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Abstract. In the present paper, we introduce a generalization of positive linear operators and obtain
its Korovkin type statistical approximation properties. The rates of statistical convergence of this gen-
eralization is also obtained by means of modulus of continuity and Lipschitz type maximal functions.
Secondly, we construct a bivariate generalization of these operators and investigate the statistical ap-
proximation properties. We also get a partial differential equation such that the second moment of our
bivariate operators is a particular solution of it. Finally, we obtain a Voronovskaja type formulae via

statistical limit.
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1. Introduction

There are a lot of approximating operators that their Korovkin type error estimates, ap-
proximation properties and rates of convergence are investigated (see [1] for details).

In the present paper, Korovkin type statistical approximation properties of a generalization
of positive linear operators including many well-known operators which was defined by Dogru
in [4] are investigated.

These operators are introduced as

Ly(f;x) = Zf(—)sofr)( )— &)

(x)
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©;'’(0) . An,v 1 1
Ln 7 Vo — < = =
90511/_1)(0), v v u, 0 x < Iy and f e C[O, )

Here ¢, (x) € C™ satisfies the following conditions:

where a, , =

(i) Every element of the sequence {¢,} is analytic on a domain D containing the disk
B={z€(C:|z|<i},

(i) go;”(o) =4 @p (X)|y=g >0forv=1,2,...,

dxV

(iii) ¢,(x) > 0 for each x € [0, i),

v+l v
n,v+1 an,v

<c

(iv) There exists a sequence of {c,} such that <c,

and st lim ¢, = 0.
n—oo
Firstly, let us recall some notations and definitions on the concept of statistical conver-
gence.
A sequence x = (x;) is said to be statistically convergent to a number of L if for every
>0,
§{keN:|x,—L|>¢e}=0
where 6 (K) := lim% { the number k < n : k € K} whenever the limit exist [see e.g. 8]. For
n

instance,
1
§(N)=1,5{2k : keN} = and 6 {k*: k €N} =0.
Notice that any convergent sequence is statistically convergent but not conversely. For exam-
ple, the sequence
Xp = (m=1,2,3,...)

Ly, n#m?

is statistically convergent to L, but not convergent in ordinary sense when L; # L.
In this paper, we also define the bivariate operators for these operators and examine their
statistical convergence and finally an application to partial differential equations is given.

2. Korovkin Type Statistical Approximation Properties

In [5], Gadjiev and Orhan proved the following Korovkin-type statistical approximation
theorem for any sequence of positive linear operators.

Theorem 1 ([5]). If the sequence of positive linear operators

A,:Cy[a,b]— Cla,b]
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satisfies the conditions
. _ . 7 —
st—hrrln HAn(eV) — eVHC[a,b] =0,withe,(t)=t",forv=0,1,2,
then, for any function f € Cy; [a, b], we have
st—hrrln ||An(f) —f ||C[a,b] =0.
The space of all functions f which are continuous in [a,b] and bounded all positive axis is

denoted by Cy; [a, b].
To obtain main results of this part, let us recall some lemmas given in [4]

Lemma 1 ([4]). ForallneN, x €[0,a], (0<a< i), we have

L,(eg,x)=1. )
Lemma 2 ([4]). ForallneN, x €[0,a], (0<a< i), we have

L,(e1,x)=x. 3)

Lemma 3 ([4]). ForallneN, x €[0,a], (0<a< ﬁ), we have

L,(ey,x)— x2| <c,x. 4
Now, we can obtain the following main result for the operators given by (1).

Theorem 2. Forall f € Cy;[0,a], (0<a< i), we have

st—lim|
n

Lo(f3) = f |l croa = ©-

Proof. By Lemma 1 and Lemma 2 it is clear that,

st—lir11n| L”(eo;')_eOHC[O,a] =0 (5)
and
st—lirrlnHLn(el;.)—el||C[0,a] =0. 6)
From Lemma 3, we have
||Ln(ez; D— eZHc[o,a] <c,a. (7)

Now, for a given € > 0, let us define the following sets:

r= {k | Lkeas ) = eacpo g = 8}

and
T, :={k:ca>¢}.
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We can see that T C Ty by (7) so, we get
6{k <n: ”Lk(eZ;')_eZ”c[Oa] > 8} <6{k<n:caze}.

Using the st — lim ¢,, = 0 we have,
n—o0

st — 11rrln| L,(ey;.)— 62”6[0#] =0.
Consequently, we can write

st — lirrln HLn(ev; ) - eVHC[O,a] =0, forv=0,1,2.

So the proof is completed from Theorem 1.

3. Rates of Statistical Convergence

Let f € C [0, a], the modulus of continuity of f, denoted by w(f, &) is defined as
o(f,8):= sup |f(O)—F(x)].

x,te[0,a], [t—x|<5
At this point let us recall following theorems which were proved in [4].
Theorem 3 ([4]). Let f € C[0,a]. If L,, is defined by (1), then we have
|L.(f3) = f|| < A+ VD o(f, V&)
where w(f, \/C,) is modulus of continuity defined in (10) and lim ¢, = 0.

n—o0
The Lipschitz type maximal functions of order a introduced by Lenze [7 ] as follows
t)—f(x
wqo(f,x):=  sup M x €[0,a], a€(0,1].

t#x; t€[0,a] |t - xla

Notice that, the boundedness of &, (f,x) is equivalent to f € Lip(a).

78

8)

)

(10)

(11)

Now let us compute the rate of convergence for the difference |Ln( fix)—f (x)| with the help

of Lipschitz type maximal functions.

Theorem 4 ([4]). If L, is defined by (1), then we have

|La(f5) = £ ()] < (cax) 2 By (f, ).

(12)

Remark 1. Achieving a fast order of statistical convergence is important in approximation by
positive linear operators. If we replace lim ¢, = 0 by st — lim ¢, = 0 in Theorem 3 and Theorem
n—o0 n—o0

4, it is obvious that
st — lim w(f, 4/c,) =0.
n—oo

So, Theorems 3 and 4 give us the rates of statistical convergence of the operators L,(f;.) to f.
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4. Construction of the Bivariate Operators

Let I2 =[0,a] x [0,a], (0 <a < i), and f € C([0,a]?)

1 & v x”
L¥ (f;x,y) = f ( ’y) i (0)—
gpn(x);) Ay .y vl
and
. Mo
LY, (f5x,y) = ()Zf( ) “<>
m
where
P0)  an, 1 1 !
an’v_w lim =u, 0<x<—and f €C([0,—)x[0,—))
(O) v—00 Y u u u
and )
(0 b 1 1 1
m,?’]_(—l()) hmﬂzu,O§y<—andf€C([0,—)X[0,—))
(=D y” 100 7 % u u

Here ¢, (x) € C* and ¢, (y) € C™ satisfy the following conditions:

(a) Every element of the sequence {¢,} and {¢,,} are analytic on a domain D containing
the disk B = {z eC: |zl < i},

b ¢®(0) =
n=12,.

cpn ()]y=p > O forv = 1,2,..., and <p(n)(0) = %cpm (y)|y:0 > 0 for

x’V

(©) ¢,(x)> 0 for each x € [0, i), and ¢,, (y) > 0 for each y € [0, i),

(d) There exists a sequence of {c } such that ai - <c,and st — limc, =0and a
n,v+1 n,v n—oo
n+l .
sequence of {d,, } such that — —’ <d,, and st — lim d,,, =
bm n+1 bm,n m—00

Now we can define the following bivariate generalization of linear and positive operators

n
Y (x)cp (y) ZZ ( )90,(1”( )905,?)(0)—};)—. (13)
" mY)i=op=0 \%nv Omn !

Lemma 4. For the operators (13), we have

Lo (f3,y) = LX (L2, (F5x,)) = 12, (LX (f3%,¥)) -

Proof. Following calculations reveal that

220 = Sty (s

Lym (f3%,5) =

) OO )—

mn



R. Canatan, O. Dogru / Eur. J. Pure Appl. Math, 5 (2012), 75-87 80

= Vo) 0y ™ __”
¥n (x) ¥m (y) ZZf (an,v, bm,n) o () (O) I'n!

v=01=0

= Ln,m (f;x’y) .

Similarly we can easily show that L}, (L;( (f; x,y)) =Lom (f5x,y).

5. Statistical Approximation Properties of the Bivariate Operators

If we have

st—lim”fn’m— =0
n,m

Fletasxiean

then we say that the sequence of functions { fn’m} statistically convergent to f uniformly.
Where

Hf HC([a,b] x[c,d]) — (X’y)eﬁfﬁx le.d] |f (x,¥) | :

Volkov [9] gave the first Korovkin type theorem for bivariate functions. Subsequently, H.H.
Gonska, C. Badea and I. Badea established a simpler form of Volkov’s theorem as follows:

Theorem 5 ([6]). Let a, b, ¢, d be real numbers satisfying the inequalities a < b, ¢ < d and let
Lym:C([la,b] x [c,d]) = C([a,b] x [c,d])

be a positive linear operators having the properties for any (x,y) € [a, b] X [c,d]

(1) Lym(eoo;x,y) =1+u,nm(x,y),

(2) Lym(e105%,Y) =x+ v, (x,5),

(3) Lom (01;%,¥) =Y +wpm (x,¥),

(4) Lym (ex0+eo;x,y) = x2+y2+ Ry (3, )-

If the sequences {umm (x,¥) }, {vmm (x,¥) }, {Wn’m (x,¥) }, {hn’m (x,y)} converge to zero
uniformly on [a,b] X [c,d], then (L, ,f) converges to f uniformly on [a,b] X [c,d] for any
f €C(la,b] x[c,d]) where e; ; = x' yJ are two dimensional test functions.
Lemma 5. The bivariate operators in (13) satisfy the following items:
(D Lnm (e00;%,¥) =1,
(i) Lpm (e105%,¥) =x,
(ii)) Lpm (eo1;%,¥) =Y,

(iv) |Ln m (€20 Feg2; X, y) —x% — y?| < c,x +d,,,y where c, and d,, satisfy the properties in

(d).
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Proof.

(i) Itis obvious that

Ln,m(eOO;x,y) = nm(l'xy)

T (x)cp (y)ZZsoﬁ”<o>so<m<o>

v=0m=0

By using Lemma 1, we have L, , (ego; x,y) = 1.

(i)

ZZ

T)
cpg”(ow(")(m——
%(X) Pm (y)v r e LR n!

Ln,m (610; X, _)’)
by using Lemma 2, we can easily see that L, ,, (ejp;x,y) = x.
(iii) It is proven by similarly way like (ii).

(iv) Since

Lym (€20 +e02;%,y) = wn(X)wm(J’)ZZ K

vOn

T)
xcpg”(owﬁ,?)(m;;,

by using Lemma 3 the proof is completed.

Theorem 6. The sequence (Ln,m f ) defined by (13) converges statistically to f € C ([0,a] x [0,a])
uniformly in [0,a] x [0,a].

Proof.
st — lr}rnr% Hme (e005+-) — eoo” =0, (14)
st — lr%rrg| Lym (e1055.) — 610” =0, (15)
st — lr%r#ﬂ Ly (€015--) — 601” =0 (16)

and from the property (d), we can easily obtain
St_lr}IrIT}HLn’m (620+602;.,.) —620—602” =0. (17)
Using (14), (15), (16), (17), in the light of Theorem 3, we have

st=lim [, (f;...) - f]| =0. (18)
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6. Estimation of the Rate of Statistical Convergence of the Bivariate Operators

Definition 1 ([2]). I? =[0,a] x [0,a], f €C (12) forany 51 >0,8, >0

Cl)(f,51,52) = sup |f(t35)_f (x:}’)| (19)
(t,s)elz,(x,y)el2
lt—x|<8y,|s—y|<62

Theorem 7. If (Ln,m f ) is defined by (13) then we have

[ (F500) = Flloqey < @ (£5 vem VVdn ) (Va+1)". 20)

Proof. Using the properties for modulus (19), we have

[F (69~ f ()| <o (f; 61,52)( |+1) ("E—”H). 2D
2

On the other hand, for any n € N, (x, y) e I? we have

Ln,m (f;x,_)/) _f (X,_)/)| < Ln,m (|f

If we use (21) in (22), then we get

Ln,m(f;x:y)_f(x’y” < w(f;61,52)

XLn,m((lt(;le"‘l) (I 6—2y|+1) y)

;X,y). (22)

(f:61,65) N

= W ,
P72 6zson<x)som(y)
ZZ _ — ¥ ¢(0)0{P(0)
V= OT] mﬂ?

xV y"
X__
LA 'nl

1 1

+o (f; 51,52)

5100 () om (¥)

o0 o0 Vy'r]
™0™ (0) -
x>, x| ¢{(0)¢ (O)w Y
v=0n=01"TV

+o (f; 51,52)

&y son(x) Pm (y o

x¥ y"
XQPEIV)(O)(PET?)(O)WF + w (f’ 01, 52) :
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By using Cauchy-Schwarz inequality and Lemmas 1, 2 and 3, then we obtain

;01,0
Lo (f36,7) = £ (6,)] < %
1¥2

_ 1
1 & v 2 xv |2
_ Mo)—
son(x);,(an,v x) o )v!]
1

1 00 n 2 y" 2
T () o

m,n

1 & v 2 N XY :
" Lon(x);o (a _x) o )(O)W]

w(f;64,0
4 (f;61,65)
P

00 2 %
1 n ) yh
| == [y ) PO
Lom(y);(bm,n ) 7!
+w (f;61,67)
_ C()(f,51,52) 1 1
- 5152 (CnX) 2 (dmy) 2+
;01,0
+w(f 1,62)
P

w (f;61,8,)
01

(dny)? + o (f;61,65).

(cnx)?

If we choose 81 = /¢y, 63 = \/E in the last inequality then we have
[t (F3) = Flley < @ (53 va V) Vava+ o (£ ven vdn) va
+w(fh/§:@) «/E+w(f;m,\/d—m)
= w(f;m,\/ﬂ) (a+2va+1)
= o(fsvamd,) (va+1)”.

Remark 2. Since c, and d,, satisfy st — lim c¢,, = 0 and st — lim d,,, = 0, we can easily say that
n—oo m—0o0

((Ln’mf)) is statistically convergent to f on I2.

7. Application to Partial Differential Equations

Let ((Ln,m f )) be as in (13) then we can give the following theorem.
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Theorem 8. Let

d
d_(pn(x) =hn(X)(,0n(X),
X

%wm () = (5) @m ()

v 1%
. ( ,L) _r.n
an,v bm,'r] Sn tm

and

Then we have

x 0 y 0
=L (f; 2
s, 0x "’m(f’x’y)+tm dy

n

o (F303) = [~ ha ()= o ()

m

Lom (f3%,5)+ Lo (fgsx,y).

Proof. Using the equalities

2 _ =) 1
ol V) = Gy o )
SN
v=01n=0 An,v
N
wn(x)cpm ()

G

n v x¥ y"
T ) MO PO 5
m)” ’r)

n v—l yn
T ) P (OO
m)” ’r)

and
¢ (y) 1
w?n (y) @n(x)

33 (=5

v=01=0

d
ELn,m (f;X,J/) =

Tl

) Wow(o)
Lot
©n (X)) ()

N (VT Xy
N e P R O O
n,v m,m n

v=01=0

we get the proof immediately.

-

84

(23)

(24)

(25)

(26)
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8. Voronovskaja Type Approximation Properties
It can be given the following theorem for Voronovskaja type operators via statistical limit.
Lemma 6. It can be easily showed that
L, (tg; x) < x3+3x%c, + xci 27)

and
L, (t4; x) <xt 4 6cnx3 + 4cT21x2 + ci’x 28)

Theorem 9. Let (L, (f;x)) asin (1)

1
st — nli_)mooc— [L,(t;x)—f(x)] = x (29)

Proof. Proof. Necessity. It will be used the same technique in [3] for this proof. It is known
from the Taylor expansion

£ ()
2

FO=F0)+F ()(t—x)+ (t—x)*n(t—x) (30)

where 1 (t —x) = fg—fx) (t—x)+... and it is a continuous function and tends to zero for
t— X.
Let’s choose t = =~ in (30) then

Any

% , % f” (x)( v 2 % > %
f =f)+f (x) —x |+ —x| + —x | n(——x).
an,y an,y 2 an,y an,y an,y

(31)

Since 7 is a continuous function, it is bounded and there exists a positive constant H, so

for all h, we can write |n(h)| < H. If (31) is multiplied with ﬁwﬁ”(o)% and taken sum
from v = 0 to infinity from both side of it, we have

o) 227 (g o 005 ek (= x;
+fT(x)Ln ((c=x)%x)
1 Oo v B ) v B *) X_V
+(,0n(X)VZ:0 Any x) K (an,v x) n (0)’\/'
SO
Ly (f5) = f () + /() [Ly (£5x) = x] +fT(x) (Lo (5%) = 2xL, (6;2) + x*] +1. (32)
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where

1 v ; v
e ;(am —xr (a

n,v

X’V
- x) e (0)—

v=0 nyv ny
#—x'$5
1 >0 v v xV
+ > (——xPn|—-x|eO)= (33)
(Pn(x) v=0 A,y Any vl
#—x >5

Because 1) is a continuous function for every ¢ > 0 there exists a § (&), <e¢

n ()

n ()

v < H. If these expressions are used

and 7 is bounded for

—x‘ > § we have

Any
in (33), we have
1 & v 2 ) xV
I<e Z —x)%p, (O)—' +HJ 34)
en(x) v—0 nyv v
where -
1 % xV
= (— —x)?eM(0)— (35)
o 2 (o, e
anv—y—x >5
i
Due to |~ —x‘ >6, —“— >1. S0
1 1 & v 4 ) xVv
< 5= D~ (36)
6 (pn(x) v=0 an,v v:

By using (34) and (36)
1
I<e¢l, ((t—x)z;x)+H§Ln ((t—x)4;x) (37)

and using (28) in (37) we obtain

" x H
f 2( )x+8x+§xc,21:| 5

Ln(t;x)—f(x)Scn |:

SO

L,(t;x)—f (x)=o(c,) [f Z(X)x+£x+gxcrzl:|

Because st— lim ¢, = 0 and ¢ is an arbitrary positive constant, we have the proof.
n—o0
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Remark 3. It is obvious that since c, tends to zero statistically, we have a better order of approx-
imation in Theorem 9 than Theorem 3.
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