω(1− |z|)
| f ′(z)| <∞.

Definition 1.2. For a given reasonable functionω : (0, 1]→ [0,∞) and for 0< α<∞.

An analytic function f on ∆ is said to belong to the little weighted Bloch space Bα
ω,0

if

‖ f ‖Bαω,0
= lim
|z|→1−

(1− |z|)α

ω(1− |z|)
| f ′(z)|= 0.

Throughout this paper and for some techniques we consider the case of ω 6≡ 0.

Now, we introduce the following new definition:

Definition 1.3. For a nondecreasing function K : [0,∞)→ [0,∞), 0 < p <∞, and for

a given reasonable function ω : (0, 1]→ (0,∞), an analytic function f in ∆ is said to

belong to the space QK,ω if

‖ f ‖pK,ω = sup
a∈∆

∫

∆

�

� f ′(z)
�

�

p
(1− |z|)p

K(g(z, a))

ωp(1− |z|)
dσz <∞.

Remark 1.1. It should be remarked that our QK,ω classes are more general than many

classes of analytic functions. If ω ≡ 1, we obtain QK(p, p) type spaces (cf. [14] and

[15]). If p = 2, and ω(t) = t , we obtain QK spaces as studied recently in [5, 6, 9,

12, 13, 16] and others. If p = 2, ω(t) = t and K(t) = t p, we obtain Qp spaces as

studied in [2, 3, 17] and others. If ω ≡ 1 and K(t) = t s, then QK,ω = F(p, p, s) classes

(cf. [1,18]).

In this paper, we characterize the weighted Bloch space Bα
ω

by our QK,ω spaces.

One of the main results is a general Besov-type characterization forBα
ω

functions that

extends and generalizes the Stroethoff’s theorem [11]. Also, we extend and improve

some results due to Essén et. al [6] using our new definitions.
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2. Holomorphic QK ,ω Classes

In this paper we show some relations between QK,ω norms and Bα
ω

norms for a

nondecreasing function K , , also we give a general way to construct different spaces

QK,ω1
and QK2,ω by using some functions K1 and K2. Before proving theorems we recall

few facts about the Möbius function ϕa. First, the function ϕa is easily seen to be it

own inverse under composition:

(ϕa ◦ϕa)(z) = z for all z ∈∆

The following identity can be obtained by straight forward computation:

1− |ϕa(z)|
2 =
(1− |a|2)(1− |z|2)

|1− az|2
, (a, z ∈∆).

A slightly different form in which we will apply the above identity is:

1− |ϕa(z)|
2

1− |z|2
= |ϕ′

a
(z)| , (a, z ∈∆). (2.1)

For a ∈ ∆, the substitution z = ϕa(w) results in the Jacobian change in measure

given by dσw = |ϕ
′
a
(z)|2dσz . For a Lebesgue integrable or a non-negative Lebesgue

measurable function h on ∆ we thus have the following change-of-variable formula:
∫

∆(0,r)

h(ϕa(w))dσw =

∫

∆(a,r)

h(z)

�

1− |ϕa(z)|
2

1− |z|2

�2

dσz . (2.2)

We assume throughout this paper that

∫ 1

0

K

�

log
1

r

�

r

(1− r2)2
dr <∞ . (2.3)

We need the following lemmas in the sequel.

Lemma 2.1. [17] Let α ∈ (0,∞) and suppose that f (z) =
∞
∑

j=1

a jz
n j belongs to Hadamard

gap class. Then f ∈Bα if and only if

sup
j∈N
|a j|n

1−α
j
<∞ , where N = {1, 2, 3, . . . } .
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Lemma 2.2. Let ω : (0, 1]→ (0,∞) be a nondecreasing function. Then there are two

functions f1 , f2 ∈Bω such that

| f ′
1
(z)|+ | f ′

2
(z)| ≈

ω(1− |z|)

(1− |z|)
, z ∈∆. (2.4)

Proof. For a large number q ∈ N, choose a gap series:

f1(z) =

∞
∑

j=0

zq j

, z ∈∆.

Then, apply lemma 2.1 to infer that
(1−|z|)| f ′1(z)|

ω((1−|z|))
≤ λ holds for all z ∈ ∆, where λ is a

constant. Furthermore, let us verify

(1− |z|)| f ′
1
(z)|

ω((1− |z|))
≥ λ , 1− q−k ≤ |z| ≤ 1− q−(k+

1

2
) , k ∈ N. (2.5)

And

q−(k+
1

2
) ≤ 1− |z| ≤ q−k⇒ω(q−(k+

1

2
))≤ω(1− |z|)≤ω(q−k).

Observe that for any z ∈∆,

| f ′
1
(z)| ≥ qk|z|q

k

−
k−1
∑

j=0

q j|z|q
j

−
∞
∑

k+1

q j|z|q
j

= T1− T2− T3.

And then, fix a z with |z| ∈ [1− q−k, 1− q−(k+
1

2
)], k ∈ N, and put x = |z|q

k

.

Thus

(1− q−k)q
k

≤ x ≤ [(1− q−(k+
1

2
))q

k+ 1
2
]q
−1
2

.

If q is large enough, then for k ≥ 1 one has

1

3
≤ x ≤ (

1

2
)q
−1
2

, (2.6)

and hence T1 ≥
qk

3
. Since it is easy to establish

T2 ≤
k−1
∑

j=0

q j ≤
qk

q− 1
,
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it remains to deal with the third term T3. Noting that

|z|q
n(q−1) ≤ |z|q

k+1(q−1), n ≥ k+ 1,

namely, in T3 the quotient of two successive terms is not greater than the ratio of the

first two terms, one finds that the series of T3 is controlled by the geometric series

having the same first two terms. Accordingly (2.6) is applied to produce

T3 ≤ qk+1|z|q
k+1
∞
∑

j=0

�

q|z|q
k+2−qk+1

� j

=
qk+1|z|q

k+1

1− q|z|(qk+2−qk+1)
= qk

qxq

1− qxq2−q

≤ qk
q(1

2
)q

1
2

1− q(1

2
)q

3

2 − q
1

2

.

The preceding estimates for T1, T2 and T3 imply

| f ′
1
(z)| ≥

qk

4

ω(1− |z|)

ω(1− |z|)
=

qk+ 1

2

4q
1

2

ω(1− |z|)

ω(1− |z|)

≥
ω(1− |z|)

4q
1

2 (1− |z|)×ω(1− |z|)

≥
ω(1− |z|)

4q
1

2ω(q−k)× (1− |z|)
; ω(q−k) 6→ ∞.

Reaching (2.5).

In a completely similar manner one can prove that if q is a large natural number, for

example q = m2 where m is a large natural number, and if

f2(z) =

∞
∑

j=0

zq j

, z ∈∆,

then (1− |z|2)| f ′
2
(z)| ≤ λ for all z ∈∆ (owing to Lemma 2.1) and

(1− |z|)| f ′
1
(z)|

ω((1− |z|))
≤ λ, 1− q−(k+

1

2
) ≤ |z| ≤ 1− q−(k+1), k ∈ N. (2.7)
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Of course, (2.5) and (2.7) yield (2.4) unless it occurs that f ′
1

and f ′
2

have common

zero in {z ∈ ∆ : |z| < 1 − q−1} in which case one can replace f2 with f2(ζz) for

appropriate ζ ∈ ∂∆, where ∂∆ is the boundary of the unit disk (note that f ′(0) = 1).

Our lemma is therefore proved .

Using the same steps of Lemma 2.2, it is not hard to prove the following lemma.

Lemma 2.3. Let ω : (0, 1]→ (0,∞) be a nondecreasing function and let 1 ≤ α <∞.

Then there are two functions f1 , f2 ∈B
α
ω

such that

| f ′
1
(z)|+ | f ′

2
(z)| ≈

ω(1− |z|)

(1− |z|)α
, z ∈∆. (2.8)

Proof. The proof is very similar to the proof of Lemma 2.2 and lemma 3.1 in [7],

so it will be omitted.

Theorem 2.1. For each non-decreasing function K : [0,∞) → [0,∞), 0 < p < ∞

and for a given reasonable non-decreasing function ω : (0, 1]→ (0,∞) with ω(α t) ≈

ω(t), α > 0, we have that

(i) QK,ω ⊂B
p+2

p

ω and

(ii) QK,ω =B
p+2

p

ω , iff

∫ 1

0

K

�

log
1

r

�

r

(1− r2)2
dr <∞.

Proof. For a fixed r ∈ (0, 1) and a ∈∆, let

E(a, r) =

�

z ∈∆ , |z− a| < r(1− |a|)
�

.

We know that E(a, r) ⊂∆(a, r) and for any z ∈ E(a, r), we have

(1− r)(1− |a|) ≤ 1− |z| ≤ (1+ r)(1− |a|),

which means that 1− |z|2 ≃ 1− |a|2 for any z ∈ E(a, r). Denote

Fω,p( f )(z) =
�

� f ′(z)
�

�

p (1− |z|)p

ωp(1− |z|)
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Then, we obtain
∫

∆

Fω,p( f )(z)K
�

g(z, a)
�

dσz ≥

∫

∆(a,r)

Fω,p( f )(z)K
�

g(z, a)
�

dσz

≥ K

�

log
1

r

�
∫

∆(a,r)

Fω,p( f )(z) dσz

≥ K

�

log
1

r

�
∫

E(a,r)

Fω,p( f )(z) dσz.

For every z ∈ E(a, r), we have that

(1− r)(1− |a|) ≤ 1− |z| ≤ (1+ r)(1− |a|),

Then,

(1− |z|)p ≥ (1− r)p(1− |a|)p , ∀ p > 0.

Now, since we assume that ω is non-decreasing, then we obtain that
∫

E(a,r)

Fω,p( f )(z) dσz ≥
(1− r)p(1− |a|)p

ωp((1− r)(1− |a|))

∫

E(a,r)

�

� f ′(z)
�

�

p
dσz.

Since | f ′(z)|p is a subharmonic function, then
∫

E(a,r)

�

� f ′(z)
�

�

p
dσz ≥ |E(a, r)| . | f ′(a)

�

�

p
= r2(1− |a|)2| f ′(a)

�

�

p
.

Then we obtain
∫

∆

Fω,p( f )(z)K
�

g(z, a)
�

dσz ≥ K

�

log
1

r

�

(1− r)p(1− |a|)p+2

ωp((1− r)(1− |a|))
| f ′(a)
�

�

p

≥ λK

�

log
1

r

�

(1− r)p(1− |a|)p+2

ωp(1− |a|)
| f ′(a)
�

�

p

where λ is a constant. If f ∈ QK,ω, then by the above estimate we have that

sup
a∈∆

(1− |a|)p+2| f ′(z)|p

ωp(1− |a|)
<∞.
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The proof of (i) is therefore completed.

Now, we show that B
p+2

p

ω ⊂ QK,ω provided that K satisfies condition (2.3). For f ∈

B
p+2

p

ω , we have that,
∫

∆

Fω,p( f )(z)K
�

g(z, a)
�

dσz ≤




 f






p

B
p+2

p
ω

∫

∆

(1− |z|2)−2K
�

g(z, a)
�

dσz

= 2π




 f






p

B
p+2

p
ω

∫ 1

0

K

�

log
1

r

�

r

(1− r2)2
dr <∞,

which shows that

B
p+2

p

ω ⊂ QK,ω.

Now we assume thatB
p+2

p

ω = QK,ω and we verify (2.3) holds. From Lemma 2.3, for f1

and f2 inB
p+2

p

ω , we have that

| f ′
1
(z)|+ | f ′

2
(z)| ≥

ω(1− |z|)

(1− |z|)
p+2

p

. (2.9)

Then f1, f2 ∈ QK,ω and

∞ > sup
a∈∆

∫

∆

�

�

� f ′
1
(z)
�

�

p
+
�

� f ′
2
(z)
�

�

p
�

(1− |z|)p
K
�

g(z, a)
�

ωp(1− |z|)
dσz

≥

∫

∆

�

�

� f ′
1
(z)
�

�+
�

� f ′
2
(z)
�

�

�p

(1− |z|)p
K
�

g(z, 0)
�

ωp(1− |z|)
dσz (2.10)

From (2.9) and (2.10), we obtain

∫

∆

�
�

� f ′
1
(z)
�

�

p
+
�

� f ′
2
(z)
�

�

p�
(1− |z|)p

K
�

g(z, 0)
�

ωp(1− |z|)
dσz ≈ 2π

∫ 1

0

K

�

log
1

r

�

r

(1− r2)2
dr.

Thus (2.3) holds, and this completes the proof.

3. The Classes QK ,ω,0 and Bα
ω,0

We say that f ∈ QK,ω,0 if

lim
|a|→1−

∫

∆

�

� f ′(z)
�

�

p
(1− |z|)p

K(g(z, a))

ωp(1− |z|)
dσz = 0. (3.1)
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Also, as a subspace ofBα
ω

, we define the little weighted Bloch spaceBα
ω,0

as the space

which consists of analytic functions f on ∆ such that

lim
|z|→1−

(1− |z|)α| f ′(z)|

ω(1− |z|)
= 0

where 0< α <∞. Thus we can obtain the following theorem:

Theorem 3.1. For each nondecreasing function K : [0,∞)→ [0,∞), 0 < p <∞, for a

given reasonable non-decreasing function ω : (0, 1]→ (0,∞) withω(α t)≈ω(t), α >

0. Then

(i) QK,ω,0 ⊂B
p+2

p

ω,0 and

(ii) QK,ω,0 =B
p+2

p

ω,0 , if and only if (2.3) holds.

Proof. Without loss of generality, we assume that K(1) > 0. From the proof of

Theorem 2.1, we have that

π(1

e
)2 K(1)

(1−|a|)p+2

ωp(1−|a|)
| f ′(a)|p ≤ K(1)

∫

E(a)

Fω,p( f )(z) dσz

≤ K(1)

∫

∆(a, 1

e
)

Fω,p( f )(z) dσz

≤

∫

∆

Fω,p( f )(z)K
�

g(z, a)
�

dσz ,

where

E(a) =

�

z ∈∆ , |z− a| <
1

e
(1− |a|)
�

.

If f ∈ QK,ω,0, we obtain that

lim
|a|→1−

(1− |a|)p+2| f ′(a)|p

ωp(1− |a|)
= 0.

(ii) We only need to prove thatB
p+2

p

ω,0 ⊂QK,w,0. Assume that

A=

∫ 1

0

K

�

log
1

r

�

r

(1− r2)2
dr <∞.
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For a given ε > 0 there exists an r1, 0 < r1 < 1, such that

∫ 1

r1

K

�

log
1

r

�

r

(1− r2)2
dr < ε. (3.2)

Then we have that,

∫

∆\∆(a,r1)

�

� f ′(z)
�

�

p
(1− |z|)p

K(g(z, a))

ωp(1− |z|)
dσz ≤




 f






p

B
p+2

p

ω,0

∫

∆\∆(a,r1)

K(g(z, a))

(1− |z|2)2
dσz

=




 f






p

B
p+2

p

ω,0

∫

r1<|w|<1

K

�

log
1

|w|

�

1

(1− |w|2)2
dσw

=




 f






p

B
p+2

p

ω,0

∫ 1

r1

K

�

log
1

r

�

r

(1− r2)2
dr ≤ 2πε




 f






p

B
p+2

p

ω,0

. (3.3)

Similarly, if f ∈B
p+2

p

ω,0 , we obtain that

| f ′(ϕa(w))|
p
(1− |ϕa(w)|

2)
p+2

p

ωp(1− |ϕa(w)|)
−→ 0

converges uniformly for |w| ≤ r if |a| → 1−, where r is fixed and 0 < r < 1. Then, we

obtain that

lim
|a|→1−

∫

∆

�

� f ′(z)
�

�

p
(1− |z|)p

K
�

g(z, a)
�

ωp(1− |z|)
dσz

= lim
|a|→1−

∫

|w|<r

�

� f ′(ϕa(w))
�

�

p
(1− |ϕa(w)|)

p
K
�

log 1

|w|

�

ωp(1− |ϕa(w)|)

1

(1− |w|2)2
dσw .

≤ A lim
|a|→1−

sup
|w|≤r1

�

� f ′(ϕa(w))
�

�

p (1− |ϕa(w)|)
p+2

ωp(1− |ϕa(w)|)
= 0 (3.4)

where By (3.2) and (3.3) it is easy to obtain that

lim
|a|→1−

∫

∆

�

� f ′(z)
�

�

p
(1− |z|)p

K
�

g(z, a)
�

ωp(1− |z|)
dσz = 0. (3.5)

Conversely, suppose that (2.3) does not hold; that is

∫ 1

0

K

�

log
1

r

�

r

(1− r2)2
dr =∞.
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Thus we find a continuous strictly decreasing function g : [0, 1) −→ [0,∞) tending

to zero at 1 such that

∫ 1

0

K

�

log
1

r

�

g(r)

(1− r2)2
r dr =∞. (3.6)

It is easy to see that

r2k+1−2 ≥ exp{−2k+2(1+ r)}, r ∈ [0.5, 1). (3.7)

We know for β > 0 that, t2β exp{−4t}
t=
β

2

=
�β

2

�2β
exp{−2β}. Then, there exists an

integer k for 3

4
≤ r < 1 such that

β

2
≤ 2k(1− r) <

β+1

2
and

2βk exp{−2k+2(1− r)} = (1− r)−2β

�

2k(1− r)

�2β

exp{−2k+2(1− r)}

>

�

1+ β

2

�2β

(1− r)−2β exp{−2(β + 1)}. (3.8)

For 3

4
≤ r < 1 we define

f0(z) =

∞
∑

k=0

ak 2
2k

p z2k

,

where ak = g
�

1− (p+1)

p
2k
�

, k = 0, 1, 2, . . . . By (3.7) and (3.8), we deduce that

M2
2
(r, f ′

0
) =

∫ 2π

0

| f ′0(r eiθ )|2 dθ = 2π

∞
∑

k=0

a2
k

2
2k(p+2)

p z2k−2

≥ 2πg
2

p (r) 2
2k(p+2)

p exp{−2k+2(1− r)} ≥ λ g
2

p (r)(1− r)
−2(p+2)

p , (3.9)

where λ is a constant. Since f0 is defined by a gap series with Hadamard condition,

we have

M2(r, f ′
0
)≈ Mp(r, f ′

0
), where Mp(r, f ′

0
) =

�
∫ 2π

0

| f ′0(r eiθ )|p dθ

�
1

p

.
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Therefore,

sup
a∈∆

∫

∆

�

� f ′
0
(z)
�

�

p
(1− |z|)p

K(g(z, a))

ωp(1− |z|)
dσz ≥

∫ 1

0

M p
p
(r, f ′

0
)(1− r2)pK

�

log
1

r

�

r dr

≈

∫ 1

0

M
p

2 (r, f ′
0
)(1− r2)pK

�

log
1

r

�

r dr

≥

∫ 1

3

4

K

�

log
1

r

�

g(r)

(1− r2)2
r dr =∞.

This means that f0 ∈ B
p+2

p

ω,0 \QK,w,0, which is a contraction. Hence (2.3) holds. This

completes the proof of our theorem.

4. More Results on QK ,ω-spaces

The following result means that the kernel function K can be chosen as bounded.

Theorem 4.1. Assume that K(1) > 0. Let K1(r) = inf{K(r), K(1)}, then

QK,w = QK1,w.

Proof. Since K1 ≤ K and K1 is nondecreasing, it is clear that QK,ω ⊂ QK1,w. It

remains to prove that QK1,ω ⊂ QK,ω. We note that

g(z, a) > 1, z ∈∆(a,
1

e
) and

g(z, a) ≤ 1, z ∈∆ \∆(a,
1

e
).

Thus K(g(z, a)) = K1(g(z, a)) in ∆\∆(a, 1

e
). It suffices to deal with integrals over

∆(a, 1

e
). If f ∈QK1,ω and f is a weighted Bloch function i.e, f ∈Bω then by Theorem

2.1, it follows that
∫

∆(a, 1

e
)

| f ′(z)|p (1− |z|)p
K
�

g(z, a)
�

ωp(1− |z|)
dσz ≤




 f






p

B
p+2

p
ω

∫

∆(a, 1

e
)

K
�

g(z, a)
� 1

(1− |z|2)2
dσz

=




 f






p

B
p+2

p
ω

∫

∆(0, 1

e
)

K

�

log
1

|w|

�

1

(1− |z|2)2
dσw ≤ C




 f






p

B
p+2

p
ω
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Thus, f ∈QK,ω and Theorem 4.1 is proved.

Corollary 4.1. Let 0< p <∞, ω : (0, 1]→ (0,∞). Then f ∈ QK,w if and only if

sup
a∈∆

∫

∆

| f ′(z)|p (1− |z|)p
K(1− |ϕa(z)|

2)

ωp(1− |z|)
dσz <∞.

For the application of the above results, we state the following lemma which is

needed later.

Lemma 4.1. Let K : [0,∞)→ [0,∞), 0< p <∞, for a given reasonable function

ω : (0, 1]→ (0,∞). Then

(i) f ∈B
p+2

p

ω if and only if there exists R ∈ (0, 1) such that

sup
a∈∆

∫

∆(a,R)

| f ′(z)|p (1− |z|)p
(1− |z|)K(g(z, a))

ωp(1− |z|)
dσz <∞, (4.1)

(ii) f ∈B
p+2

p

ω,0 if and only if there exists R ∈ (0, 1) such that

lim
|a|→1−

∫

∆(a,R)

| f ′(z)|p (1− |z|)p
K(g(z, a))

ωp(1− |z|)
dσz = 0. (4.2)

Proof. (i) Assume f ∈B
p+2

p

ω . For any R ∈ (0, 1) and a ∈∆, we have

∫

∆(a,R)

| f ′(z)|p (1− |z|)p
K(g(z, a))

ωp(1− |z|)
dσz

=

∫

∆(0,R)

| f ′(ϕa(z))|
p
(1− |ϕa(z)|

2)p+2

(1+ |ϕa(z)|)p+2

K
�

1

|z|

�

(1− |z|2)2ωp(1− |z|)
dσz

≤ ‖ f ‖p

B
p+2

p
ω

∫

∆(0,R)

K

�

log
1

|z|

�

1

(1− |z|2)2
dσz

≤ λ1‖ f ‖
p

B
p+2

p
ω

,

where 1 < (1+|ϕa(z)|)
p+2 < 2p+2 and λ1 is a constant. Conversely, suppose that (4.1)

holds for some R, 0 < R< 1, by the proof of Theorem 2.1 (i) with 1− |a| ≈ 1− |z| on
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E(a, R) ; a, z ∈∆, we obtain
∫

∆(a,R)

| f ′(z)|p (1− |z|)p
K(g(z, a))

ωp(1− |z|)
dσz ≥ K(log

1

R
)

∫

∆(a,R)

| f ′(z)|p
(1− |z|)p

ωp(1− |z|)
dσz

≥ λ2 K

�

log
1

R

�

ω−p(1− |a|)

∫

E(a,R)

| f ′(z)|p (1− |z|)p dσz

≥ πλ2R2K

�

log
1

R

�

(1− |a|)p

ωp(1− |a|)
| f ′(a)|p ,

where λ2 is a constant. The last inequality shows that f ∈ B
p+2

p

ω The proof of (ii) is

similar to proof (i) by taking the limit when |a| −→ 1− in (i), hence it can be omitted.

Theorem 4.2. Let 0< p <∞, ω : (0, 1]→ (0,∞). Assume K1(r)≤ K2(r) for r ∈ (0, 1)

and
K1(r)

K2(r)
→ 0 as r → 0. If the integral in (2.3) is divergent for K2, then

QK2,ω $ QK1,ω .

Proof. It is clear that QK2,ω ⊂ QK1,ω. Suppose that

QK2,ω =QK1,ω.

By the open mapping theorem (see [8]), we know that the identity map from one of

these spaces into the other one is continuous. Thus there exists a constant C such that

‖ f ‖K2,ω ≤ C‖ f ‖K1,ω .

Since
K1(r)

K2(r)
→ 0 as r → 0, then there exists r0 ∈ (0, 1) such that K1(r) ≤ (2C)−1K2(r)

for 0 < r ≤ r0. Choose t0 = e−r0 and we deduce that if f ∈ QK2,ω, then

sup
a∈∆

∫

∆

| f ′(z)|p (1− |z|)p
K2

�

g(z, a)
�

ωp(1− |z|)
dσz ≤ C sup

a∈∆

∫

∆(a,t0)

| f ′(z)|p (1− |z|)p
K1

�

g(z, a)
�

ωp(1− |z|)
dσz

+
1

2
sup
a∈∆

∫

∆

| f ′(z)|p (1− |z|)p
K2

�

g(z, a)
�

ωp(1− |z|)
dσz .

Therefore,

sup
a∈∆

∫

∆

| f ′(z)|p (1−|z|)p
K2

�

g(z, a)
�

ωp(1− |z|)
dσz ≤ 2C sup

a∈∆

∫

∆(a,t0)

| f ′(z)|p (1−|z|)p
K1

�

g(z, a)
�

ωp(1− |z|)
dσz .
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By Lemma 4.1 and for f ∈ QK2,ω, there exists a constant C1 such that

sup
a∈∆

∫

∆

| f ′(z)|p (1− |z|)p
K2

�

g(z, a)
�

ωp(1− |z|)
dσz ≤ C1‖ f ‖

p

B
p+2

p
ω

. (4.3)

If g ∈ B
p+2

p

ω and gr(z) = g(rz) , 0 < r < 1, then




gr







B
p+2

p
ω

≤




g






B
p+2

p
ω

. Since

gr ∈ QK2,ω , 0 < r < 1, we can choose f = gr in the inequality (4.3). Using Fatou’s

lemma (see [10]), we deduce that

sup
a∈∆

∫

∆

|g ′(z)|p (1− |z|)p
K2(g(z, a))

ωp(1− |z|)
dσz < C1





g






p

B
p+2

p
ω

.

We have proved that g ∈ QK2,ω. It means that QK2,ω =B
p+2

p

ω . It follows from Theorem

2.1 that the integral in (2.3) with K = K2 must be convergent, a contradiction. We

obtain that

QK2,ω $ QK1,ω.

Now, the proof of Theorem 4.2 is completed.
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